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Abstract: - This paper presents the use of the improved harmony search method for solving economic load dispatch 
problems. The harmony search method mimics a jazz improvisation process by musicians in order to seek a fantastic 
state of harmony. To assess the searching performance of the proposed method, a six-unit thermal generating system 
acquired from the standard IEEE 30-bus test system was challenged. Satisfactory results obtained from the proposed 
method were compared to those obtained by genetic algorithms, evolutionary programming, adaptive tabu search and 
particle swarm. Also, effects of valve-point loading units were included and discussed.       
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1   Introduction 
Engineering optimization problems contain many 
practical complex constraints. They can be formulated 
and therefore solved as nonlinear programming models. 
The methods for solving this kind of problems include 
traditional mathematical programming (such as linear 
programming, quadratic programming, dynamic 
programming, gradient methods and Lagrangian 
relaxation approaches [1]) and modern meta-heuristic 
methods (such as simulated annealing, genetic 
algorithms, evolutionary algorithms, adaptive tabu 
search, particle swarm optimization, etc [2]). Some of 
these methods are successful in locating the optimal 
solution, but they are usually slow in convergence and 
require very expensive computational cost. Some other 
methods may risk being trapped to a local optimum, 
which is the problem of premature convergence.  
     Economic load dispatch is one of well-known 
problems in a field of power system optimization [3]. 
The problem of dividing the total load demand among 
available online generators economically and also 
satisfying various system constraints simultaneously is 
called economic load dispatch. This is an important task 
in power system for allocating power generations among 
the committed units such that the constraints imposed 
are satisfied, the energy demands are met, and the 
corresponding cost is minimized. Improvements in 
scheduling of the unit generations can lead to significant 
cost savings. In view of the nonlinear characteristics of 
this problem, there is a demand for the optimization 
methods that do not have restrictions on the shape of the 
fuel-cost curves [4]. As some stochastic search 
algorithms as mentioned above may prove to be very 
effective in nonlinear economic load dispatch problems 

due to having no restrictions on the shape of the cost 
curves. Although it does not guarantee the globally 
optimal solution in limited time, it does normally 
provide good solutions with computational cost [5].  
     In the past decades, many optimization algorithms 
are tried with different kinds of constraints. Several 
mathematical programming and modern heuristic search 
can be found extensively [5,6]. Evolutionary search 
methods have becomes more popular to solve any 
mathematical functions [7]. The natural selection and 
meta-heuristic methods are useful for finding the global 
optimum solution, since they all are maintaining 
population of solutions to the considered problem. 
Harmony search method has been developed by Geem et 
al [8]. It imitates the improvisation process of musicians 
to find the perfect state of harmony. It has been 
successfully applied to various mathematical 
optimization problems in the application field of civil 
and mechanical engineering. However, its first version 
was invented as a combinatorial optimization where 
decision variables are discrete. To apply the harmony 
search method to the real world engineering in which 
many search spaces are continuous, some procedure of 
the harmony search method must be modified to be able 
to handle continuous search variables. Hence, it is an 
improved version of the harmony search method which 
is called as the improved harmony search method.    
     This paper solves an economic load dispatch problem 
using the improved harmony search method. The test 
considers a six-unit generating system acquired from the 
standard IEEE 30-bus test system [9]. The results 
obtained by the improved harmony search method are 
compared with those of other promising methods. The 
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proposed method proves to be a robust optimization 
technique for solving economic load dispatch problems. 
     This paper organizes a total of five sections. Next 
section, Section 2 illustrates economic load dispatch 
problems with corresponding mathematical expressions 
of its objective and various practical constraints. Section 
3 gives the brief of some meta-heuristic search methods 
used for comparative purpose. It also provides the 
algorithm procedure, described step-by-step. Section 4 is 
the simulation results and discussion. Conclusion remark 
is in Section 5.   
 
 
2   Problem Formulation 
Almost all coal, nuclear, geothermal, solar thermal 
electric, and waste incineration plants, as well as many 
natural gas power plants are thermal. Natural gas is 
frequently combusted in gas turbines as well as boilers. 
The waste heat from a gas turbine can be used to raise 
steam, in a combined cycle plant that improves overall 
efficiency. Power plants burning coal, oil, or natural gas 
are often referred to collectively as fossil-fuel power 
plants. Some biomass-fueled thermal power plants have 
appeared also. Non-nuclear thermal power plants, 
particularly fossil-fueled plants, which do not use 
cogeneration are sometimes referred to as conventional 
power plants. Commercial electric utility power stations 
are most usually constructed on a very large scale and 
designed for continuous operation. Electric power plants 
typically use three-phase or individual-phase electrical 
generators to produce alternating current (AC) electric 
power at a frequency of 50 Hz or 60 Hz (hertz, which is 
an AC sine wave per second) depending on its location 
in the world. Other large companies or institutions may 
have their own usually smaller power plants to supply 
heating or electricity to their facilities, especially if heat 
or steam is created anyway for other purposes. 
Shipboard steam-driven power plants have been used in 
various large ships in the past, but these days are used 
most often in large naval ships. Such shipboard power 
plants are general lower power capacity than full-size 
electric company plants, but otherwise have many 
similarities except that typically the main steam turbines 
mechanically turn the propulsion propellers, either 
through reduction gears or directly by the same shaft. 
The steam power plants in such ships also provide steam 
to separate smaller turbines driving electric generators to 
supply electricity in the ship. Shipboard steam power 
plants can be either conventional or nuclear; the 
shipboard nuclear plants are mostly in the navy. There 
have been perhaps about a dozen turbo-electric ships in 
which a steam-driven turbine drives an electric generator 
which powers an electric motor for propulsion. In some 
industrial, large institutional facilities, or other populated 

areas, there are combined heat and power (CHP) plants, 
often called cogeneration plants, which produce both 
power and heat for facility or district heating or 
industrial applications. AC electrical power can be 
stepped up to very high voltages for long distance 
transmission with minimal loss of power. Steam and hot 
water lose energy when piped over substantial distance, 
so carrying heat energy by steam or hot water is often 
only worthwhile within a local area or facility, such as 
steam distribution for a ship or industrial facility or hot 
water distribution in a local municipality. 
     Power is energy per unit time. The power output or 
capacity of an electric plant can be expressed in units of 
megawatts electric (MWe). The electric efficiency of a 
conventional thermal power station, considered as 
saleable energy (in MWe) produced at the plant busbars 
as a percent of the heating value of the fuel consumed, is 
typically 33% to 48% efficient. This efficiency is limited 
as all heat engines are governed by the laws of 
thermodynamics (See: Carnot cycle). The rest of the 
energy must leave the plant in the form of heat. This 
waste heat can go through a condenser and be disposed 
of with cooling water or in cooling towers. If the waste 
heat is instead utilized for district heating, it is called 
cogeneration. An important class of thermal power 
station is associated with desalination facilities; these are 
typically found in desert countries with large supplies of 
natural gas and in these plants, freshwater production 
and electricity are equally important co-products. Since 
the efficiency of the plant is fundamentally limited by 
the ratio of the absolute temperatures of the steam at 
turbine input and output, efficiency improvements 
require use of higher temperature, and therefore higher 
pressure, steam. Historically, other working fluids such 
as mercury have been experimentally used in a mercury 
vapour turbine power plant, since these can attain higher 
temperatures than water at lower working pressures. 
However, the obvious hazards of toxicity, and poor heat 
transfer properties, have ruled out mercury as a working 
fluid. 
     Real power generation can be allocated to available 
generating units in many different ways [6]. In this 
paper, the economic objective and some practical 
constraints of the economic load dispatch problems are 
illustrated as follows.    
 
2.1 Economic objective function 
The economic dispatch problem is to find the optimal 
combination of power generation in such a way that the 
total production cost of the entire system is minimized 
while satisfying the total power demand and some key 
power system constraints. The fuel cost for each power 
generation unit is defined. Hence, the total production 
cost function of economic dispatch problem is defined as 
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the total sum of the fuel costs of all generating plant 
units as described follows.  
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Where 
      NG is the total number of generating units 
      FT is the total production cost 
     Pi is the power output of generating unit i 
     min

iP  is the minimum output of generating unit i 
     ai, bi, ci, di, ei are fuel cost coefficients of unit i 
 
It should note that (1) describes the fuel cost function in 
which valve-point loading effect [4,10] is included. 
 
2.2 Problem constraints 
There are equality and inequality constraints in this kind 
of problems. A power balance equation (2) is set as an 
equality constraint whereas the limits of power 
generation output (3) are inequality constraints.   
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Where 
     PD is the total power demand of the plant 
     PLoss is the total power losses of the plant 
     min

iP  is the minimum output of generating unit i 
     max

iP  is the maximum output of generating unit i 
 
2.2 Economic load dispatch problem 
The solution of economic dispatch problem will give the 
amount of active power to be generated by different 
units at the minimum production cost for a particular 
demand while keep operating the system within all the 
constraint limits. This is the economic load dispatch 
problems being as a constrained nonlinear optimization 
problem [3,5,6] as follows.   
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Where 
      x is a vector of decision variables 
      gi(x) is an equality constraint i  
      hj(x) is an inequality constraint I  
 

To solve this constrained optimization with some 
efficient mathematical programming and modern meta-
heuristic methods [1,5], penalty method is used to 
convert a constrained optimization problem to an 
unconstrained optimization problem. Therefore, 
problems of a single objective function are formulated 
and can be solved accordingly. The penalty function can 
be expressed as follows.  
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Where 
     ρ is the penalty factor 
 
 
3   Meta-Heuristic Methods for Solving 
Optimization Problems  
 
3.1 Genetic algorithms (GAs) 
There exist many different approaches to adjust the 
motor parameters. The GAs is well-known [11-16], 
there exist a hundred of works employing the GAs 
technique to identify system parameters in various 
forms. The GAs is a stochastic search technique that 
leads a set of population in solution space evolved using 
the principles of genetic evolution and natural selection, 
called genetic operators e.g. crossover, mutation, etc. 
With successive updating new generation, a set of 
updated solutions gradually converges to the real 
solution. Because the GAs is very popular and widely 
used in most research areas where an intelligent search 
technique is applied, it can be summarized briefly as 
shown in the flowchart of Fig. 1 [14].  
 

Start

Specify the parameters for GA

Generate initial population

Time-domain simulation

Find the fitness of each individual
In the current population

Gen.>Max.Gen ?
Stall Gen.>Max?

Stop

Apply GA operators:
Selection, crossover and mutation

Gen. = Gen.+1 Yes

No

 Fig. 1. Flowchart of the GAs procedure 
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     In this paper, the GAs is selected to build up an 
algorithm to solve economic dispatch problems (all 
generation from available generating units). To reduce 
programming complication, the Genetic Algorithms 
(GADS TOOLBOX in MATLAB [12]) is employed to 
generate a set of initial random parameters. With the 
searching process, the parameters are adjusted to give 
the best result.  
 
3.2 Evolutionary programming (EP) 
Evolutionary programming was invented by  Lawrence 
J. Fogel [7] in 1960. At the time, artificial intelligence 
was limited to two main avenues of investigation: 
modeling the human brain or neural networks, and 
modeling the problem solving behavior of human 
experts or heuristic programming. Both focused on 
emulating humans as the most advanced intelligent 
organism produced by evolution. The alternative, 
envisioned by Fogel, was to refrain from modeling the 
end product of evolution but rather to model the process 
of evolution itself as a vehicle for producing intelligent 
behavior. Fogel viewed intelligence as a composite 
ability to make predictions in an environment coupled 
with the translation of each prediction into a suitable 
response in light of a given goal (e.g. to maximize a 
payoff function). Thus, the viewed prediction is a 
prerequisite for intelligent behavior. The modeling of 
evolution as an optimization process was a consequence 
of Fogel’s expertise in the emerging fields of 
biotechnology (at the time defined as the utilization of 
mathematics to describe the functioning of a human 
operator), cybernetics, and engineering.  
     Fogel crafted a series of experiments in which finite 
state machines represented individual organisms in a 
population of problem solvers. These graphical models 
are used to describe the behavior or computer software 
and hardware, which is why he termed his approach 
"Evolutionary Programming". The experimental 
procedure was as follows. A population of finite state 
machine is exposed to the environment – that is, the 
sequence of symbols that has been observed up to the 
current time. For each parent machine, as each input 
symbol is presented to the machine, the corresponding 
output symbol is compared with the next input symbol. 
The worth of this prediction is then measured with 
respect to the payoff function (e.g., all-none, squared 
error). After the last prediction is made, a function of the 
payoff for the sequence of symbols (e.g., average payoff 
per symbol) indicates the fitness of the machine or 
program. Offspring machines are created by randomly 
mutating the parents and are scored in a similar manner. 
Those machines that provide the greatest payoff are 
retained to become parents of the next generation, and 
the process iterates. When new symbols are to be 
predicted, the best available machine serves as the basis 

for making such a prediction and the new observation is 
added to the available database. Fogel described this 
process as “evolutionary programming” in contrast to 
“heuristic programming” [17-20]. This can be 
summarized briefly as shown in the flowchart of Fig. 2.   
 

START

Create Initial Population
Set Counter

Obtain Optimal Solution

STOP

Satisfied

Create Competing Pool
By using 100% Mutation

Stopping Criteria
Unsatified

Increase Counter

Natural Selection Scheme

 
Fig. 2 Flowchart of the EP procedure 
 
3.3 Adaptive tabu search (ATS) 
The tabu search method [10, 21] is an iterative process 
that searches for the best solution by moving from a 
current solution to find a better solution repeatedly. One 
of the important features of the TS method is its tabu list 
that keeps the history of search paths. The information in 
the list is used for finding a new direction of search 
movement. Every new is expected to search a better 
solution and ultimately the optimum one. Another 
feature of the tabu search method is its aspiration 
criterion. The aspiration criterion provides preferable 
characteristics of any possible solutions. It is particularly 
useful for the selection of a proper solution from a set of 
satisfied solutions.  
     In order to improve the performance of the tabu 
search method, we have proposed two additional 
mechanisms namely back-tracking and adaptive search 
radius. The enhanced version of the tabu search method 
has been named the adaptive tabu search [15,22,23]. 
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Regarding to the intensification mechanism, the back-
tracking mechanism allows the search to look backward 
to some previous solutions stored in the tabu list. This 
mechanism may become necessary when the search 
encounters an entrapment caused by a local solution. An 
alternative solution is then chosen from the current and 
the previous solutions. With the back-tracked solution, a 
new search space is created. Given this new search space 
to explore, the search moves in a new direction away 
from that approaching the local solution. Note that the 
new solution chosen here is not necessary to be the best 
solution within the current search space but it helps the 
search to escape from an entrapment. This can be 
summarized briefly as shown in the flowchart of Fig. 3.  
 

START

Create Initial 
Population

Obtain the Optimal Solution

STOP

Satisfied

Check Stopping 
Criteria

Unsatisfied

Increase Counter

Create a Neighborhood Set

Evaulate xnbest from Neighborhood

Better than xlbest Better than xgbest

Update xlbest

Check Aspiration Criterion

Update xgbest

Unsatisfied

Unlock TL

Satisfied

Yes Yes

No

No

 
Fig. 3. Flowchart of the ATS procedure 
 
 
3.4 Particle swarm optimization (PSO) 
Kennedy and Eberhart developed a particle swarm 
optimization algorithm based on the behavior of 
individuals (i.e., particles or agents) of a swarm [24-29]. 
Its roots are in zoologist’s modeling of the movement of 
individuals (i.e., fish, birds, and insects) within a group. 
It has been noticed that members of the group seem to 
share information among them to lead to increased 
efficiency of the group. The particle swarm optimization 
algorithm searches in parallel using a group of 

individuals similar to other AI-based heuristic 
optimization techniques. Each individual corresponds to 
a candidate solution to the problem. Individuals in a 
swarm approach to the optimum through its present 
velocity, previous experience, and the experience of its 
neighbors. In a physical n-dimensional search space, the 
position and velocity of individual i are represented as 
the velocity vectors. Using these information individual i 
and its updated velocity can be modified under the 
following equations in the particle swarm optimization 
algorithm. 
 

START

Create an initial swarm

Evaluate the fitness for each particle

Check and update
personal best and global best

Update each individual velocity

Check stopping criteria

Update individuals

k = k + 1

END

Success

Satisfied

Unsatisfied

 
Fig. 4. Flowchart of the PSO procedure 
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Where   
     ( )k

ix  is the individual i at iteration k 
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     ( )k
iv  is the updated velocity of individual i at 

iteration k 
     αi, βi are uniformly random numbers between [0,1]  
     lbest

ix  is the individual best of individual i 

     gbestx   is the global best of the swarm 
 
The procedure of the particle swarm optimization can 
be summarized in the flow diagram of Fig. 4.   
 
 
3.5 Improved harmony search (IHS) 
The harmony search algorithm [8] was 
conceptualized from the musical process of 
searching for a ‘perfect state’ of harmony, such as 
jazz improvisation. Jazz improvisation seeks a best 
state (fantastic harmony) determined by aesthetic 
estimation, just as the optimization algorithm seeks 
a best state (global optimum) determined by 
evaluating the objective function. Aesthetic 
estimation is performed by the set of pitches played 
by each instrument, just as the objective function 
evaluation is performed by the set of values 
assigned by each decision variable. The harmony 
quality is enhanced practice after practice, just as 
the solution quality is enhanced iteration by 
iteration. Consider a jazz trio composed of a 
saxophone, double bass, and guitar. Assume there 
exists a certain number of preferable pitches in each 
musician’s memory: saxophonist {Do, Mi, Sol}, 
double bassist {Ti, Sol, Re}, and guitarist {La, Fa, 
Do}. If the saxophonist plays note Sol, the double 
bassist plays Ti, and the guitarist plays Do, together 
their notes make a new harmony (Sol, Ti, Do) 
which is musically the chord C7. If this new 
harmony is better than the existing worst harmony 
in their memories, the new harmony is included in 
their memories and the worst harmony is excluded 
from their memories. This procedure is repeated 
until a fantastic harmony is found.  
     However, its first version was invented as a 
combinatorial optimization where decision variables are 
discrete. To apply the harmony search method to the real 
world engineering in which many search spaces are 
continuous, some procedure of the harmony search 
method must be modified to be able to handle 
continuous search variables. Together, the parameter 
called bandwidth is used and adaptively changed by 
variance of population. Hence, it is an improved version 
of the harmony search method which is called as the 

improved harmony search method [30-34]. The steps in 
the procedure of harmony search are shown in Fig. 5. 
 

START

Create an initial harmony memory

Improvisation:
Create a new harmony vector by
1. Memory consideration
2. Pitch adjustment
3. Random selection

Update the harmony memory

Check stopping criteria

Increase Conunter

STOP

Success

Satisfied

Unsatisfied

 Fig. 5. Flowchart of the IHS procedure 
 
 
5   Simulation Results 
To verify the effectiveness of the proposed improved 
harmony search method, a six-unit thermal power 
generating plant acquired from the standard IEEE 30-
bus test system was tested. Fuel cost coefficients and 
generation limits for each generating unit of the test 
system were given in Table 1.  
 
Table 1: Fuel cost coefficients for each generating unit 

i a b c D e min max 
1 100 200 10 15 6.283 0.05 0.5 
2 120 150 10 10 8.976 0.05 0.6 
3 40 180 20 10 14.784 0.05 1.0 
4 60 100 10 5 20.944 0.05 1.2 
5 40 180 20 5 25.133 0.05 1.0 
6 100 150 10 5 18.48 0.05 0.6 
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The simulations were performed using MATLAB 
software. The test were carried out by solving economic 
load dispatch of a single power demand case, PD = 3.6 
p.u.. For comparison purposes, some meta-heuristic 
search (GA, EP, ATS and PSO) were also applied to 
solve this test case. The results of which are presented as 
follows. 
 
5.1 Solution by genetic algorithms  
In this case, some parameters must be assigned for the 
use of genetic algorithms to solve the economic dispatch 
problems as follows: 

• Population size = 20 
• Maximum generation = 1000 
• Crossover rate = 0.8 
• Mutation rate = 0.2 

 
The obtained results for the six-unit system using the 
genetic algorithms were given in Table 2. It showed that 
the genetic algorithms has succeeded in finding a global 
optimal solution for this case. 
 
Table 2: Optimal solution for GA case 

P1 0.4200 P4 1.0705 
P2 0.3826 P5 0.6875 
P3 0.7217 P6 0.3177 
FT = 1704.2 Baht/h 

 
Fig. 6 showed the convergence of the solution obtained 
by the genetic algorithms. The total of 500 iterations was 
spent during this process. The searching process was 
terminated by the maximum number of generation.    
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Fig. 6 Solution convergence by GA 
 
5.2 Solution by evolutionary programming  
In this case, some parameters must be assigned for the 
use of evolutionary programming to solve the economic 
dispatch problems as follows: 

• Population size = 20 
• Maximum generation = 1000 
• Scaling factor β = 0.01 
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Fig. 7 Solution convergence by GA 
 
The obtained results for the six-unit system using the 
evolutionary programming were given in Table 3. It 
showed that the evolutionary programming has 
succeeded in finding a global optimal solution for this 
case. 
     Fig. 7 showed the convergence of the solution 
obtained by the particle swarm optimization. The total of 
412 iterations was spent during this process. The 
searching process was terminated by the maximum 
number of stalled generation. 
 
 
Table 3: Optimal solution for EP case 

P1 0.4189 P4 0.8581 
P2 0.4946 P5 0.6354 
P3 0.9611 P6 0.2320 
FT = 1678.7 Baht/h 

 
 
5.3 Solution by adaptive tabu search  
In this case, some parameters must be assigned for the 
use of adaptive tabu search to solve the economic 
dispatch problems as follows: 

• Neighborhood size = 30 
• Maximum generation = 1000 
• Initial neighborhood radius = 0.05 

 
The obtained results for the six-unit system using the 
adaptive tabu search were given in Table 4. It showed 
that the adaptive tabu search has succeeded in finding a 
global optimal solution for this case. 
 
Table 4: Optimal solution for ATS case 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
T. Ratniyomchai, A. Oonsivilai, 
P. Pao-La-Or, T. Kulworawanichpong

ISSN: 1991-8763 254 Issue 4, Volume 5, April 2010



P1 0.4189 P4 0.9309 
P2 0.3298 P5 0.7081 
P3 0.6448 P6 0.5779 
FT = 1699.7 Baht/h 
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Fig. 8 Solution convergence by ATS 
 
Fig. 8 showed the convergence of the solution obtained 
by the adaptive tabu search. The total of 138 iterations 
was spent during this process. The searching process 
was terminated by the maximum number of stalled 
generation. 
 
5.4 Solution by particle swarm optimization 
In this case, some parameters must be assigned for the 
use of particle swarm optimization to solve the 
economic dispatch problems as follows: 

• Number of particles = 20 
• Maximum generation = 1000 
• Maximum velocity = 15 

 
The obtained results for the six-unit system using the 
particle swarm optimization were given in Table 5. It 
showed that the particle swarm optimization has 
succeeded in finding a global optimal solution for this 
case. 
 
Table 5: Optimal solution for PSO case 

P1 0.0798 P4 1.1123 
P2 0.4701 P5 0.5801 
P3 0.9261 P6 0.4314 
FT = 1702.0 Baht/h 
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Fig. 9 Solution convergence by PSO 
 
Fig. 9 showed the convergence of the solution obtained 
by the particle swarm optimization. The total of 136 
iterations was spent during this process. The searching 
process was terminated by the maximum number of 
stalled generation. 
 
5.5 Solution by improved harmony search  
In this case, some parameters must be assigned for the 
use of improved harmony search to solve the economic 
dispatch problems as follows: 

• Maximum generation = 5000 
• Harmony memory size = 20 
• Maximum stalled generation = 250 

 
The obtained results for the six-unit system using the 
improved harmony search were given in Table 6. It 
showed that the improved harmony search has 
succeeded in finding a global optimal solution for this 
case. 
 
 
Table 6: Optimal solution for IHS case 

P1 0.1899 P4 1.0449 
P2 0.4679 P5 0.6330 
P3 0.9096 P6 0.3571 
FT = 1696.0 Baht/h 
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Fig. 10 Solution convergence by IHS 
 
Fig. 10 showed the convergence of the solution obtained 
by the improved harmony search. The total of 550 
iterations was spent during this process. The searching 
process was terminated by the maximum number of 
stalled generation. 
 
 
6   Conclusion 
Solution methods of economic dispatch problems are 
described in this paper. Some efficient meta-heuristic 
search methods (genetic algorithm, evolutionary 
programming, adaptive tabu search, particle swarm 
optimization and improved harmony search) are briefed 
and summarized, step-by-step in the flow diagrams. The 
results showed that a set of optimal dispatch solutions 
with respect to the economic objective can be efficiently 
found. As a result, the improved harmony search method 
proves that it can find a place among some efficient 
meta-heuristic search methods in order to find a near 
global solution of the economic load dispatch problems.  
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