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Abstract: - The conventional sliding mode controller needs the exact knowledge of system state measurements. 
In this study, nonlinear second order systems with unmeasured system states and bounded external disturbances 
are considered. The sliding mode observer based on nonlinear observation error dynamics is considered and the 
observer gain is adjusted by using a support vector machine based plant model. From the output of the support 
vector machine model, k-step ahead predictions are obtained. Therefore, the value of k is first analyzed to 
search for a proper value. It is also shown with the simulations that the stability conditions are satisfied for the 
chosen observer gains. Computer simulations are presented to show the effect of the proposed gain adjustment 
mechanism on the performance of output feedback sliding mode controller. It is seen that the trajectory tracking 
performance is improved with respect to a conventional output feedback sliding mode control scheme having 
constant sliding mode observer gains. 
 
Key-Words: - Sliding mode control, Sliding mode observer, Output feedback sliding mode control, Support 
vector machine regression, Observer gain, Bounded external disturbances. 
 
1 Introduction 
Engineers always search for better control methods 
to attain higher productivity than classical methods 
and to produce quality products at competitive 
prices. When unknown but bounded external 
disturbances are considered, sliding mode control is 
a promising area of study for both theoretical and 
application oriented robust control problems [1]. 

Sliding mode control is based on variable 
structure systems theory [1]. It is a nonlinear control 
method with a high-frequency chattering 
phenomenon that alters dynamics of a nonlinear 
system. The state-feedback control law switches 
from one continuous structure to another based on 
the current position of system trajectory in the state 
space. The control law must provide the system to 
move always towards a switching condition. The 
motion of the system as it slides along these 
boundaries is called a sliding mode and geometrical 
locus consisting of the boundaries is called sliding 
surface [1]. Sliding mode control structures have 
been applied to various engineering problems in a 
wide variety of application areas such as electrical 
motors [2], mobile robots [3], micro-electro-

mechanical systems [4], chemical processes, and 
space systems. 

For the implementation of the well-known 
conventional sliding mode controller (SMC) 
structure, exact knowledge of system state 
measurements is needed. However, for most 
applications, it is either impractical or inappropriate 
to use sensors for on-line measurement of all state 
variables considering different reasons as cost, 
reliability, harsh environment or even induced errors 
from the sensors [5]. This necessity of completely 
measuring the states of a system can be regarded as 
an important drawback of conventional SMCs. 

Observers can be used to replace sensors in a 
control system. Therefore, a considerable amount of 
work has been done in the field of state estimation 
of dynamic systems by observers as it is an 
important requirement for safe and cost-effective 
operation of industrial units [6]. The observers are 
first proposed and developed for linear systems [7]. 
However, all practical systems inherent some degree 
of nonlinearity and in some cases the linear 
approximations based on exact linearization or 
pseudo-linearization may not be accurate enough. 
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Therefore, observer theory has been extended to 
include nonlinear process models [8].  

The mentioned requirement for state estimation 
based on nonlinear observation error dynamics, and 
simple structure and robust stability of SMC 
prompted the study of sliding mode observers 
(SMOs) [9]. In SMOs, instead of using an output 
error feedback between the observer and system 
linearly, a nonlinear discontinuous term is injected 
into the observer depending on the output estimation 
error [10]. SMOs have an inherent robustness in the 
face of external disturbances and model 
uncertainties [11]. The equivalent control concept is 
proposed in [12] for linear systems where the 
observer states converge to the sliding surface step 
by step in finite time. Then, the equivalent output 
injection term that is defined as a counterpart of 
equivalent control term of SMC is applied to linear 
systems with unknown inputs [13]. 

A SMC that uses the state estimates obtained 
from an observer structure [14] or a SMC that only 
uses system outputs [15] constitute the concept of 
output feedback sliding mode controller (OFSMC). 
State estimation of nonlinear systems in the 
presence of external disturbances or model 
uncertainties is an active field of study [16-18]. The 
idea in [12, 13] is extended in [19] to OFSMC 
design in which a nonlinear system with unknown 
disturbances is considered. 

The parallel processing capabilities of artificial 
neural network (ANN) architectures provides a 
viable means for constructing the states of complex 
dynamic systems from input output measurements 
[20]. Therefore, using soft computing 
methodologies in order to improve the performance 
of SMOs or SMCs is an active area of research.  

For instance, the speed control of an induction 
motor using a SMC is considered in [2] and a feed-
forward ANN architecture is used to estimate the 
rotor speed. For the SMO case, the modeling error 
of the ANN observer is compensated by the SMO 
[21]. Also, a radial basis function ANN and SMO 
are used in parallel in order to consider different 
system states or environmental variables [22]. In 
[23], on the other hand, the ANN observer and SMO 
are connected in serial and the ANN is used to 
obtain a nonlinear model of the system. For the 
SMC case, an ANN based observer is used in order 
to improve the SMC performance [24].  

For the worst case errors, ANNs provide better 
performance than linear regression techniques [25]. 
However, ANNs have a local minima problem 
which is an important drawback for most control 
problems. Therefore, in this study, a support vector 
machines (SVMs) based structure is chosen. SVMs 

were originally created to solve classification 
problems. In SMC problems, SVMs are used for 
different purposes. For instance, the design 
parameters of a time-varying sliding surface for a 
given initial condition are obtained by using SVMs 
[26]. Then, the function approximation property of 
SVMs is used to design a new sliding surface with 
additional dynamic states [27]. Also, the 
discontinuous control law of SMC is constructed 
using the output of SVMs based model in order to 
eliminate chattering [28]. 

OFSMCs in the presence of unknown 
disturbances is examined in [19] by proving the 
stability under a set of nonrestrictive assumptions 
and it is shown that the designed controller ensures 
asymptotic trajectory tracking behavior. To achieve 
this aim, the gains of the state observer must be 
properly selected for an acceptable trajectory 
tracking performance for the observation error to 
converge towards zero. Therefore, selection of the 
observer gains is important for the stability and 
performance of the controller.  

An observer that estimates all of the state 
variables is called a full-order observer. Whereas, an 
observer that estimates a part of the state variables is 
referred to be a reduced-order observer [29]. In this 
study, the OFSMC with a full-order observer 
presented in [19] is considered and SVM based 
plant model and controller tuning scheme given in 
[30] that is developed for tuning PID parameters is 
extended in order to improve the performance of the 
SMO and also to compensate the SMC output.  

The conventional SMC strategy is originally 
designed for continuous-time operation and it is 
more difficult to choose a synthesis for discrete-time 
case [3]. The discrete-time SMC is quite different 
from the conventional counterpart and is also called 
as quasi sliding mode. Discrete-time SMC design is 
usually based on an approximate sliding mode 
system evolution due to the non-unique attractivity 
condition and approximate evolution on sliding 
surface [3]. In our study, the parameter adaptation 
with SVM is in discrete-time. However the state-
feedback control scheme based on the SMO, SMC 
and the plant are all in continuous-time. 

The structure of the paper is as follows: In the 
next section, two main components of the OFSMC 
scheme, the SMC and SMO, are briefly described 
and SMC law with system state estimates is 
presented. The SVM based modeling, prediction and 
Jacobian calculations presented in [30] are given in 
Section 3 and then SMO based gain adaptation 
scheme is presented in Section 4. Then, simulations 
to demonstrate the validity and advantage of the 
gain adaptation scheme are given in Section 5. 
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2 Output Feedback Sliding Mode 
Controller 
The OFSMC consists of a SMC to generate the 
control law and a SMO to obtain the system state 
estimates from measured system output and control 
input. These cornerstones of the presented structure 
are emphasized in this section. 
 
 
2.1 Continuous-time Sliding Mode 
Controller 
The state space representation of a second order, 
single-input, nonlinear system in canonical form 
with state vector x=[x1, x2]T can be given as 
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where u(t) is the control input, d(t) is the external 
disturbances and f(x), b(x) are nonlinear functions 
that determine the system characteristics [1, 19].  

The SMC scheme involves selection of a sliding 
surface such that the system trajectory exhibits 
desirable behavior when confined to this manifold 
and finding feedback gains so that the system 
trajectory intersects and stays on the given manifold. 
Therefore, for system (1), assuming the trajectory 
tracking problem, the error dynamics for the second 
order system given in (1) can be written as 
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and from this dynamics, the conventional linear 
sliding surface with constant design parameters can 
be written as 

211),( eects T +== ece                              (3) 

where e=[e1, e2]T is the error state vector and           
idii xxe −= is the ith error state variable, xid is the 

desired trajectory of the ith state and  c=[c1, 1]T is the 
constant sliding surface parameter that determine 
the system behavior in the error phase plane. It is 
necessary and sufficient to differentiate (3) once for 
u(t) to appear. Thus, this is a first order stabilisation 
problem based on s(e,t). Lyapunov's direct method 
could be used to obtain u(t) that would keep s(e,t) at 
zero. Consider a Lyapunov function candidate as 

 ),(
2
1)( 2 tssV x=            (4) 

with V(0)=0, V(s)>0 for ∀s(x,t)>0 [1]. An efficient 
condition for system stability can be given as 
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where η is a strictly positive real constant that 
determines the convergence velocity of the 
trajectory to the sliding surface. Obtaining the 
inequality in (5) means that, the distance to the 
surface decreases along all trajectories and this 
means that the system is stable. Therefore, (5) is 
called as the reachability condition for the sliding 
surface. By substituting (3) into (5) and omitting the 
arguments of the independent variables one obtains 

 secxdbubfs d η−≤+−++ )...( 112
&&            (6) 

Therefore, a control input satisfying the reaching 
condition can be chosen as 

diseqgd uuskecxfbu +=−+−−= − ˆ)(sign))(( 112
1 &&x     (7) 

where kg is a strictly positive real constant with a 
lower bound depending on the bounded external 
disturbances. The function sign(.) denotes the 
signum function defined as follows 
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The control input in (7) consists of two parts. 
The first part, ueq is the continuous term that is 
known as equivalent control based on estimated 
system parameters and it compensates the estimated 
undesirable dynamics of the system. The second 
part with the signum function is the discontinuous 
control law, udis that requires infinite switching on 
the part of the control signal and actuator at the 
intersection of error state trajectory and sliding 
surface. In this way, the trajectory is forced to move 
always towards the sliding surface [1].  
 
 
2.2 Sliding Mode Observer 
The state estimation problem for a system subject to 
unknown external disturbances under output 
feedback sliding mode control with an equivalent 
output injection sliding mode observer is considered 
in [19]. In this study, the sliding mode observer 
structure presented in [19] is used.  

For the system given in (1), only the system 
output y is measured. Therefore, the error dynamics 
(2) could not be obtained. The system states and 
also the error dynamics can be obtained from y by 
using an observer of the form given as 
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where eqxxxx ))ˆsgn((ˆ~
11122 −+= λ  and the equivalent 

output injection term eqxx ))ˆsgn(( 111 −λ is obtained by 
using a low pass filter [5, 19]. The term E1=0 if 

0ˆ11 ≠− xx  and E1=1 otherwise [19]. With proper 

21 ,λλ  observer gains, the observer state 1x̂   firstly 
converges to x1 and then 2x̂  converges to x2.  

For the given system (1), finite time convergence 
of system state estimates to actual plant states is 
proved in the literature [19]. Therefore, instead of 
(3) obtained from (2) one can use 

211
ˆ),ˆ(ˆ eects T +== ece              (10) 

where Tee ]ˆ,ˆ[ˆ
21=e  is estimated error state vector and 

idii xxe −= ˆˆ  is ith estimated error state variable. If the 
system states are not measurable, the conventional 
form of ueq using state estimates can be rewritten as 

( )112
1 ˆ)ˆ()ˆ()(ˆ ecxfbtu deq

&& +−−= − xx           (11) 

Then, the overall control law based on estimated 
system states can be designed as 

)ˆsgn()(ˆ)(ˆ sktutu geq +=                  (12) 

Choosing the Lyapunov function candidate as 
V=(1/2) 2ŝ using estimated state variables and taking 
the derivative of the Lyapunov function along the 
trajectories of the estimated system states, the 
discontinuous control gain kg must be chosen as [19] 

))(ˆ( 211
1 ηλλ ++−= − cbkg x                  (13) 

in order to satisfy the reaching condition.  
 
 

3 Support Vector Machine based 
Modeling, Prediction and Jacobian 
Calculations 
Consider a nonlinear system, dynamics of which can 
be represented by NARX model 

),,,,,( 1 ynnnunnnn yyuufy −−−= LL                  (14) 

where nu is the control signal applied to the plant at 
time index n, ny  is the corresponding output of the 
plant, and un and yn  denote the number of past 
control signals and number of the past outputs 
involved in the model, respectively. It is assumed 
that non-linear function f is unknown and that a 
training data set is obtained in the form given as 
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where ⊆∈ Xkx  is the kth input data point 
in input space and ⊆∈Yyk  is the corresponding 
output value. It is desired to obtain a model that 
represents the relationship between input and output 
data points. The training data set setT is to be used to 
obtain an approximate model of the plant dynamics.  

The primal form of an SVM regression model is 
given by (16), which is linear in a higher-
dimensional feature space F 

( ) biasy += Φ(x)w,xˆ                   (16) 

where w is a vector in the feature space F , Φ(x) is a 
mapping from the input space to the feature space, 
bias is the bias term and <,> stands for inner product 
operation in F [30].  

The SVR algorithms regard the regression 
problem as an optimization problem in dual space in 
which the model is given by 
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i
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where iα ’s are the coefficients of each training data 
and ( )ji ,K xx  is the kernel function given by 
( ) ijjiji K,K == )Φ(x)Φ(xxx T [30]  
The kernel function ( )ji ,K xx  handles inner 

product in feature space and hence the explicit form 
of Φ(x)  does not need to be known. In the model 
(17), a training point ix  corresponding to a non-
zero iα value is referred to as the support vector. In 

[30], ε-SVR algorithm employing Vapnik’s ε-
insensitive loss function )ˆ,,( yyL ε given as 
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is used which formulates the primal form of the 
regression problem as follows: 
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subject to the constraints, 

ii ξεy +≤−− τ)Φ(xw,i                    (20) 
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       Ni,ξξ *
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where ε is the upper value of tolerable error, iξ , *
iξ  

are slack variables, || . || is the Euclidean norm and C 
is a regularization parameter that provides a 
compromise between model complexity and degree 
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of tolerance to the errors larger than ε [30].  
Dual form of the optimization problem becomes 

a QP problem as  
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subject to the constraints, 
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solution of the QP problem (23) and (24) gives the 
optimum values of iβ  and *

iβ ’s. The value of bias 
in the model is determined as follows: the condition 

ε−=− ii yy )(ˆ x  is satisfied for each support vector ix  
for which the condition Cii ≤−≤ *0 ββ  holds. If jα  
is defined to be the new coefficient of jx                
for j=1, 2,…, N as *

iij ββα −= , then an SVM model 
as given by (17) is obtained. Moreover, when only 
support vectors are considered, the model becomes, 
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where #SV is the number of support vectors. If we 
follow the procedure given in [30], then we 
construct the current state vector as, 

T
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then the corresponding output of the SVM model 
becomes, 
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In SVM-based observer gain adaptation, a radial 
basis adopted kernel function is used that is given as 
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where σ  is the width parameter [30]. If ),( njD is 
defined as Euclidean distance between jth support 
vector xj and current state vector vn as 
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then the kernel function can be rewritten as, 
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and the SVM regression model becomes, 
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Now, (31) can be used to predict k-step ahead 
future trajectory of the plant as by 
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then first order partial derivatives can be written as  
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where (.)1 =δ  stands for unit step function [30]. 
Now, the first-order terms can be used to calculate 
the Jacobian matrix (41). 
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4. Support Vector Machine Based 
Observer Gain Adaptation 
The proposed SVM based sliding mode observer 
gain adaptation scheme is given in Fig.1. It is 
adopted from the study proposed in [30] which is 
first used for tuning PID controller parameters. The 
idea is mainly based on obtaining the k-step ahead 
predictions of the plant output by using a SVM 
model and a Jacobian block for tuning SMO gains.  

The SVM model is obtained by applying 
randomly chosen bounded control signals to the 
plant. After the training process, k-step ahead 
predictions ]ˆ,...,ˆ,ˆ[ˆ 21 knnn yyy +++=y  are obtained from 
the output of the SVM model with td time durations 
as shown in Fig.1. Then, in order to minimize the 
SVM prediction error and to penalize the unwanted 
rapid changes in the control input, an objective 
function is chosen as [30] 
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where in
d

inin yy +++ −= ˆε  is the prediction error of 
SVM at ith step, d

iny +  is the known desired output at 
ith step, and ρ  determines the amount of penalty on 
the control deviations. In this study, the proposed 
idea in [30] is applied to the OFSMC case by 
choosing the observer gain 1λ  as the updated 
parameter. In order to have a numerical solution to 
the problem of minimizing (37), Levenberg-
Marquardt learning rule, which interpolate between 
Gauss-Newton and steepest descent algorithms, can 
be written as 

( ) εJIJJ TToldnew 1

11
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where κ  is a blending factor which determines a 
mixing ratio between gradient-descent and Gauss-
Newton algorithms, and ε  is the prediction error 
vector which is defined as 

T
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The plant’s desired output trajectory does not 
depend on observer gains. Therefore, Jacobian 
matrix J in (38) can be obtained from (37) as 
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Using the presented scheme, the observer gain 
1λ  is updated discretely at every sampling period td 

and used to update the SMO that is in continuous 
time.  

 
Figure 1. Schematic diagram of the SVM based 
observer gain adaptation and control law 
compensation scheme. 

 
The control law compensation mechanism can 

also be obtained by splitting the Jacobian matrix 
(40) into two different parts by using second order 
Taylor approximation of (37) [30]. Thus, applying 
the given idea to the observer gain adaptation 
scheme, the Jacobian matrix can be written as 
follows 
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The partial derivative of un+1 with respect 1λ  
could be directly obtained by solving the equations 
from the SMO and SMC blocks which have both 
nonlinear structures. This nonlinear structure raises 
difficulties in obtaining the mathematical solution. 
Therefore, in this study, the numerical solutions are 
obtained by using the approximation given as 
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From the stability analysis given in [19], in order 
to provide the finite time convergence of the 
estimated states to the actual states the observer 
gains must satisfy the conditions given as 

22

1221

)ˆ()ˆ(())(()(

ˆ

µλ

µλ

++−++>

+−>

ubfdubf

xx

xxxx       (43) 

where µ1, µ2 are small positive real constants [19]. 
Therefore, these bounds must be provided when 
tuning the 1λ  observer gain. Initially, 1λ  is set to 
acceptable values that provide (43). Proper choice of 
the gains 1λ  and 2λ  will guarantee that the reduced 
order dynamics are stable on the sliding surface and 

SVM 
Model 
Eq.(32) 

Plant 
Eq.(1) 

 SMC 
Eq.(12) 

     J 
Eq.(41)

û  SMO 
Eq.(9) 

xd d 

Output Feedback SMC Scheme 

DAC ADC 
td td 

un+1 

x̂

ŷ

y=x1 
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this will ensure asymptotic stability of the reference 
trajectory. To have a better observer performance 
and thus to provide a better output tracking 
performance, this preset value should be tuned 
properly. 
 
 
5 Simulation Studies 
To show the performance of the new tuning scheme, 
computer simulations are performed on a nonlinear 
mass-spring-damper system on a horizontal surface 
under the effect of a horizontal force. The dynamic 
equations of the system is described as 

3
10

10

),(

),(
)()(),(),(

xkxktxk

xxvxvtxv
tdtutxktxvxm

+=

+=

+=++
&&&&

&&&

              (44) 

where m is the mass, x(t) is the displacement, )(tx&  
is the velocity, ),( txv &  and ),( txk  are nonlinear 
terms with respect to the damper and spring, 
respectively. By taking x1= x, x2= x& and by rewriting 
the system equations (44) in the form of (1), one can 
obtain 

mb

tdtutxktxv
m

f

/1)(

))()(),(),((1)(

=

++−−=

x

x &
       (45) 

The system parameters in (44) are chosen as, 
m=1, vo=v1=0.35 and ko=k1=0.55. The initial state 
values are chosen as x1(0)=0.5, x2(0)=0. The 
trajectory tracking problem is considered and the 
desired state trajectories are chosen as 

)5/sin(1.0)(
)5/cos(5.0)(

2

1

ttx
ttx

d

d

ππ
π

=
−=

                     (46) 

During the simulations, in order to show the 
robustness against bounded external disturbances, 
d(t) is modeled with a sinusoidal signal taken as  

)3cos(25.005.0)( ttd π+=                    (47) 

The SMO for all OFSMCs is taken as (9) and to 
obtain 2

~x , first order low pass filter with bandwidth 
wn=20 rad/s is used. For all of the controllers, the 
sliding surface parameter is taken as c1=7.  

Simulations have been carried out in Matlab 
environment and ordinary differential equation 
solver implementing Runge-Kutta numerical 
integration method has been selected for simulating 
the discontinuous nature of sliding mode controller 
and observer. For the simulation environment, a 
fixed sampling time of 2e-4s has been applied for 
simulating the continuous time observer, controller 

and plant. On the other hand, the SVM block works 
in a discrete nature by taking observations and 
calculating the update value at every td = 1e-2 s time 
durations. All simulations are performed in the time 
interval between [0, 5] s. The system performance is 
influenced by the selection of the observer initial 
conditions. Therefore, assuming that the initial 
values of system states x1(0) and x2(0) are at the 
origin in average 0)0(ˆ1 =x  and 0)0(ˆ2 =x . 

The SVM predicts k-step ahead system behavior 
and k is a design parameter. To analyze the effect of 
k on the performance indices and control input 
magnitude, the system is simulated for different 
values of k between [2:10] and the results are given 
in Fig.2-3. As can be seen from Fig.2, the 
performance has its best values for k=2 and the 
performance is then similar for k ≥ 4. However, 
from Fig.3, it is seen that for k=2, this performance 
improvement has a trade-off as an increased control 
input magnitude. Therefore, k=2 and 4 are chosen 
for comparison. The trajectory tracking and state 
estimation performances are given in Fig.4 and the 
control inputs are given in Fig.5 for k=2 and 4, 
respectively. 
 

 

 

 
Figure 2. Performance indices for different k 
values. 
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Figure 3. Control input magnitude max(|u|). 
 

 
Figure 4. Actual, estimated and reference system 
output y=x1 for a) k=2 b) k=4. 
 

 
Figure 5. Control inputs for a) k=2,    b) k=4. 
 

Figure 6. Observer gains and their stability bounds 
in (43) for k=2:  a) 1λ , min( 1λ ),  b) 2λ , min( 2λ ). 

 
Figure 7. Observer gains and their stability bounds 
in (43) for k=4:  a) 1λ , min( 1λ ),  b) 2λ , min( 2λ ). 
 

The performance for k=2 in Fig.4 is better than 
the case for k=4. However, the control input 
magnitude in Fig.5 reaches near 60 for k=2 which is 
far more than the conventional case. For the stability 
of the system, the conditions given in (43) must be 
provided. The 1λ , 2λ  values and their minimum 
values that are obtained from (43) are plotted in 
Fig.6 and 7, for k=2 and k=4, respectively. It is seen 
that the observer gains do not coincide with the 
given stability conditions. 

Considering above analysis on system stability 
and performance, for detailed comparisons, control 
input magnitude is also considered and for the k-step 
ahead prediction output of the SVM model, k=4 is 
chosen. The simulations are implemented for the 
proposed OFSMC with SVM based gain adaptation 
scheme (OFSMC-SVM) and for the conventional 
OFSMC presented in [19] (OFSMC-C). Bearing in 
mind the stability conditions in [19], three different 
cases for OFSMC-C is considered: 

OFSMC-C1: 4.01 =λ , 8.02 =λ  and kg=3.61 
OFSMC-C2: 4.01 =λ , 8.02 =λ  and kg=9.863 
OFSMC-C3: 293.11 =λ , 8.02 =λ  and kg=9.863 

The three cases for OFSMC-C are designed in 
order to show the effect of adjusted values obtained 
by the SVM scheme. For OFSMC-C1, OFSMC-C3 
and OFSMC-SVM, kg in (12) is calculated from (13) 
with 01.0=µ . For OFSMC-C2, on the other hand, 
kg is chosen as the maximum value obtained with 
OFSMC-SVM. OFSMC-C3 has constant 1λ  value 
that is obtained at last with OFSMC-SVM and 
kg=9.863 is calculated from (13) for constant

293.11 =λ . The initial value of 4.0)0(1 =λ  is 
chosen for OFSMC-SVM. 

The boundaries for 1λ  is taken as 1.0min1 =λ  
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and 5max1 =λ . The blending factor in (38) is taken 
as 1.0=κ and the penalty on the control deviations 
is 001.0=ρ . 

The time responses of estimated system output 
and actual system output y=x1 are given in Fig.8. 
For all the controllers, there is some transient 
observation error at the beginning of observation as 
observer initial conditions are inconsistent with 
those of the plant. But observer states and thus 
system output estimate approach to its actual value 
after a finite time. 

The sliding surface s and estimated sliding 
surface ŝ  are plotted in Fig.9. The sliding motion in 
Fig.9 provides an estimate of the system states. For 
OFSMC-C2, increasing kg improves treach( ŝ ). 
However, this does not improve the observer 
behavior as can be easily seen from the value of 
treach(s). The control inputs are also plotted in Fig.10 
and chattering is a result of signum function and can 
be avoided by using a saturation function. 

The time-varying behavior of the updated )(1 tλ  
and calculated kg(t) for the proposed OFSMC-SVM 
controller is plotted in Fig.11. The kg is calculated 
from (13) by using the time-varying 1λ  value which 
is calculated with the proposed method at each td 
time intervals. At time t=0.57 s the parameters reach 
their optimum values and stay constant as 1λ =1.293 
and kg =9.863 after that time instant. 

 

 
Figure 8. Actual, estimated and reference system 
output y=x1: a)OFSMC-C1, b)OFSMC-C2, 
c)OFSMC-C3, d)OFSMC-SVM. 

 
Figure 9. Actual and estimated sliding surface 
variables: a)OFSMC-C1, b)OFSMC-C2, c)OFSMC-
C3,  d)OFSMC-SVM. 
 

 
Figure 10. Control inputs: a) OFSMC-C1, b) 
OFSMC-C2, c) OFSMC-C3, d) OFSMC-SVM. 
 

Figure 11. a) 1λ , and b) kg  for OFSMC-SVM 
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Table 1. Performance indices of the controllers.  
 

 

OFSMC-
C1 

 

OFSMC-
C2 

 

OFSMC-
C3 

k=4 

OFSMC-
SVM 
k=4 

ta(x1) 0,964 0,997 0,344 0,534 

ta(x2)  1,132 1,135 0,395 0,605 

ts(x1)  1,836 1,125 0,904 1,075 

ts(x2) 2,125 1,402 1,190 1,352 

treach(s)  1,825 1,085 0,895 1,006 

treach(ŝ)  1,775 0,496 0,700 0,876 

max{|u|}  7,234 18,433 18,700 18,632 

 
Finally, the performance indices of the related 
controllers are given in Table 1. The error bound for 
the settling time is taken as 5% of the steady state 
value. In Table 1, ta(xi) is the time that estimated 
state ix̂  approach its actual value xi, ts(xi) is the 
settling time for state xi, and treach is the reaching 
time of estimated and actual sliding surface 
variables. It is seen that only increasing kg does not 
have a positive effect on ta. The OFSMC-C3 
represents the obtained values generated by using 
OFSMC-SVM adaptation scheme. Thus, it has the 
best observation behavior and settling time 
performance which shows the constructive tuning 
strategy of the presented SVM model. 
 
 
6   Conclusion 
In this study, output feedback sliding mode control 
of a nonlinear second order system subject to 
bounded external disturbances is considered. The 
novelty of this study is that the support vector 
machine regression algorithm is firstly used with the 
output feedback sliding mode controller structure. In 
this study, the support vector machine regression 
algorithm is used to adjust the sliding mode 
observer gains. 

By using computer simulations, it is seen that the 
number of future data points predicted by the 
support vector machine based model influence both 
the performance of the system and the magnitude of 
the control input. Therefore, a proper value for the 
number of future data points is selected. From the 
simulation results, it was concluded that the 
proposed method improves the system trajectory 
tracking performance and the observer gains. Also, 
it is shown with the simulations that the stability 
conditions for the observer gains are satisfied. 

Only one of the observer gains is considered in 
this study. However, the observer gain adjustment 
mechanism presented in this study can be applied to 
both observer gains. Also, in the case of higher 
order systems in the form of the given structure, 
proposed method can be extended by considering 
the stability conditions. 
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