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Abstract: 2D hybrid continuous-discrete systems with boundary conditions are studied, in the general approach

of the coefficient matrices and controls over spaces of functions of bounded variation or of regulated functions.
The formulee of the state and of the general response of these systems are provided, both in the case of causal and
acausal cases. It is shown that the behaviour of the systems with boundary conditions is characterized by some
generalized 2D semiseparable kernels. The existence of realizations of generalized 2D semiseparable kernels is
proved and necessary and sufficient conditions for the minimality of the realizations are obtained.
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1

In the last two decades, the study of the 2D
continuous-discrete control systems became an im-
portant branch of Systems and Control Theory (see
[71,[12], [15], [16]), due to their applications in many
domains such as linear repetitive processes [1], [17],
iterative learning control synthesis [10] or long-wall
coal cutting and metal rolling.

In this paper we extend the study of the 2D
continuous-discrete systems to the general framework
represented by the space of regulated functions. The
topic of regulated functions was studied in a series of
monographs or papers (e.g. [2], [6], [11], [19], [20]).
We use the properties of the Perron-Stieltjes integral
with respect to regulated functions and the differential
equation in this framework. A class of 2D general-
ized hybrid linear control systems is introduced, hav-
ing the controls over the space of regulated functions,
the drift matrix with respect to the continuous variable
of bounded variation and the other coefficient matrices
being regulated matrix functions. This class is the 2D
hybrid counterpart of the 1D continuous-time acausal
systems introduced by Krener [8], [9] and developed
by Gohberg, Kaashoek and Lerer [3], [4], [5]. Some
extended models were studied in [13] and [16].

The present paper provides a generalized
variaation-of-parameters formula for a 2D gen-
eralized differential-difference equation. Using
this formula, the expressions of the state and of
the general response of the 2D generalized hybrid
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linear control systems are provided, both in the case
of causal and acausal cases. It is shown that the
behaviour of the systems with boundary conditions is
characterized by some generalized 2D semiseparable
kernels. The existence of realizations of generalized
2D semiseparable kernels is proved and necessary
and sufficient conditions for the minimality of the
realizations are obtained.

We shall use the following definitions and no-
tations. A functionf : [a,b] — R which poss-
eses finite one sided limit§(t—) and f(¢+) for any
t € [a,b] (Where by definitionf(a—) = f(a) and
f(b+) = f(b)) is said to beregulatedon [a, b]. The
set of all regulated functions denoted ¥ a, b), en-
dowed with the supremal norm, is a Banach space;
the setBV (a,b) of functions of bounded variation
on [a, b] with the norm||f|| = |f(a)| + valf is
also a Banach space; the Banach space-eéctor
valued functions belonging t6:(a, b) and BV (a, b)
respectively are denoted " (a, b) and BV"(a, b)

(or simply G™ and BV™); BV™*™ denotes the space
of n x m matrices with entries inBV (a,b). The
set of functionsf : [a,b] x Z — R such that
Vk € Z,f(-, k) € G(a,b) (BV(a,b)) will be de-
notedGj(a, b) (BVi(a,b)) and similar significances
will have the above mentioned spaces with subscript
1(Gy, BV, BVy™™).

A pair D = (d, s) whered = {tg,t1,...,tm} IS
adivision of[a,b] (il.le.a =ty < t1 < ... <ty =0)
ands = {s1,..., sy} verifiest;_; < s; <t;,j =
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1,...,mis called apartition of [a, b].

A functiond : [a, b] — (0, +00) is called agauge
onla,b].

Given a gauge, the partition(d, s) is said to be
o-fineif

[tj—1, 5] C (55 = 0(s;), 85+ 6(s5)),
Given the functionsf, g :

j=1,....m

[a,b] — R and a par-

tition D = (d, s) of [a, b] let us associate the integral
sum
p(fAg) =" f(s —9(tj-1)):
7j=1

Definition 1 The number/ € R is said to be the
Perron-Stieltjeg Kurzweil) integral of f with respect
b

to g from a to b and it is denoted as/ fdg or
b e
f(t)dg(¢) if for any e > 0 there exists a gauge
5'on [a, b] such thatl — Sp(fAg)| < e for all d-fine
partitionsD of [a, b].
Given f € G(a,b) andg € G([a,b] X [a,b]) we
define the differenced™, A=, A and Af, A, A,

by ATf(t) = f(t+) — f(t), ATf(t) = f(t) -
f=), Af() = f(t+) — f(t=), Alg(t,s) =
g(tv S—l—) - g(tv 3)1 As_g(tv 3) = g(tv 3) - g(t,s—);

D~ (f), D™ (f) denote respectively the set of the left
and right discontinuities off in [a, b] and similarly
for g we can defineD; (g), D; (g) with respect to
the argument. We denote bE the sum) ~ where
teD
D=D"(f)uD"(f)uD (g )UD+( )-

Let us recall some basic properties of the Perron-

Stieltjes integral, by following [18] and [19]. The

existence theorem of the Perron-Stieltjes integral

b
fdg for f € BV(a,b) andg € G(a,b), due to
T’i/rdy [19] is essential for our treatment.

Theorem 2 ([19, Theorems 2.8 and 2.151) f €
G(a,b) and g € BV (a,b) then the Perron-Stieltjes
b

" b
integrals/ fdg and/ gdf existand

b b
/a fdg + / gdf = F(B)g(b) - f(a)g(a)+

(1)
+ ) IATF()ATg(t) - ATF(t)ATg(t)].

b
Theorem 3([19, Proposition 2.16])f / fdg exists,

't
then the functiorh(t) = / fdg is defined ona, b]
and ‘
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i) if g € G(a,b) thenh € G(a,b) and, for any
t € [a,b]
ATh(t) = f()ATg(t), Ah(t) = f()A7g(t) (2)

i) if g € BV (a,b) and f is bounded ora, 1],
thenh € BV (a,b).

Theorem 4 (substitution, [19, Theorem 2.19]et
f,g,h be such thath is bounded on|a,b] and

the mtegral/ fdg exists.  Then the integral

/ n(t
/ h(t [/ f(s dg(s)] exists, and in this case

/ " h(#) F(1)dla(t) = / " ht)d [ / t f(s)dg(s)] .(3)

Theorem 5 (Dirichlet formula, [18, Theorem 1.4.32])
If : [a,b] % [a,b] — R is a bounded function and
varlh(s, ) +varbh(-,t) < oo, Vt, s € [a, b], then for
anyf,g € BV(a,b)

[ a0t ( /'th<s,t>df<s>) -
<[ (fwonen)aer

+2Ag h(t, t)A™ f(t)—

—ATg(O)h(t, AT f(2)].

) exists if and only if the integral

2 Generalized Differential Equations

The symbol
dz = d[A]z + dg (5)

whereA € BV ™ andg € G"(a,b) is said to be
a generalized linear differential equatio(GLDE) in
the space of regulated functions

Definition 6 A functionz : [a,b] — R™ is said to be a
solutionof GLDE (5) if for anyt, ty € [a, b] it verifies
the equality

" d[A(s)]2(s) + (1)

to

—g(to). (6)
If z satisfies the initial condition

z(to) = 7o (7)

for givent, € [a, bl andzy € R™ thenz is called the
solution of the initial value problen), (7).
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Theorem 7([10, Theorem I111.2.10])Assume that for
anyt € [a,b] the matrix A € BV™" verifies the
condition
det[I + ATA(t)] det[I — AA(t)] #0.  (8)
Then there exists a unique matrix valued function
U : [a,b] x [a,b] — R™™ such that, for any(t, s) €
[, b] x [a, 0]

Ult,s) = I + / AU, ()

U(t, s) is called the fundamental matrix solution of
the homogeneous equation
dz = d[A]x (10)

(or the fundamental matrix of A) and it has the follow-
ing properties, for anyr, ¢, s € [a, b]:

U(t,s) = U(t, 1)U (7, 5); )
Ut,t) =1, (12)
Ult+, s) = [I + ATAWD)U(L, s),
U(t—,s) = [[ — A AU (L, s);
U(t,s+) = U(t, s)[I + AT A(s)] 72, (13)
Ut,s—) = Ult,s)[I — A= A(s)] Y
U(t,s)~" =U(s,1); (14)

there exists a constadt/ > 0 such that
\U(t, s)|+valU(t,-)+valU(-, s)+v(U) < M (15)

wherev(U) is the twodimensional Vitali variation of
U on|a,b] x [a,b] ([18, Definition].6.1]).

Some methods for the calculus of the fundamental
matrix U (¢, s) were provided in [11].

From [18, Theorem II1.3.1] and [20, Proposition
2.5], one obtains

Theorem 8 (Variation-of-parameters formuldf) A ¢
BV™n satisfies the conditior{8), then the initial
value problem(5), (7) has a unique solution given by

x(t) = Ult,to)zo+ g(t) — g(to)—

t (16)
- ] U s)g(s) — g(to)).
0
If g € G" (g € BV") thenx € G" (x € BV™).
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3 Input-output maps of 2D general-
ized systems

The linear spaceX = G7,U = GT" andY = Gﬁ” are
called respectively thetate,input andoutput spaces.
Thetime setis T' = [a1,b1] X {az2,a2 + 1,...,ba},
where[aq, b1] C R andag, by € Z.

Definition 9 A 2D generalized continuous-
discrete systerf2Dgcd) is an ensemble

S = (Ay(t, k), As(t, k), B(t, k), C(t, k),
D(ta k)a Nla N25 Mla MZ) €
€ BV x G x GT™ x GP*"'x
XG}me x R™X™ w RMX1 « RMXN w RMX™
whereA; (t, ]{,‘)Ag(t, k‘) = Ay (t, k‘)Al (t, k‘), V(t, k‘) S

T, with the following state equation, output equation,
boundary condition and output vector equation:

de(t, k+1) = d[A; (¢, k + D]a(t, k+ 1)+
Ao (¢, K)dx(t, k) — d[As(t, k)] As(t, k) (t, k) + (17)
+B(t, k)dul(t, k),

y(t, k)= C(t, k)x(t, k) + D(t, k)u(t, k), (18)
N1$(a1,a2) +N2$(b1,b2) =, (19)
z = M1$(a1, CLQ) + M2$(b1, bg) (20)

n is called thedimensionof the systen® and it is
denoted dinx.

Let U(t,to; k) be the fundamental matrix of
Al(t, k‘), ke {CLQ, as+1,..., bg} andF(t; k, ]{,‘U) the
discrete fundamental matrix ofy (¢, k), ¢ € [a, ], i.€.

Ag(t, k‘—l)Ag(t, ]{,‘—2) . -Ag(t, ]{,‘U) for k> kg
1, for k= kop.

SinceA; (t, k) and Ay (¢, k) are commutative ma-
trices for any(t,k) € T, by the Peano-Baker type
formula for U [11] and by the definition off it re-
sults thatU (t, to; k) and F'(t; k, ko) are commutative
matrices too. We shall use the following notations:
AJrf(S’ ) = f(s+,0) = f(s,0), AZFU(ta s;k) =
Ul(t,s+;k) — U(t,s; k) and similarly we define
A~ f(s,l)andA; U(t, s; k).

Definition 10 A vectorzy € X is called theinitial
stateof > at the momentto, ko) € T if V(t, k) € T
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with (t, k‘) > (to, k‘o)
x(t, ko) = U(t, to; ko)zo, (1)
x(to, k‘) = F(to; k‘, k‘o)xo.

Proposition 11 (2D generalized variation of pa-
rameters formula). If

det[(I-A"A;(t, k) (I+ATA;(t, k)] #0, i = 1,2,

(22)
Vt € [a,b], k € Z, then the solution of the general-
ized differential-difference equation

dr(t, k + 1) d[Ay (¢, k + D)]a(t, k + 1)+
Ao (t, k)du(t, k)— -
d[Ay (¢, k)] As(t, k)z(t, k)+
df(t, k)

with the initial conditiong(19)is

+

+

z(t, k) = U(t,to; k) F(to; k, ko)wo+
¢ k-1
+ / " Ut s K)F(s: . L+ 1)df (s, 1)+
01—k,
k-1
+ Z ATU(t, s;k) Z F(s;k, 14+ 1)-
a<s<t I=kg
AJrf(Sa l)_
k—1
- ZA Ul(t,s; k) ZF(S;k,l—i—l)'
a<s<t l=ko
A~ f(s,1).
(24)
Proof. We shall use the notation
dg(t, k) = da(t, k) — d[Ar(t, B)]z(t. k). (25)
The equation (24) becomes
dg(t,k+ 1) = As(t, k)dg(t, k) +df(t, k). (26)
Then
dg(tu kO + 1) - A2(t7 ko)dg(ta ko) + df(ta ko) =
= F(t; k‘o + 1, k‘o)dg(t, k‘o)—f—
+  F(t ko + 1, ko + 1)df(t, ko).

Let us assume that

dg(t k)

Py

l=ko

(t k‘ k‘o)dg(t, k0)+

(t: 1+ D)Af(t, ). (27)
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Then, by (26),
F(t; k, ko), we get

dg(t,k+ 1)

(27) and by the definition of

A2(t7 k)F(ta ku kO)dg(ta k0)+

k—1
> As(tk)F

I=kg
df(t, k) =
F(t; k41, ko)dg(t, ko)+

+ (t; k, I+ 1)df (¢, 1)+

k
S F(tk+ 1,1+ 1)df(t,1)
l=ko

hence (27) is tru&k > kq. Moreover, from (19), (25)
and (10) one obtains

+

dg(t, ko) = dx(t,ko)—
— d[A1(t, ko)]z(t, ko) =
= d[U(t, to; ko)]zo — d[A1 (¢, ko)]x(t, ko) =
= d[A1(t, ko)]U (¢, to; ko)wo—
— d[A1(t, ko)]U (¢, to; ko)xo =0
hence (27) becomes
dg(t, k) = ki:l F(t; k, L+ 1)df(t,1). (28)
I=ko

Equation (25) is equivalent to the generalized dif-
ferential equation

da(t, k) = d[Ay (¢, k)]a(t, k) + dg(t, k)
with the solution given by Theorem 8

x(t, k) U(t, to; k)x(to, k)—

dg(7, k)+

to

tds[U(t, s; k)]

to

t
dg(s, k).

to

By Theorem 3, (29) becomes

(29)

+

dg(r,k)+

to

t
Ul(t, s; k)d

to

Z ATU(t,s;k)AT

a<s<t

> AU

a<s<t

dg(Ta k)_

to

Ul(t,s; k)A™ dg(T k).

to

(30)
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We replace (28) in (30). One obtains the formula
of the state of the systein (24) from (30) taking into
account the following equality

Z

and also (19) and Theorem 3, Theorem 4 and Theorem
5.

dgsk Fskl—i— 1)df(s,1)

O

Proposition 12 If (22) holds, then the state of the
system at the momelft, k) € T determined by the
initial state =y at the momentty, k) € T and the
controlw : [to, t] X {ko,ko+1,...,k—1} — R™is
given by the following formula:

.’L'(t, k) U(ta tU; k)F(tU; ka k‘g).’L’g—l—

/t k-1
%0 1=k,
F(s;k,l+1)

+ Ul(t,s; k)

B(s, l)du(s, 1)+

k—1
S ATU(t s;k) > F(sik 14 1)-
a<ls<t l=ko
B(s,[)ATu(s,1)—
k—1

> AU, sk) > Fsik, 1+ 1)-
a<s<t I=kg
B(s,l)A"u(s,1).
(31)
Proof. The state equation (17) can be obtained
from (19) by replacing/(t, k) by

tB(s, k)du(s, k)

to

. Then (31) results from (24) and (2).

f(ta k) =

O

Now we replace the state(t, k) given by (31)
into the output equation oE (18). One obtains the
formula of the general response of the systém

Theorem 13Under the hypothesi€2)the input-
output map of theDghsysten®: (17), (18)

ISSN: 1991-8763 73

Valeriu Prepelita

is
y(ta k) = C(ta k)U(ta tU; k)F(tU; ka k‘g).’L’g—i—
¢ k—1
> C(t, k)U(t, s:k)F(s;k, 1+ 1)-
tOz ko

B(s,l)du(s, 1)+ D(t, k)u(t, k)+
+ Y Ot kAU, s k)-

a<ls<t

k—1
Z F(s;k, 1+ 1)
I=ko

— Y C(t,k)AJU(L, s k)-

a<s<t

k—1
-ZF(s;k,l—i—l)

l=ko

Corollary 14 If uw € Gy (u € BV{™) thenz €
Gt andy € GY (x € BV{*andy € BVY).

B(s,)ATu(s,1)—

B(s, 1) A™u(s,1).

Proof. We apply Theorems 8 and 13 and Propo-
sition 12.
0

Definition 15 The boundary condition (7) is said
to bewell-posedif the homogeneous problem corre-
sponding to (17) and (19) (i.e. withh = 0 andv = 0)
has the unique solution = 0.

Proposition 16 The boundary conditio19) is well-
posed if and only if the matrixR N1 +
NoU (b1, a1; bo) F(aq; be, as) is nonsingular.

Proof: By (31) with« = 0 we get
x(by, ba) = U(by, a1; b2) F(a1; ba, az)x (a1, az);

we replacex (b, bs) andv 0 in (19). It results
that (19) is well-posed if and only if the equation
[Nl +N2U(b1, ai; bg)F(al; bo, ag)}x(al, ag) = 0has
the unique solutior:(aq, as) = 0, condition which is
equivalent toR nonsingular.

O

In the sequel we shall consider systems with well-
posed boundary condition (19) and which verify (22).
Moreover, the discrete-time character Xfwith re-
spect to the variablgé imposes the following assump-
tion: the matricesd, depend only ork and Az (k) are
nonsingular for any: € {ag,a2 +1,. .., ba}.

Then the discrete fundamental matrix 45 be-
comesF'(k, 1) and we can define, for this fundamen-
tal matrix even for the cask < [, by the following
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formula:

F(k,1) = [A2(1-1)A2(1-2) - - - Aa(k+1) Aa(k)] !

In this case the semigroup propet®(k, ) F(l,i) =
F(k,1i)is true for anyk, l,i € {as, a2+ 1,...,bo}.

O

Definition 17 The matrix P = Py = R'NyU

(b1, a1; ba) F(be, as) is called thecanonical bound-
ary value operatorof the systen™ with well-posed
boundary condition .

Theorem 18If the system is with well-posed boundary

condition then the state of the systéhdetermined by
the controlu : T" — R™ and by the input vector
veR™is

z(t, k) = U(t,a1; k) F(k,ag) R 1v—

by bo—1
—/ N Ut ar; k) F(k, a3):

1 l=aq
-PU (a1, s;02)F(ag, 1+ 1)B(s,)du(s, 1)+
k-1

Z Ul(t,s; k)F

A1 [—qq

—U(t,a1; k)F(k,ag)P-

bo—1
( > AfU(ar,s;b9) Y Flag,1+1) -

a1<s<b; l=aso

(k, 1+ 1)B(s,)du(s, 1)+

(33)

B(s,)ATu(s, 1) Z A7 U(a1, s;ba)-

a1 <s<t

bo—1
> Flag, 1+ 1)B(s,l)A_U(SJ)) +

l=as
k—1
+ > ATU(t s k) > F(k,141)-
a1 <s<t l=as
B(s,)ATu(s, 1) — > AJU(t,s; k)
a1 <s<t
k—1
Y F(k, 1+ 1)B(s, 1)A™u(s, 1).
l=as
Proof: We replacex(by, b2) given by (31) in the
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boundary condition (19). We get

[Nl + NQU(bl, a; bQ)F(bQ, az)]xo-i-

b1b2 1
+N2/ > U(by, s;b)F

1 l=aq

(ba, I+ 1)B(s,l)du(s, )+

ba—1

+ Y ATU(b1, sb2) Y F(bo, 14 1)

a1<s<b;

‘B(s,1)A%u(s, 1)

l=as

— > A[U(by, s3bo)

a1<s<b;
ba—1
> F(bg, 1+ 1)B(s, 1) A7 u(s, 1) =
l=as

hence, by the semigroup properties of the fundamental
matricesU (t, s; k) and F'(k, 1), we obtain the initial
state of the systeri

by b2—1
ro=R 'w—P ZUal,s bo)F(ag,l + 1)
a1 =g,
B(s,D)du(s,)) =P > AfU(ay,s;bs)-
a1<s<b;
ba—1
> Flag, 1+ 1)B(s, 1) A u(s, )+ (34)
l=as
+P Z A7 U(a, s;ba)-
a1<s<b;
ba—1
. Z F(ag,l +1)B(s, ) A" u(s,1).
l=as

We replace the initial statey = (a1, az2) in (31);
then (33) results by using the semigroup property of
the fundamental matrices, i.e.

U(b1, s;b2) = U(b1, a1;b2)U (a1, s; ba)
and

F(bQ, I+ 1) = F(bg, ag)F(CLQ, I+ 1)

O

Theorem 19The input-output map of theDgcdsys-
temX is

H:G!'xR"— G} xR",
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-PU(al, s;b9)F(ag,l 4+ 1)B(s,)du(s, 1)+
¢ k—1

+LZ

1l=ay

C(t,k)U(t,s; k)F(k,l+ 1)B(s,)du(s, )+

+D(t, k)u(t, k) —

ba—1
. ( Z A:U(al,s;bg) Z F(ag,l+1)-

a1<s<b1 l=as2

C(t, k)U(t, ai; k)F(k, ag)P-

-B(s, 1) AT u(s, 1) Z A;U(aq, s;b2)- (35)

a1 <s<t

by—1
) Z F(ag, 1+ l)B(s,l)A_u(s,l)) +

l=as9
k—1

+C(tk) Y. ATU® s k) > F(k,1+1)-

a1 <s<t l=az

B(s,)A%u(s, 1) = C(t,k) > AJU(t,s;k):
a1 <s<t

k—1

Y F(k, 1+ 1)B(s, ) A u(s, 1).

l=as

and, by denotingQ = M; + MU(by,aq;be)-

F(bg,ag),S:Q(I—P)—Ml,
by bo—1

2=QR w4+ S ZUal,s bo)F(ag,l+ 1)
A1 1=q,

Y AlU(a,s:bo):

a1 <s<by

B(s,)du(s,1)+ S (
ba—1

. Z F(ag, 1+ 1)B(s, ) AT u(s, 1)~
l=as2

Y. AJU(a1,s5b9)-

a1<s<by

(36)

ba—1
> Flag, 1+ 1)B(s,l)A_u(s,l)) .

l=as

Proof: We obtain (35) by replacing the stai€t, k)
given by (33) in the output equation (18). Then, by
replacingz(ay, ag) = xo (34) andz(by, b) given by
(33) in (20) and by a long calculus which uses the
semigroup property and which is omitted, we get (36).
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Corollary 20 If u € G7* thenz € G} andy € GY.
If Ay € BV{"", B € BV/"™ C € BV/*", D ¢
BV™™ andu € BV;"thenz € BV;* andy € BVY.

Proof: We apply Theorems 8, 18 and 19.
O

Definition 21 The space of admissible controls the
set

U = {u € G"(a, b)[DF (Ai(-, k) N Df < (k) =0,
D (4i(-, k) N Dy (u(- k) = 0, i = 1,2, Vk € Z).

Corollary 22 If u € U, then the state and the output
of the systenX. are given by the following formulzae

z(t, k) = U(t,ay; k)F(k,as) R~ 1v—

-py D2—1
= [7Y Ut s )k ao)

e (37)
-PU(ay, s;ba)F(ag,l + 1)B(s, l)du(s, )+

t k—1

+LZ

1l=aq

U(t,s; k)F(k,14+1)B(s,1)du(s,1),

y(t, k) = C(t,k)U(t,a1; k) F(k,az) R~ v—

by bo—1

—/ > C(t, k)U(t, ay; k) F(k, ag)-
M |=qy

-PU(ay, s;ba)F(az, 1+ 1)B(s, l)du(s, 1)+ (38)
i+ k=1

+/a >

1l=aq

C(t, k)U(t, s; k) F(k,1+ 1)-

B(s,l)du(s, )+ D(t, k)u(t, k).

Remark 23 The 2D "classical” continuous-discrete
systems [14] with the state equation

%(t, E+1)= A (t,k+ Dt k+ 1)+
+A2(t k)aa (t k) — 1211 (t, k)zzlg(t, k)x(t, k)+
(t, k)u(t, k)

represent particular cases of 2Dgcd (17) with abso-
"t

lutely continuous matrices\;(t, k) = [ A;(s, k)ds,
T
i =1,2and controla(t, k) = / u(s, k)ds.
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4 Realizations of 2D semiseparable
kernels

Let us consider the casd; : [a1,b)] — R™"
and Ay : {ag,a2 + 1,...,b0} — R™". There-
fore the fundamental matrices df; and A, are re-
spectivelyU (t, s) and F'(k, [). We denote byl'(¢, k)
and T*(t, k) the setsT'(t, k) = [a1,t) X {az,as +

. k—1}andT*(t,k) = T\ T(t, k) respectively.
We shall consider the notation

A SIS

l=as A =g,
Assumev = 0. Then, by the semigroup prop-
ertiesU(t,s) = U(t,a1)U(ar,s), F(k,l +1) =
F(k,a2)F(az,l+ 1), (38) can be written as

tkl

1l=as

¢ k—1

y(tvk)=/a >

1l=as

C(t,k)U(t,a1)

F(k7a2)(1_ P)

-Ulax, s)F(ag, | +1)B(s, )du(s, 1) — (30)

by ba—1
—<>T/ S Ot Ut 1) F(k, as)-

1 l=aq
-PU (a1, s)F(ag,l +1)B(s,l)du(s, 1)+
+D(¢, k)u(t, k),
hence (39) can be written in the form
by b2—1
yt.h) =[5 Kt sk Deu(s, 1)+
A =g, (40)
+ D(t,k)u(t, k).
Definition 24 The functionK (¢, s; k, [) is called the

kernelof the equation (40). A kernel is said to be 2D
semiseparabld it has the form

K(t, sk 1) =
El(t, k)Gl(S, l) if
{ —EQ(t, k)GQ(S,l) If

where By, B> € BVFP*" G1,Gy € BV ™. The
kernel K obtained from the input-output equation (39)
of a systemX is denoted byKy, and it is called the
kernel of the system.

(s,1) € T(t, k) "
(s,1) € T*(t, k).

Proposition 25 The kernelKy, of any2Dgcdsystem
with well-posed boundary condition BD semisepa-
rable.
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Proof: From (39) and (40) we get (41) with
Ei(tk) = C(tLKU(ta)F(ka)(I — P),
Gi(s,1) = U(ay, s)F(ag,l + 1)B(s,l),
Es(t, k) = C(t,k)U(t,a1)F(k,az)P,
Ga(s,l) = U(ar,s)F(az,l + 1)B(s,l), hence
Ky is 2D semiseparable.

O

Definition 26 Given a 2D semiseparable kernél, a
2Dgcd system is said to be aealizationof K if
K = Ksx.

Proposition 27 For any 2D semiseparable kerngk
there exists a realization oK.

Proof. If K has the form (41), a realization af
is the systen® given by A; = O,, a.e. on[aq, by],

Gl(t’k)] Clt, k) =

Ga(t, k)
Oor € RP™, N; =

Ay = I, Btk) = [

[El(tv k) EQ(tv k)]’ D =
l[nl 0] lo 0 1 _
, Ny = with ni,ng >
0 0 no
ni1 + ne = n; My and M are arbitrary. Obviously
U(t,s) = I, a.e. onlay,bi1], F(k,l) = I,, hence
R = Ny + Ny = I,; it results that this system has

well-posed boundary condition and its canonical op-
erator isP = RNy = Ns. ]

(=}

Example 28 Let us consider the 2D continuous-
discrete Wiener-Hopf equation

by b2—1
y(t, k) — /a1 lgai K(t—s,k—1)du(s,l) = )
= Du(t,s), (t,s)eT

whereK (¢, k) € BVP™*™ forany (¢, k) € T.

Assume thati (¢, k) can be extended to a func-
tion K (t, k) defined onR. x Z which admits a proper
rational 2D continuous-discrete Laplace transform

(see [19]) of the formI'(s, ) = % with
T1(S)mT2( 2
0(s,z) € RP*"[s, 2], m1(s) € RJs], m2(2) € Rlz].

Then, using the algorithm of minimal realization de-
scribed in [14], we can determine the constant matri-
ces Ay, Ay, B,C, D with A1 A, = AsA; such that
Tx(s,2) = C(s — A1)~ (2 — A2)"'B + D. By con-
sidering the matriced/y = I — P andN, = P where

P is a suitable spectral projection and;, M, ar-
bitrary matrices we obtain a systemwhose input-
output map (38) coincides with the 2Dgcd Wiener-
Hopf equation (42).
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Definition 29 A realization: of a 2D semiseparable
kernelK is saiq to beminimalif dim ¥ < dim 3 for
any realization>. of K.

We introduce thecontrollability and theobserv-
ability Gramiansof the systent:

by bo—1
/ Z U(al,

1 l=as

C(%) s)F(ag,1)-

-B(s,1)B(s,1) Faz,1)"U(ax, s)"ds,

by b2—1
o) :/a S U (s, a0) T F(l, a3) -

1 l=as
C(s,)TC(s,)F(l,a2)U (s, a1)ds.
The canonical boundary value operatordfs

P = [Ny + NoU (b1, a1) F(ba, ag)] -

'NQU(bl, al)F(bg, CLQ).

Now we shall extend [4, Theorem 3.1] to the case
of 2Dgcd acausal systems.

Theorem 30A realizationX of the 2D semisepara-
ble kernel K is minimal if and only if the following
conditions hold

Im[C(X) PC(X)]=R", (43)
Ox)
Ker = {0}, (44)
O(x)P
KerO(X) Cc ImC(Y). (45)
Proof: Necessity Let us consider an arbi-
trary direct sum decompositioR” = X; &
Xo with ny = dm X3, 0 < n; < n and

the corresponding partitions of the following op-

tors: U(ay,t)F(as, k)B(t, k) = Bt k)
erators: Ul(ay,t)F (a2, k)B(t, k) = [ Ba(t. ) ]
C(t,k)U(t,a1)F(k,a2) = [Ci(t,k) Ca(t, k)],
[ Dy (t, k) ] [ P P ]
D(t, k) = , P = . Let
Ds(t, k) Py Py

us denote byx! the 2Dgcd system with well-posed
boundary conditions determined by the matricds=
On,, AY = L, Bi(t, k), C1(t, k), D1(t, k), N
I— Py, N} =Py,

If the condition (43) is not fulfilled we tak&; =
Im[C(X) PC(X)] andX, = Xji; if (44) is not ful-
o

)
filled we takeX, = Ker [ b andX; = X5-;
if (45) is not true we consideX, the subspace of
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KerC(X) such that In€(X) +KerO(X) = ImC(2) &
X, and X; is the complement of, in R™ which
includes In€(X). As in [9, lemmas 3.2-3.4] we can
prove that in all these casésy, = K, henceX; is a
realization of K and dim¥; = n; <n =dim, i.e.
3} is not minimal.
Sufficiency. If the conditions (43)-(45) hold for some
realizationX of K, we consider the direct sum de-
composition of the state spad®™ given by X,
KerO(E), X160Xo = ImC(E) andX; o Xop X3 =
R". Following the lines of [9, Theorem 3.1] we can
prove that dint < dim3: for any realizatiors: of K.

0

5 Conclusion

The state space representation was studied for a class

of time-varying 2D continuous-discrete systems with
boundary conditions in the general framework of the
state, input and output spaces over the set of regulated

functions. The behaviour of these systems was em-

phasized, and their representation by 2D generalized
semiseparable kernels was emphasized. This study
can be continued by analysing for this class other im-
portant concepts as stability, controllability, observ-
ability, the realization problem, the adjoint systems
etc.
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