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Abstract: - The paper presents a methodology for the flight control law’s design for the trajectory pursuit using 

hierarchical dynamic inversion; this is based on separation of multi-time-scale and multi-loop closing method. 

The attitude angles are taken as slow variable while angular velocities as fast variables. The slow variables are 

controlled by the fast ones, which, in turn, are controlled by aerodynamic command surfaces. It greatly 

simplifies the flight control design compared with PID conventional approaches. The used dynamic equations 

are classified into 4 groups according to the stairs of time measuring from the physical point of view [1]; each 

group of variables is controlled by the group of faster neighboring variables. The authors made the analysis of 

the longitudinal and lateral movements of the aircrafts, have obtained two original block diagrams and, using 

complex Matlab/Simulink models, have obtained graphic characteristics which demonstrate the effectiveness of 

the proposed method. 
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1 Introduction 
One knows that it is difficult to stabilize and control 

an aircraft using constant gain controllers because 

the aircraft’s dynamics vary with the considerable 

modification of the dynamic pressure and Mach 

number. That’s why a very good method for solve 

this problem is the determination of the gains of the 

control system. This is a simple and direct methodo-

logy for the design of flight control systems. The 

technique of the gains’ determination is the most 

important thing today in the area of flight control’s 

design [2], [3].  

The technique of gains’ determination depends on 

the designer’s experience and on his engineering art. 

Variables’ separation on two time scales combined 

with the theory of singular perturbation have been 

subject of research, the attitude being taken as slow 

variable while angular velocities as fast variables. 

The slow variables are controlled by the fast ones, 

which, in turn, are controlled by aerodynamic 

command surfaces. 

 

 

2 Formulation of the hierarchical 

dynamic inversion 
One considers the following nonlinear system [4], 

[5], [6], [7], [8], [9], [10] 

 
( )
( ) ,

,,

xhy

uxfx

=

=ɺ
 (1) 

where nRx ∈  is the state variable, mRu ∈  is the 

control input and −∈ mRy  the output which will 

be controlled by the control input .u  From equations 

(1), one gets 

 ( ) ( )uxFuxf
x

h
y ,, =

∂
∂

=ɺ   (2) 

or 

 ( ) ,,1 vxFu −=   (3) 

where v  is the auxiliary input of the system. From 

equations (2) and (3) one yields 

 ( )( ) .,, 1 vvxFxFy == −ɺ  (4) 

The auxiliary input may have the classical form 

 ( ) ,yyKv c −=  (5) 

where K  is a gain matrix and cy  the imposed value 

of .y  

The term that compensates the nonlinear dynamics 

also provides the linearization of the dynamic system 

and the exterior loop, expressed by equation (5); the 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mihai Lungu

ISSN: 1991-8763 792 Issue 10, Volume 5, October 2010



system becomes linear and achieves the desired 

value of the output cy  (fig.1). 

Unfortunately, some input-output equations do not 

describe the aircraft dynamics with minimum phase 

because of the aerodynamic forces' derivatives in 

rapport with control surfaces' deflections. This fact 

has prevented the direct application of dynamic 

inversion to the automatic flight control systems. 

This problem can be avoided by system's separating 

on two time scales; thus, there are slow variables and 

fast variables. Fast state variables are used to control 

the slow state variables while the fast variables are 

controlled by the command variable. One considers 

the following two time scales nonlinear system  

( ) ( ) ( ) ,,,,,,, 121222111 xhyuxxfxuxxfx === ɺɺ (6) 

where nRx ∈1  is the slow state, nRx ∈2  is the 

fast state, −∈ nRu  the control input and 

−∈ nRy  the controlled output. The input-output 

equations on the slow scale may be derived as 

follows 

 ( ) ( ) ,,,,, 21211

1

uxxFuxxf
x

h
y ≡

∂
∂

=ɺ  (7)  

where ( )uxxF ,, 21  is invertible in rapport with 

.2x  One obtains cx2  from the previous equation 

using the dynamic inversion 

 ( ) ( ) ,,,, 1111
1

2 yyKvuvxFx cc −== −  (8) 

where 1v  is the auxiliary input for the slow scale 

controller and −1K  the feedback gain matrix. If 

,22 cxx =  the following equation is maintained  

 ( )( ) ( ) .,,, 1111
1

1 vyyKuvxFxFy c =−== −ɺ  (9) 

Finally, one obtains cu  in the fast scale so that 

cxx 22 →   

 
( )
( ),

,,,

2222

221
1

2

xxKv

vxxfu

c

c

−=

= −

 (10)  

where 2v  is the auxiliary input for the fast scale 

controller −2K  the feedback gain matrix. 

 

Fig.1 The linear system with dynamic inversion 

3 The use of hierarchical dynamic 

inversion to the aircrafts’ dynamics 
For the conventional aircrafts with fixed wing the 

command surfaces’ deflections have the slowest 

time scale [4], [5]. These deflections generate aero-

dynamic moments around aircrafts’ axes. The aero-

dynamic moments generate angular velocities and 

the angular velocities are integrated in order to 

obtain the aircraft’s attitude. The forces have the 

same time scale with the accelerations. The attitude 

is integrated to obtain the velocities and the 

velocities give the position of the flying object. The 

variables may be grouped in four layers (time 

scales): very slow scale (the position of the aircraft 

ZYX ,, ), slow scale (none of the variables), fast 

scale (velocities WVU ,,  and angles θϕ,  and ψ ) 

and very fast scale (the angular velocities RQP ,, ) 

[3]. The aircraft position is defined by the lon-

gitudinal error ,he  the lateral error ye  and the tra-

jectory arc length .s  The velocities  are defined by 

the real velocity of the air currents ,TASV  the 

direction angle in rapport with the air currents aψ  

and the trajectory’s angle in rapport with the air 

currents .aγ  TASV  is directly controlled by the thrust 

force or by the aerodynamic braking. The attitude is 

defined by three angles: roll angle ,ϕ  pitch angle θ  

and sideslip angle ;β  all these angles are controlled 

by angular velocities [1]. For the coordinated flight 

,0=βc  the incidence angle α  is not considered a 

state variable as it appears in [3]. This will improve 

the precision of control because the inertial attitude 

can be measured with less error than the aerody-

namic angles like .α  The three angular velocities 

RQP ,,  are controlled by the three command sur-

faces: rudder, aileron and direction [11], [12], [13]. 

It is not enough to choose the state variables. This 

choice may be not optimal for some applications; 

that’s why state transformations will be made.  
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The state variables are transformed from the initial 

ones 12Rx ∈  in the new state variables .12R∈ξ  

One notes with ( )xT  the nonlinear transformation 

which verifies equation ,)(xT=ξ  where ξ  is 

selected so that −T  invertible; ,)(1 ξ= −Tx       

[ ]
[ ] .

,

T

aaTAShy

T

RQPVees

RQPWVUZYXx

βθϕγψ=ξ

ψθϕ= (11) 

The control vector u  contains four variables repre-

senting the deflections of control surfaces 

 [ ],Tdepu δδδδ=  (12) 

where dep δδδ ,,  and Tδ  are the deflections of the 

rudder, aileron, direction, respectively the gas lever’s 

displacement. Taking into account the multi time 

scale separation from the previous section, ξ  is 

separated as follows 

 
[ ] [ ]
[ ] [ ] .,

,,

43

21

TT

T

aaTAShy

RQP

Vee

=ξβθϕ=ξ

γψ=ξ=ξ
 (13) 

In layer ( )3,2,1=ii  the equations of dynamic 

models of the subsystems can be defined as 

 ( ) ,3,1,
~

,,, 1 =ξξξ=ξ + iuF iiiii
ɺ  (14) 

where iξ
~

 is a set of state variables other than iξ  and 

.1+ξ i  On the other hand the dynamic equations of 

the inner layer ( )4=i  and those for TASV  are given 

as 

 ( ) ( ) ,~,,,~,, 2144 uFVuF TTAST δξ=δξ=ξ ɺɺ  (15) 

where u~  is the set of control variables. This case 

( ) cci u~,1+ξ  and 
Tcδ  are determined from equations [1] 

   
( ) ( )
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,,~,,,

1
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+

 (16) 

One obtains 

    

( ) ( ) ( )
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( ) .)(,~,,
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,,
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 (17) 

Using Taylor series expansions of iF  

( ) ( )
u

FF
uFuuF ii

iii ∂

∂
+

ξ∂

∂
+ξ≅∆+ξ∆+ξ ,,  (18) 

and the first equation (17), one gets 

( ) ( )( ) ( )

( ) ( ) ( )

( ) .)()(~,,

,~
~

~,,

,
~

,,,

21
21

21

444
4

4

11

1

1

TASTAScTTc

T

T

ccT

iiciici

i

i
iiii

VVK
F

uF

Kuu
u

F
uF

K
F

uF

−=δ−δ
δ∂

∂
+δξ

ξ−ξ=−
∂

∂
+δξ

ξ−ξ=ξ−ξ
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 (19) 

In the above equation the superior order terms have 

been neglected and that is why the inversion is 

inexact. Solving equation (19) in rapport with 

( ) cci u~,1+ξ  and ,Tcδ  one gets 

( ) ( ) ( ){ }

( ){ }

( ){ }.)(~,,
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
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

δ∂

∂
−δ=δ

ξ−ξ−δξ







∂

∂
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ξ−ξ−ξξξ








ξ∂

∂
−ξ=ξ

−

−

+

−

+
++

 (20) 

 

 

4 Numerical application to the air-

crafts’ longitudinal movement 
One considers the longitudinal movement of an 

aircraft described by equations [1] 

[ ] [ ]

.
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 (21) 

The matrices lonA  and lonB  are the ones from the 

second equation (21). One customizes the relations 

(20) for variables ( )4,1=ξ ii  defined by equation 

(13). Thus, for ci 2,1 ξ=  has components acac γψ ,  

and TAScV   

( )[ ],~
,,, 11211

1

1
2

lonlon

a

lon

aac
lon vuF

F
−ξξξ











γ∂

∂
−γ=γ=ξ

−

 (22) 

where lonF1  verifies equation (14) for ;1=i  using 

(21), one obtains 

 
( )

T
lon

p
lonlonlon

a
lon

TAS
lon

h
lon

aTAS
lon

h

bbQaaa

VaeaVFe

δ+δ++θ+γ+

++=γ=

1211151413

12111 ,ɺ

 (23) 

and 

( ) ( )
( ) ( )[ ].11211

1

13

15141211

1

13

hhc
lon

T
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p
lonlon

lonlon
TAS
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h
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eeKbba

QaaVaeaa

−−δ+δ−

−+θ++−=γ
−

−

 (24) 
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For 2=i  one yields [1] 

( ) ( )
( ) ( )[ ]aac
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p
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lonlon
c

Kbba
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23231

1
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35333231

1
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and for 3=i  one gets 

( ) ( )
( ) ( )[ ]θ−θ−δ+δ−

−θ+γ++−=
−

−

c
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T
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p
lonlon

lon
a

lon
TAS

lon
h

lonlon
c

Kbba

aaVaeaaQ

34241

1

45

44434241

1

45
 (26) 

and  

     
.424145

444342413

T
lon

p
lonlon

lon
a

lon
TAS

lon
h

lonlon

bbQa

aaVaeaF

δ+δ++

+θ+γ++=θ= ɺ
 (27) 

To calculate cu~  the authors use second equation 

(20), taking into account that [ ] .~ T
dpeu δδδ=  Thus, 

for the longitudinal movement of the aircrafts, one 

obtains

,525155

545352514

T
lon

p
lonlon

lon
a

lon
TAS

lon
h

lonlon

bbQa

aaVaeaQF

δ+δ++

+θ+γ++== ɺ
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( ) ( )[ ].4525

1
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1
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c
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lonlonlon
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 (30) 

In order to calculate Tcδ  one uses the third relation 

(20). First, 21F  from equation (21) must be deter-

mined 

        
,22212524

23222121

T
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p
lonQlon

a
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h
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aVaeaVF

δ+δ++θ+

+γ++== ɺ
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 (32) 

In general, feedback gains of exterior loop should be 

smaller than those in the inner loop. As the gains 

ratio between inner and outer loop is smaller, the 

interference has less effect and the stability is in-

creased in expense of performance. Therefore the 

most efficient gain ratio between inner and outer 

loop is approximately 0.3 to 0.4 [1].  

The authors of this paper have increased this ratio to 

0.6. This way they increased the stability of the 

aircraft and its dynamic characteristics. Thus, the 

loop’s gains are 

 

( )
( )
( )
( ) .3.16.0

,3.16.0

,3.16.0

,3.16.0

0
4

1
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3
1

π⋅⋅=
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lon

K

K

K

K

 (33) 

In order to apply the liniarised system obtained in 

the previous section, one uses an ALFLEX aircraft 

model presented in [1].  

In fig.2 the one presents the block diagram that 

models equations (21), (24), (25), (26), (29) and 

(32), associated to the longitudinal movement of 

aircrafts. 

Based on this block diagram one obtains the Matlab/ 

Simulink model of longitudinal motion (fig.3) and 

one will obtains conclusions about the reliability and 

performance of the control method presented in this 

paper. 

The Matlab/Simulink model from fig.3 has three 

subsystems: Eq.(25), Eq.(29) and Eq.(32).  

 

Fig.2 Block diagram of the system for the longitudinal movement’s stabilization 
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Fig.3 Matlab/Simulink model of the block diagram from fig. 2

 
Fig.4 Time variation of the longitudinal error 

 
Fig.5 Time variation of the air real speed 

 
Fig.6 Time variation of the angle between  

trajectory and air currents 

Using data for the longitudinal motion, one obtains 

graphic characteristics representing time variations 

of the longitudinal error (fig.4), of the air real speed 

(fig.5), of the angle between trajectory and air 

current (fig.6), of the pitch angle (fig.7), of the pitch 

angular velocity (fig.8), of the rudder deflection 

(fig.9) and of the spoiler deflection (fig.10). In 

figures 6, 7 and 8 the command variable is repre-

sented with red dashed line while the variable 

(current variable) is represented with blue continu-

ous line. For the simulation one has used the follo-

wing matrices 
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Fig.7 Time variation of the pitch angle 

 
Fig.8 Time variation of the pitch angular velocity 

 
Fig.9 Time variation of the rudder deflection 

 
Fig.10 Time variation of the spoiler deflection 

 

 

5 Numerical application to the air-

crafts’ lateral movement 
One considers the lateral movement of an aircraft 

described by equations [1], [14] 
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One customizes the relations (20) for variables 

( )4,1=ξ ii  defined by equation (13). Thus, for the 

lateral movement of the aircrafts, ci 2,1 ξ=  has 

components acac γψ ,  and TAScV   
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Similar equations are obtained for the lateral move-

ments 
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For 2=i  one yields [1] 
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where latF2  is expressed with equation (34) as follows 
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and for 3=i  one gets 
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where x  is the state vector and matrix C  has the 

form 
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Fig.11 Block diagram of the system for the lateral movement’s stabilization

To calculate cu~  the authors use second equation (20) 

and take into account that [ ] .~ T
dpeu δδδ=  Thus, for 

the lateral movement of the aircrafts, one obtains 
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with   
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The most efficient gain ratio between inner and 

outer loop is approximately 0.3 to 0.4 [1]. The 

authors of this paper have increased this ratio to 0.5 

[14]. This way they increased the stability of the 

aircraft’s lateral movement and its dynamic charac-

teristics. Thus, the loop’s gains are 
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Same ALFLEX aircraft model presented in [1] has 

been chosen for simulations. In fig.11 one presents 

the block diagram that models equations (34), (37), 

(38), (43) and (46), associated to the lateral move-

ment of aircrafts. The Matlab/Simulink of the block 

diagram is the one from fig.12. The Matlab/Simu-

link model from fig.12 has three subsystems: Eq. 

(38), Eq.(43) and Eq.(46). 
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Fig.12 Matlab/Simulink model of the block diagram from fig.11 

 
Fig.13 Time variation of the lateral error 

 
Fig.14 Time variation of the yaw angle 

Next, using data for the lateral motion, one obtains 

graphic characteristics representing time variations 

of the lateral error (fig.13), yaw angle (fig.14), roll 

angle (fig.15), aileron deflection (fig.16) and direc-

tion deflection (fig.17). In figures 14 and 15 the 

command variable is represented with red dashed 

line while the variable (the current variable) is 

represented with blue continuous line. 

 
Fig.15 Time variation of the roll angle 

 
Fig.16 Time variation of the aileron deflection 
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Fig.17 Time variation of the direction deflection 

In fig. 18-20 one presents the Matlab/Simulink mo-

dels for the blocks Eq.(25), Eq.(29) and Eq.(32) – 

the longitudinal movement, respectively in fig. 21-

23 for the blocks Eq.(38), Eq.(43) and Eq.(46) - the 

lateral movement. 
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Fig.18 Matlab/Simulink model for system  Eq.(25) 
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Fig.19 Matlab/Simulink model for system  Eq.(29) 
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Fig.20 Matlab/Simulink model for system  Eq.(32) 

 
Fig.21 Matlab/Simulink model for system  Eq.(38) 

 
Fig.22 Matlab/Simulink model for system  Eq.(43) 

 
Fig.23 Matlab/Simulink model for system  Eq.(46) 

 

 

6  Conclusion 
One knows that it is difficult to stabilize and control 

an aircraft using constant gain controllers because 

the aircraft’s dynamics vary with the considerable 

modification of the dynamic pressure and Mach 

number. That’s why a very good method for solve 

this problem is the determination of the gains of the 

control system. This paper presents a methodology 

for the flight control law’s design for the trajectory 

pursuit using hierarchical dynamic inversion; this is 

based on separation of multi-time-scale and multi-

loop closing method. The slow variables are con-

trolled by the fast ones, which, in turn, are controlled 

by aerodynamic command surfaces. The attitude 

angles are taken as slow variable while angular 

velocities as fast variables. 

The authors made the analysis of the longitudinal 

and lateral movements of aircrafts and obtained 

graphic characteristics which demonstrate the effect-

tiveness of the proposed method. 

The most efficient gain ratio between inner and 
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outer loop, for the longitudinal movement, is appro-

ximately 0.3 to 0.4 [1]. The authors of this paper 

have increased this ratio to 0.6. This way they 

increased the stability of the aircraft and its dynamic 

characteristics. Same thing is done for the aircrafts’ 

lateral movement. In this case the authors have 

increased this ratio to 0.5. Same stability increasing 

may be observed. 
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