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Abstract: - The paper presents a methodology for the flight control law’s design for the trajectory pursuit using
hierarchical dynamic inversion; this is based on separation of multi-time-scale and multi-loop closing method.
The attitude angles are taken as slow variable while angular velocities as fast variables. The slow variables are
controlled by the fast ones, which, in turn, are controlled by aerodynamic command surfaces. It greatly
simplifies the flight control design compared with PID conventional approaches. The used dynamic equations
are classified into 4 groups according to the stairs of time measuring from the physical point of view [1]; each
group of variables is controlled by the group of faster neighboring variables. The authors made the analysis of
the longitudinal and lateral movements of the aircrafts, have obtained two original block diagrams and, using
complex Matlab/Simulink models, have obtained graphic characteristics which demonstrate the effectiveness of
the proposed method.
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1 Introduction = fxu),
One knows that it is difficult to stabilize and control v = hx)

an aircraft using constant gain controllers because ’
the aircraft’s dynamics vary with the considerable where x € R” is the state variable, u € R™ is the
modification of the dynamic pressure and Mach
number. That’s why a very good method for solve
this problem is the determination of the gains of the
control system. This is a simple and direct methodo-
logy for the design of flight control systems. The . Oh

technique of the gains’ determination is the most Y= af (x,u) - F(x,u) )
important thing today in the area of flight control’s

design [2], [3]. or

The technique of gains’ determination depends on u=F-! (x, v), (3)
the designer’s experience and on his engineering art.

Variables’ separation on two time scales combined where v is the auxiliary input of the system. From
with the theory of singular perturbation have been equations (2) and (3) one yields

(1)

control input and y € R™ — the output which will
be controlled by the control input ». From equations
(1), one gets

subject of research, the attitude being taken as slow . _

Vargable while angular velocities asgfast variables. V= F(x, F l(x’ v)) -V )
The slow variables are controlled by the fast ones, The auxiliary input may have the classical form
which, in turn, are controlled by aerodynamic

command surfaces. V= K(yc - y), (5)

where K is a gain matrix and y,. the imposed value

2 Formulation of the hierarchical of y.

dynamic inversion
One considers the following nonlinear system [4],

[51. [61, [7]. [8], [9], [10]

The term that compensates the nonlinear dynamics
also provides the linearization of the dynamic system
and the exterior loop, expressed by equation (5); the
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system becomes linear and achieves the desired
value of the output y, (fig.1).

Unfortunately, some input-output equations do not
describe the aircraft dynamics with minimum phase
because of the aerodynamic forces' derivatives in
rapport with control surfaces' deflections. This fact
has prevented the direct application of dynamic
inversion to the automatic flight control systems.
This problem can be avoided by system's separating
on two time scales; thus, there are slow variables and
fast variables. Fast state variables are used to control
the slow state variables while the fast variables are
controlled by the command variable. One considers
the following two time scales nonlinear system

X = fl(xl’x23u)’x2 = fz(xlsxzsu):y = h(x1)3(6)

where x, € R" is the slow state, x, € R" is the

fast ueR" -
y € R" — the controlled output. The input-output

state, the control input and

equations on the slow scale may be derived as
follows

Mihai Lungu

Oh
_fl(xwxza”)z F(xl,xz,u),

o (7

-)-}:

where F(x,, x,,u) is invertible in rapport with
x, . One obtains x,. from the previous equation
using the dynamic inversion

®)

where v, is the auxiliary input for the slow scale

Xy = F’l(xl,vl,u),vl = Kl(yc _J/)a

controller and K, — the feedback gain matrix. If

X, = x,., the following equation is maintained

Kl(yc _y)= Vi- (9)

Finally, one obtains u, in the fast scale so that

y= F(x1aF71(x1aV1a”))

Xy —> Xy,

_ p-l
u, = f; (xlaxza"z)a

Vy, = Kz(xzc _xz)’

(10)

where v, is the auxiliary input for the fast scale
controller K, — the feedback gain matrix.

Y. + W ‘u

L v ot = O w)

x J}:u 1

B ¥ = hlx)
o

’E’

Fig.1 The linear system with dynamic inversion

3 The use of hierarchical dynamic

inversion to the aircrafts’ dynamics

For the conventional aircrafts with fixed wing the
command surfaces’ deflections have the slowest
time scale [4], [S]. These deflections generate aero-
dynamic moments around aircrafts’ axes. The aero-
dynamic moments generate angular velocities and
the angular velocities are integrated in order to
obtain the aircraft’s attitude. The forces have the
same time scale with the accelerations. The attitude
is integrated to obtain the velocities and the
velocities give the position of the flying object. The
variables may be grouped in four layers (time
scales): very slow scale (the position of the aircraft
X,Y,Z), slow scale (none of the variables), fast

scale (velocities U, V,W and angles ¢,0 and )
and very fast scale (the angular velocities P, O, R)
[3]. The aircraft position is defined by the lon-
gitudinal error ¢, the lateral error e, and the tra-
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jectory arc length s. The velocities are defined by
the real velocity of the air currents V., the
direction angle in rapport with the air currents v,
and the trajectory’s angle in rapport with the air
currents y,. Vs 1s directly controlled by the thrust
force or by the aerodynamic braking. The attitude is
defined by three angles: roll angle ¢, pitch angle 6
and sideslip angle [ ; all these angles are controlled
by angular velocities [1]. For the coordinated flight
B. =0, the incidence angle a is not considered a
state variable as it appears in [3]. This will improve
the precision of control because the inertial attitude
can be measured with less error than the aerody-
namic angles like o. The three angular velocities
P,Q, R are controlled by the three command sur-
faces: rudder, aileron and direction [11], [12], [13].

It is not enough to choose the state variables. This

choice may be not optimal for some applications;
that’s why state transformations will be made.
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The state variables are transformed from the initial
ones x € R'? in the new state variables & € R'.
One notes with T(x) the nonlinear transformation
which verifies equation § = T(x),
selected so that 7 — invertible; x = T7'(€),

where & is

x=x Y ZzUu v w ¢ 6 y P Q R,

(11)
£ = 0 0B P O R[

[S e, e Vs WV, YV,

y

The control vector u contains four variables repre-
senting the deflections of control surfaces

u=5,8, 8, 8], (12)

where & ,,5,,8, and &, are the deflections of the

rudder, aileron, direction, respectively the gas lever’s
displacement. Taking into account the multi time
scale separation from the previous section, §

separated as follows

<?51=[‘3y eh]a§2=[VrAs YV Ya]T’
& =[p 0 p.e,=[P 0 R].

In layer i (i = 1,2,3) the equations of dynamic

(13)

models of the subsystems can be defined as
& = Flenu g )i (14)

where Ei is a set of state variables other than &, and

§i+l'

the inner layer (i = 4) and those for Vg are given

On the other hand the dynamic equations of

as
&4 =F, (‘2 dp,u ) us = le(i ST,u) (15)
where u is the set of control variables. This case
&(is1)e » U, and &, are determined from equations [1]
x(i+1)c =F" (XI,VI,M X)V =Ki(xic_xi)’ (16)
uC = fn_l('x’ vn)’vn = Kn(xnc - xﬂ )'
One obtains
é(z+l (E.!z’u él’vl)’ Vi :Ki(éic _éi)’
Fy (§35T3V4)»V4 =K, &y — &) 7
dp. = inl(ia Vzwﬁ)"’zl = Ky Viase = Vs ) -
Using Taylor series expansions of F;
OF, OF,
F&, + A u+ Au)= F (& u)+ ——+—  (18)
0t ou
and the first equation (17), one gets
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(&;:gmau ﬁ) 3, (& (i+1)e _am): Ki(&.aic —éi)a
N\ OF, ,_ 19
F4(&»8T,“)+iﬁ(“c_”):K4(E.>4c_§4)’ ( )
0.
F21(§98Tﬂﬁ)+%(8ﬂ =87) =Ky Viyse = Vius) -

T

In the above equation the superior order terms have
been neglected and that is why the inversion is
inexact. Solving equation (19) in rapport with
&(i41)e » U, and 87, one gets

-1
OF. ~
a(m)g =& — (6; ] {Fz (aiv Eivis Us @,’)— K; (an- - E.'i)}a
i+l
-1 (20)
"7L- =u - (aai,jj {F4(E.a’ 8T’iz)_ K4(E.>4c - &4)}’
u
-1
0 ~
dr. =85 _(61;21j {le(éaé}ra”)_ Ko Vase = VTAS)}'
4 Numerical application to the air-

crafts’ longitudinal movement
One considers the longitudinal movement of an
aircraft described by equations [1]

[};'llon FZI Flon Flon F/on]T — [eh VTAS ,‘Ya éQ]T’

& | |alt ay afy aff afy [ ey || by
Vigs | |aby asy alf oy ol | Vs || B3 B s 4 (21)
o || ol o alt ol | v, |+| ok ot |0
0 | |aly aly afy alyalz] o | |bl b [T
O | |al aly' alg aly aly | 0 | [bly bl
ilon = Alunélon + B ulon .

The matrices 4" and B’" are the ones from the
second equation (21). One customizes the relations

(20) for variables &, (i :1,_4) defined by equation
(13). Thus, for i =1,&,, has components .7,

and Vyq.

on Flon
éZ =Yac =Va — aYa

where F/o* verifies equation (14) for i =1, using

} [Flo (§1’§29u il)—vll””] (22)

(21), one obtains

_ il I
= K" (VTASaYa) aff’ey + aly'Viys + (23)
lon lon lon lon lon
+a%'v, + a0+ a;?"0 + by 8 + b{5"8;
and
1
Yoo = (allg’") (all‘f”eh + a12 "Vigs + a1§1”9+ all”" )—

24)

Klon (ehc — € )]

a[on 1b10n8 +blon8 _
( 13 ) [11 T
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For 7 =2 one yields [1] 87, = _(bé(i") (alolneh +ay Vs +asy'y, + aéﬂ"@) (32)
0. = (aé‘j(’) (aé‘}”eh + aé%nVTAS + “éoanya + aéosn )_ 25) - (béozn )7 [‘125 + bé(inép — K" Viase = Vias )]-
~(aly )" [bzl(i% FBlSy — Ky —1,) In general, feedback gains of exterior loop should be

smaller than those in the inner loop. As the gains

and for i =3 one gets ratio between inner and outer loop is smaller, the

0, = (aiosn> (aiolneh +al Vs +ally, + aﬁ"e)— 1nterferer}ce has less effect and the stability is in-
z z (26) creased in expense of performance. Therefore the
~(aler ) [b}ﬁné +bigd; — K (0, —9)] most efficient gain ratio between inner and outer
loop is approximately 0.3 to 0.4 [1].
and . . . .
The authors of this paper have increased this ratio to
Flon =0 = al%e, +alg Vs +alyy, +alyo + 27) 0.6. This way they increased the stability of the
+ i+ bl | + bl alrcr?ft apd its dynamic characteristics. Thus, the
loop’s gains are
To calculate U, the authors use second equation Kl = (() 63).1,3.75,
(20), taking into account that i = [Se 3, Sd]T. Thus, Kim = (0.62)-1 3-m, (33)
for the longitudinal movement of the aircrafts, one Kin = (0-61)~ 1.3-m,
obtains Kl =(0.6°)-1.3- 7.

lon _ )y _ ,lon lon
F" =0 =ade, +a52 Vias +a53 Y, + a0+

ln ) 4 plons 4 pions (28) In order to apply the liniarised system obtained in
+ a0+ b5'S, + bsor the previous section, one uses an ALFLEX aircraft

model presented in [1].

~lon _ _ (#lon lon
U =Bpe =8, () ke + alg Vs + alta)- (29) In fig.2 the one presents the block diagram that
— (plon) ! (alore + alerQ + bl , + blarg, — vien), models equations (21), (24), (25), (26), (29) and
(32), associated to the longitudinal movement of
8 e bt ) alre, + alg Vs +algry, + alye)- (30) aircrafts.
_ (bé(f") [ lon ) 4 blons, — K1on (Qc B Q)] B.ased' on this block dlagr.am pne obta.lns the Matlab/
Simulink model of longitudinal motion (fig.3) and
In order to calculate ;. one uses the third relation one will obtains conclusions about the reliability and
(20). First, F,, from equation (21) must be deter- performance of the control method presented in this
mined paper. L
' The Matlab/Simulink model from fig.3 has three
Fyy = Vs = @y + alVy,s + a2y, + 31) subsystems: Eq.(25), Eq.(29) and Eq.(32).
+aly0+ afs + bIS, + bYS,,
o VrasTa @015, & ViusTa 0 @ 8y,

4

I

Eq. (29)

% =0 Ta

0 — Eq. (21)

e VrusYa0 @

. + E ;jq; (jzj

Fig.2 Block diagram of the system for the longitudinal movement’s stabilization
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—
—E=
—~ &
b b [ =]
Inv_s45 1 _lon J
| % =AxrBu |
— -
y= Coe+Du
>
- State
equations
T iz oun
»
- inz
— k4 _lan

h

] Eq (2%
¥ _lang

Eq. (30)

Fig.3 Matlab/Simulink model of the block diagram from fig. 2

Time variation of the longitudinal error

eh[m]

Time [s]

Fig.4 Time variation of the longitudinal error

x10%  Time variation of the air real speed
'8 T T T T

Vgl

20

10 15
Time [s]

25

Fig.5 Time variation of the air real speed
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Time variation of the angle between trajectory and air currents
04 T T T T

0.3

0.2}

01}

O

o1p

0.2}

0.3 i
15
Time [s]

10

20 25
Fig.6 Time variation of the angle between
trajectory and air currents

Using data for the longitudinal motion, one obtains
graphic characteristics representing time variations
of the longitudinal error (fig.4), of the air real speed
(fig.5), of the angle between trajectory and air
current (fig.6), of the pitch angle (fig.7), of the pitch
angular velocity (fig.8), of the rudder deflection
(fig.9) and of the spoiler deflection (fig.10). In
figures 6, 7 and 8 the command variable is repre-
sented with red dashed line while the variable
(current variable) is represented with blue continu-
ous line. For the simulation one has used the follo-
wing matrices
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0 -0.0392 -96907 0 0
—4491-107° —1.0941 —1.130 —7.525 —7.212-10°6
Alm =1 98381076 0.00243  —1.323 1.268 4.174-1077
0 0 0 0 1
|-1.912-107 —1.037 - 107* - 1459 1.459 - 1.130
] 0
- 4.596 -3.216
B =| 0376 -0.068].
0 0
|- 14.536 2.106

Time variation of the pitch angle

18 ! ! ! !

Teta[deg]

5 10 15 20 25
Fig.7 Time variation of the pitch angle

Time variation of the pitch angular velocity

Fig.8 Time variation of the pitch angular velocity

08 Time variation of the rudder deflection
K T T T T

e < <
ma = (=]
: : :
: : :
| | |

Rudder deflection[deg]

o

_0'20 5 10 15 20 25
Time [s]

Fig.9 Time variation of the rudder deflection
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1 Time variation of the spoiler deflection
T T T T

o

-2

Spoiler deflection[deg]

0 5 10 15 20 25

Fig.10 Time variation of the spoiler deflection

5 Numerical application to the air-

crafts’ lateral movement
One considers the lateral movement of an aircraft
described by equations [1], [14]

¢, (e, ] (bl bt ]
Al |, v, bl bl
FZZ‘” — |:(P:| — Alat . |:(P:| +Blat . bétit b3lgt BeJ’
B | Lp ; b bl {8,
£ m m bl bl
LR LR]] b by
alf' ay alf alff afy aff i byt ]
aff alf ali af o ol bl bl
|l aly ol aly ol al| (bl bl | GY
aff dlf alf aff af o |’ by by |
aff af ali alf alf af bl bl
L aly alt alf alg aly| bl 0]

(é?/ul = Alul&/ul + Blalu/ul .

One customizes the relations (20) for wvariables
E, (i = ﬁ) defined by equation (13). Thus, for the
lateral movement of the aircrafts, i=1,&,. has
components y.,v,. and Vrq,

ay::nc=ya—(iiTTme@Uap%zJ—va<3ﬂ

Similar equations are obtained for the lateral move-
ments

-
VYoo = Vo — (aalivilat] [Fi[m(élﬂ &29 u, gl)_ Vllal]ﬂ

¢, = F(v,) = ali'e, + alf'y, + alfp +alfp+ (36)

+al'P + al¥'R + 'S, + bl4',
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1
— _(lat lat lat lat lat lat
Ve = (alz ) (alley +a§o+aifp+afP+ag R)

(37
- (allgl )_l [bllllnse + blhznsd - Kllal (eyc - e}’)]'

For i = 2 one yields [1]

N
B. =0,0. = (p_[agi J [leat(éz,éz’”’gz)_vém]’ (38)

where Fj* is expressed with equation (34) as follows

lat _ |t _ lat lat lat lat
Fy" =y, =ajfe, + ajy, + ayy o+ ayf + (39)
lat lat lat lat
+a¥P+ asfR + b5, + b5, ,
— _( lat )_1( lat + lat + latB + lat )
P, = —axy a e, tadnVy, +dy ars p (40)

— (a ) aleeR + b5, + blaS, - Kl (v, — v, )]

and for i = 3 one gets

Mihai Lungu

P, P| | oFl« -
|:RL:| ) |:R:| . |:3P:| I:F3lat (&35 §45 u, §3)_ véat ]’ (41)
0
R
F m _[as o el aly oy aéﬂ o
Bl et ol alt ol alt alt] " )

b/at lat
+ 31 b32 6e ,
iy b |3,
R _ [d a7 oo | K0 o] [e]ll (43)
R e dff 0 K |(LB.] [B]]]

where x is the state vector and matrix C has the
form

lat lat lat

C = {am asz, dsj aéff bé‘{t bé‘;’} (44)

lat lat lat lat lat lat
agl ay agy agy by b

V.9 6 5,
+ *‘ + *‘ E + &
. -
Eq (43)|p -T + ' Adleron and T
. » ) direction deflection [
E‘*
R
o L2
e, W - Eq.(34)

Fig.11 Block diagram of the system for the lateral movement’s stabilization

To calculate u, the authors use second equation (20)
and take into account that o = [8e 5,9 d]T . Thus, for

the lateral movement of the aircrafts, one obtains

> blat blat S
F:w{f?} D-x+[511t }{ } (43)
R b sy || 84

o [ s o)
Sy S, 3,

0 F:‘lat

with
lat lat lat lat lat lat
D= |:a51 ds; ds3 dsq Ass a56:| (47)
lat lat lat lat lat lat |°
dg1 Ay Qg3 Qeg g5 g
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The most efficient gain ratio between inner and
outer loop is approximately 0.3 to 0.4 [1]. The
authors of this paper have increased this ratio to 0.5
[14]. This way they increased the stability of the
aircraft’s lateral movement and its dynamic charac-
teristics. Thus, the loop’s gains are

Kl =(05°)-13- 7, Kl = (052)- 137,

4
Kl =(05')-13- 7, Kl =(059)-13 7. 45

Same ALFLEX aircraft model presented in [1] has
been chosen for simulations. In fig.11 one presents
the block diagram that models equations (34), (37),
(38), (43) and (46), associated to the lateral move-
ment of aircrafts. The Matlab/Simulink of the block
diagram is the one from fig.12. The Matlab/Simu-
link model from fig.12 has three subsystems: Eg.
(38), Eq.(43) and Eq.(46).
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YYYVYYY

K_lat Inw_all

Yy

-

State
equations

g
beta_c = K _lat

¥

Eq.(43) .;- |"

= " &
. N — b *F*=

In2

Eq.(46)

—E

Fig.12 Matlab/Simulink model of the block diagram from fig.11

Time variation of the lateral error

Titne [s]

Fig.13 Time variation of the lateral error

Time variation of the yaw angle

Yaw angle [deg]
=]
(] [=]

=]
.

=]
2]

0 '80 : . 1 I0
Time [s]

Fig.14 Time variation of the yaw angle

Next, using data for the lateral motion, one obtains
graphic characteristics representing time variations
of the lateral error (fig.13), yaw angle (fig.14), roll
angle (fig.15), aileron deflection (fig.16) and direc-

ISSN: 1991-8763 799

tion deflection (fig.17). In figures 14 and 15 the
command variable is represented with red dashed
line while the variable (the current variable) is
represented with blue continuous line.

Time evolution of the roll angle

Time [s]

Fig.15 Time variation of the roll angle

Time variation of the aileron deflection

(=]

i

Aileron deflection [deg]

o

4 ;
0 5 Time [s] 10 15

Fig.16 Time variation of the aileron deflection
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Time variation of the direction deflection

_______________________________________________________

______________________________________________________

______________________________________________________

Direction deflection [deg]

5 Time [s] 10 15

Fig.17 Time variation of the direction deflection
In fig. 18-20 one presents the Matlab/Simulink mo-
dels for the blocks Eq.(25), Eq.(29) and Eq.(32) —
the longitudinal movement, respectively in fig. 21-

23 for the blocks Eq.(38), Eq.(43) and Eq.(46) - the
lateral movement.

In1 I (|
a31_lon
4

In2

a32_lof

In3
In4 a33_lon
a35_lol »

Out1
Inv_a34

b31_lon
b32_lon

»
»

In7

Fig.18 Matlab/Simulink model for system Eq.(25)

a51_lon

@ L

>

In1 a52_lol .
LP—LN

a53_lon

a54_lol

A4

Y

» L>* Inv_a34

a55_lon
In2

b52_lon
@D

In3

Fig.19 Matlab/Simulink model for system Eq.(29)

a21_lon
+

In1 -—lony L
+
a23_lon
a24_lon| g -

I Out1
Inv_b22
» > >l /_|
n

b21_lon
- (G

Fig.20 Matlab/Simulink model for system Eq.(32)

A4
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i1 a22_|at
+

"2 el

In3
Ind a25_lat
a26_lat

!
d

Inv_a34 Qutt

Ins b21_lat

b22_lat
T g

Ing

Fig.21 Matlab/Simulink model for system Eq.(38)

[
. J’r M atiix \—: & -
4'- . & m_at oM
gl | &y ™
&>

Matrix1

Fig.22 Matlab/Simulink model for system Eq.(43)

I f
+ Qut1
Inv_a1

M atrix

In2

Fig.23 Matlab/Simulink model for system Eq.(46)

6 Conclusion

One knows that it is difficult to stabilize and control
an aircraft using constant gain controllers because
the aircraft’s dynamics vary with the considerable
modification of the dynamic pressure and Mach
number. That’s why a very good method for solve
this problem is the determination of the gains of the
control system. This paper presents a methodology
for the flight control law’s design for the trajectory
pursuit using hierarchical dynamic inversion; this is
based on separation of multi-time-scale and multi-
loop closing method. The slow variables are con-
trolled by the fast ones, which, in turn, are controlled
by aerodynamic command surfaces. The attitude
angles are taken as slow variable while angular
velocities as fast variables.

The authors made the analysis of the longitudinal
and lateral movements of aircrafts and obtained
graphic characteristics which demonstrate the effect-
tiveness of the proposed method.

The most efficient gain ratio between inner and
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outer loop, for the longitudinal movement, is appro-
ximately 0.3 to 0.4 [1]. The authors of this paper
have increased this ratio to 0.6. This way they
increased the stability of the aircraft and its dynamic
characteristics. Same thing is done for the aircrafts’
lateral movement. In this case the authors have
increased this ratio to 0.5. Same stability increasing
may be observed.

7 Acknowledgments

This work was supported by the strategic grant
POSDRU/89/1.5/S/61968 (2009), co-financed by
the European Social Fund within the Sectorial
Operational Program Human Resources Develop-
ment 2007 - 2013.

References:

[1] Fuyjimori A., Terui F., Nikiforuk P. Flight
Control Design of an Unmanned Space Vehicle
using Gain Scheduling, Journal of Guidance,
Control and Dynamics, January 2005.

Enns D., Bugajski D., Hendrick R., Stein G.
Dynamic inversion: an evolving methodology
for flight control design, International Journal
of control, Vol. 59, No. 1, 1994, pp. 71-91.
Nagash A., Enns D. Precision Approach With
Curved Flight Path and Accurate Time of
Arrival, Proceedings of the AIAA Guidance,
Navigation and Control Conference, AIAA
Paper 98-4207, Boston, August, 1998, pp.
1217-1223.

Bugajski D.J., Enns D. Nonlinear Control Law
with Application to High Angle-of-Attack
Flight, Journal of Guidance, Control and
Dynamics, Vol. 15, No. 3, 1992, pp. 761-777.
Da Costa R., Chu Q.P., Mulder J.A. Re-entry
Flight Controller Design Using Nonlinear
Dynamic Inversion Controller, Journal of
Guidance and Rockets, Vol. 40, No. 1, 2003,
pp. 29-37.

Looye G., Joos H.D. Design of Robust
Dynamic Inversion Control Laws using Multi-
Objective Optimization, Proceedings of the
AIAA Guidance, Navigation and Control
Conference, AIAA-2001-4285, May 5, 2001.
Chelaru T.V., Pana V. Stability and Control of
the UAV Formations Flight. WSEAS Transac-
tions on Systems and Control, Issue 1, vol. 5,
January 2010.

Zhang Y., Zhao W., Kang X. Control of the
Permanent Magnet Synchronous Motor Using
Model Reference Dynamic Inversion. WSEAS

[6]

[8]

ISSN: 1991-8763

801

Mihai Lungu

Transactions on Systems and Control, Issue 5,

vol. 5, May 2010.

Yasemin I. Pitch Rate Damping of an Aircraft

by Fuzzy and Classical PD Controller. WSEAS

Transactions on Systems and Control, Issue 7,

vol. 5, July 2010.

[10] Chelaru T.V., Pana V., Chelaru A. Dynamic
and Flight Control of the UAV formations.
WSEAS Transactions on Systems and Control,
Issue 4, vol. 4, April 2010.

[11] Kemao P., Kai Y., Eng K., Dong L. Flight
Control Design Using Hierarchical Dynamic
Inversion and Quasi-steady States. Al4A4
Guidance, Navigation and Control Conference,
18 — 21 August 2008, Honolulu, Hawaii, AIAA
2008 — 6491.

[12] Carlos M., Vélez S., Andrés A. Multirate
control of an unmanned aerial vehicle, WSEAS
Transactions on Circuits and Systems Issue 11,
Volume 4, November 2005.

[13] Isidori A. Nonlinear control systems.Sprin-
gher, Berlin, 1995.

[14] Lungu R., Bekiarski A., Lungu M., Calbureanu
M. The Use of the Hierarchical Structured
Dynamic Inversion to the Aircrafts Lateral
Movement. The 14" WSEAS International
Conference on Systems, Corfu Island, Greece,
July 22-24, 2010.

Issue 10, Volume 5, October 2010





