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Abstract: - The objective of the present study is to build a reliable model of the dynamics among the chemical 

modules in the outlet of raw meal grinding systems and the proportion of the raw materials. The process model 

is constituted from three transfer functions, each one containing five independent parameters. The 

computations are performed using a full year industrial data by constructing a specific algorithm. The results 

indicate high parameters uncertainty due to the large number of disturbances during the raw mill operation. 

The model developed can feed with inputs advanced automatic control implementations, in order a robust 

controller to be achieved, able to attenuate the disturbances affecting the raw meal quality.  
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1   Introduction 
The main factor primarily affecting the cement 

quality is the variability of the clinker activity [1] 

which depends on the conditions of the clinker 

formation, raw meal composition and fineness. A 

stable raw meal grinding process provides a low 

variance of the fineness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow chart of raw meal production 

 

     Figure 1 depicts a typical flow chart of raw meal 

production. In the demonstrated closed circuit 

process, the raw materials’ feeding is performed via 

three weight feeders, feeding first a crusher. The 

crusher outlet goes to the recycle elevator and from 

there to a dynamic separator, the speed and gas flow 

of which controls the product fineness. The fine exit 

stream of the separator is the main part of the final 

product. The coarse separator return, is directed to 

the mill, where is ground and from there via the 

recycle elevator feeds the separator. The material in 

the mill and classifier are dried and dedusted by hot 

gas flow.  

    An unstable raw mix composition not only has 

impact on the clinker composition but also affects 

the kiln operation and subsequently the conditions of 

the clinker formation. So it is of high importance to 

keep the raw meal quality in the kiln feed as much 

as stable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

     The variation of this parameter is related to the 

homogeneity of the raw materials in the raw mill 

(RM) inlet, the mixing efficiency of the 

homogenizing silo and the regulation effectiveness 

as well. Due to its complexity and significance, 

different automated systems are available for 

sampling and analyzing the raw mix as well as for 

adjustment of the mill weight feeders according to 

the raw meal chemical modules in the RM outlet. 

The regulation is mainly obtained via PID and 
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adaptive controllers.   Ozsoy et al. [2] developed 

three different linear multivariable stochastic ARX 

(AutoRegressive with eXogenous input) models to 

describe the dynamics of a raw blending system.   

Kural et al. [3] built on stochastic multivariable 

dynamic models and designed model predictive 

controllers to calculate the optimal feed ratios of the 

raw materials despite disturbances. As clearly the 

authors declare the disturbances coming from the 

variations in the chemical compositions of the raw 

materials from long-term average compositions 

cause the changes of the system parameters. Several 

adaptive controllers of varying degrees of 

complexity have been also developed [4, 5]. 

Banyasz at al. [5] presented the control algorithm in 

a technology-independent manner. Duan et al. [6] 

presented a case study on the practical 

implementation of a hybrid expert system for a raw 

materials blending process.  Tsamatsoulis [7] tuned 

a classical PID controller among chemical modules 

in the RM output and raw materials proportion in the 

mill feed, using as optimization criterion the 

minimum standard deviation of these modules in the 

kiln feed. He concluded that the application of 

stability criteria is necessary. He also proved that the 

variance of the kiln feed composition not only 

depends on the raw materials variations and the 

mixing capacity of the silos but also is strongly 

related with the effectiveness of the regulating 

action. The reason that so intensive efforts are 

devoted to the raw meal regulation is that advanced 

raw mill control delivers improved economic 

performance in cement production, as Gordon [8] 

points out.  

    The common field among all these attempts and 

designs is the assumption of a model describing the 

process dynamics. As Jing et al. state [9], modeling 

of the uncertainties or handling the deterministic 

complexity are typical problems frequently 

encountered in the field of systems and control 

engineering. For this and other reasons in [10] 

special attention is paid to the problems of synthesis 

of dynamical models of complex systems, 

construction of efficient control models, and to the 

development of simulation. As a result, to design a 

robust controller, satisfying a given sensitivity 

constraint [11, 12, 13] an efficient modeling of the 

process is obligatory.  

    The aim of the present study is to develop a 

reliable model of the dynamics between the raw 

meal modules in the RM outlet and the proportions 

of the raw materials in the feeders for an existing 

closed circuit RM of the Halyps plant. Due to the 

uncertainty of the materials composition, it is 

necessary not only to describe the mixing process 

using a representative model, but to estimate the 

parameters uncertainty as well. The model 

coefficients and their uncertainty are computed 

exclusively from routine process data without the 

need of any experimentation as usually the model 

identification needs. Then, this process model can be 

utilized to build or to tune a large variety of 

controllers able to regulate this challenging 

industrial process.    

 

 

2   Process Model  

 
2.1 Proportioning Moduli Definition 
The proportioning moduli are used to indicate the 

quality of the raw materials and raw meal and the 

clinker activity too. For the main oxides, the 

following abbreviations are commonly used in the 

cement industry: C=CaO, S=SiO2, A=Al2O3, 

F=Fe2O3. The main moduli characterizing the raw 

meal and the corresponding clinker are as follow 

[1]: 

 

𝐿𝑖𝑚𝑒 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟   

𝐿𝑆𝐹 =
100 ∙ 𝐶

2.8 ∙ 𝑆 + 1.18 ∙ 𝐴 + 0.65 ∙ 𝐹
                       (1) 

 

𝑆𝑖𝑙𝑖𝑐𝑎 𝑀𝑜𝑑𝑢𝑙𝑢𝑠   𝑆𝑀 =
𝑆

𝐴 + 𝐹
                                (2) 

 

𝐴𝑙𝑢𝑚𝑖𝑛𝑎 𝑀𝑜𝑑𝑢𝑙𝑢𝑠  𝐴𝑀 =
𝐴

𝐹
                                   (3) 

     The regulation of some or all of the indicators (1) 

to (3) contributes drastically to the achievement of a 

stable clinker quality.  

 

2.2 Block Diagram 
Limestone and clay are fed to the mill via two silos: 

the first silo contains limestone while the second one 

mixture of limestone and clay with volume ratio 

clay: limestone=2:1. This composite material is 

considered as the “clay” material of the process.  

The third silo contains either the corrective material 

of high iron oxide or high alumina content or both of 

them. The block diagram is illustrated in Figure 2, 

where the controller block also appears. 

    Each block represents one or more transfer 

function: Gc symbolizes the transfer function of the 

controller. With Gmill, the RM transfer function is 

indicated, composed from three separate functions. 

During the sampling period, a sampling device 

accumulates an average sample. The integrating 

action of the sampler during the time interval 

between two consecutive samples is denoted by the 
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function Gs. The delay caused by the sample 

analysis is shown by the function GM. The silo 

transfer function is depicted by Gsilo. 

 

 
Figure 2. Flow chart of the grinding and blending 

process. 

 

    %Lim, %Add, %Clay = the percentages of the 

limestone, additive and clay in the three weight 

feeders. LSFMill, SMMill = the spot values of LSF and 

SM in the RM outlet, while LSFS, SMS, LSFM, SMM 

= the modules of the average sample and the 

measured one. Finally LSFKF, SMKF = the 

corresponding modules in the kiln feed. The LSF 

and SM set points are indicated by LSFSP and SMSP 

respectively, while e_LSF and e_SM stand for the 

error between set point and respective measured 

module. 

 

     

 
Figure 3. Transfer functions of the RM block. 

     

     The transfer function of the raw meal mixing in 

the RM is analyzed in more detail in Figure 3.The 

functions between the modules and the respecting 

percentages  of the raw materials are indicated by  

GLSF,Lim, GSM,Clay, GSM,Add. This configuration 

includes some simplifications and assumptions 

which are proved as valid in connection with the 

current raw materials analysis: 

- There is not impact of the limestone to SM as 

the S, A, F content of limestone is in general 

very low compared with the other raw materials. 

- Moreover there is not effect of the additive on 

the LSF as its percentage is very low, less than 

3%. 

- The materials humidity is neglected, to simplify 

the calculations. 

- As to the clay, the function %Clay=100-%Lim-

%Add is taken into account. 

 

2.3 Process Transfer Functions 
For the existing RM circuit, the objective of the 

analysis is to model the transfer function between 

the raw meal modules in the RM outlet and the 

proportions of the raw materials in the feeders. 

Consequently only for the functions Gmill, Gs, GM 

analytical equations in the Laplace domain are 

needed. The GM represents a pure delay, therefore is 

given by equation (4): 

 

𝐺𝑀 = 𝑒−𝑡𝑀∙𝑠                                                                    (4) 
 

     The delay tM is composed by the time intervals of 

sample transferring, preparation, analysis and 

computation of the new settings of the three feeders 

and finally transfers of those ones to the weight 

scales. For the given circuit the average tM = 25 min 

= 0.42 h. By the application of the mean value 

theorem and the respective Laplace transform, the 

function Gs is calculated by the formula (5): 

 

𝐺𝑠 =
1

𝑇𝑠 ∙ 𝑠
 1 − 𝑒−𝑇𝑠∙𝑠                                                 (5) 

 

    The sampling period Ts is equal to 1 h. Based on 

the step response results of [7], performed in the 

same RM a second order with time delay (SOTD) 

model is chosen for each of the functions GLSF,Lim, 

GSM,Clay, GSM,Add described by the equation (6): 

 

𝐺𝑥 =
𝑘𝑔,𝑥

 1 + 𝑇0,𝑥 ∙ 𝑠 
2 ∙ 𝑒

−𝑡𝑑,𝑥∙𝑠                                     (6) 

 

     Where x = Lim, Clay or Add. The constant kg, 

T0, td symbolize the gain, the time constant and the 

time delay respectively. The value of these nine 

variables shall be estimated. As measured inputs and 

outputs of the process are considered the %Lim and 

%Add as well as LSFM and SMM. In the time 

domain the functions (4)-(6) are expressed by the 

following equations:  

 

𝐿𝑆𝐹𝑀 𝑡 = 𝐿𝑆𝐹𝑆   𝑡 − 𝑡𝑀  
𝑆𝑀𝑀(𝑡) = 𝑆𝑀𝑆   𝑡 − 𝑡𝑀                                            (7)  
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𝐿𝑆𝐹𝑆 𝑡 =
1

𝑇𝑠
 𝐿𝑆𝐹𝑀𝑖𝑙𝑙 𝑑𝑡  

𝑡

𝑡−𝑇𝑠

 

𝑆𝑀𝑠 =
1

𝑇𝑠
 𝑆𝑀𝑀𝑖𝑙𝑙 𝑑𝑡 

𝑡

𝑡−𝑇𝑠

                                            (8) 

 
     The function between LSF and limestone in the 

time domain is given by equation (9): 

 

𝐿𝑆𝐹 − 𝐿𝑆𝐹0 = 𝑘𝑔,𝐿𝑖𝑚 ∙ (1 − exp −
𝑡 − 𝑡𝑑 ,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
 − 

𝑡 − 𝑡𝑑 ,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
∙ exp −

𝑡 − 𝑡𝑑 ,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
 ) ∙  𝐿𝑖𝑚 − 𝐿𝑖𝑚0  (9) 

 

      

    The Lim0 and LSF0 parameters stand for the 

steady state values of the input and output variables. 

The corresponding function between SM, %Clay 

and %Add is described by equation (10) 

 

𝑆𝑀 − 𝑆𝑀0 = 𝑘𝑔,𝐶𝑙𝑎𝑦

∙

 

 
 

1 − exp −
𝑡 − 𝑡𝑑 ,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
 

−
𝑡 − 𝑡𝑑 ,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
∙ exp −

𝑡 − 𝑡𝑑 ,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
 
 

 
 

∙  𝐶𝑙𝑎𝑦 − 𝐶𝑙𝑎𝑦0 + 𝑘𝑔,𝐴𝑑𝑑

∙

 

 
 

1 − exp −
𝑡 − 𝑡𝑑 ,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑
 −

𝑡 − 𝑡𝑑 ,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑

∙ exp −
𝑡 − 𝑡𝑑 ,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑
 

 

 
 

 

∙  𝐴𝑑𝑑0 − 𝐴𝑑𝑑                            (10) 
 

    The Clay0, Add0 and SM0 parameters correspond 

to the steady state values. Clay0 is not an 

independent variable but given from the difference 

100- Lim0-Add0. To avoid elevated degrees of 

freedom the following equalities are considered: 

 

𝑇0,𝐶𝑙𝑎𝑦 = 𝑇0,𝐴𝑑𝑑    𝑡𝑑 ,𝐶𝑙𝑎𝑦 = 𝑡𝑑 ,𝐴𝑑𝑑                           (11)   

  

    The output y is derived from the input signal u, by 

applying the convolution between the input and the 

system pulse function, g, expressed by (12). 

𝑦 𝑡 − 𝑦0 =  (𝑢 𝜏 − 𝑢0

𝑡

0

) ∙ 𝑔 𝑡 − 𝜏 𝑑𝜏            (12) 

 

The SM in the mill output is computed from the sum 

of the two convolution integrals. 

 

2.4 Parameters Estimation Procedure 
Each of the three transfer function Gx, defined by 

the formulae (6) in frequency domain or (9) and (10) 

in time domain contains five unknown parameters: 

The gain kg, the time constant T0, the delay time td 

and the steady state process input and output u0 and 

y0 respectively. The determination of these 

coefficients is obtained via the following procedure: 

(i) One full year hourly data of feeders’ 

percentages and proportioning moduli are 

accessed from the plant data base. As basic 

data set the hourly results of 2009 are taken. 

The size of the population is 4892 analysis.  

(ii) For each pair of input and output and using 

convenient software, continuous series of 

data are found. Because for each one of the 

three functions, five parameters need 

determination, the minimum acceptable 

number of continuous in time data is set to 

≥14.  

(iii) For each mentioned pair, the average 

number of data of the uninterrupted sets is 

18 and the total number of sets is more than 

200. Therefore the sample population is 

high enough, to derive precise computation 

of both the average parameter values and 

their uncertainty. 

(iv) For each data set and using non linear 

regression techniques, the five parameters 

providing the minimum standard error 

between the actual and calculated values are 

estimated. For the optimum group of 

parameters the regression coefficient, R, is 

also computed. 

(v) A minimum acceptable Rmin is defined. The 

results are screened and only the sets having 

R ≥ Rmin are characterized as adequate for 

further processing. The usual causes of a 

low regression coefficient are random 

disturbances inserted in the process or 

changes in the dynamics during the time 

interval under examination.  

(vi) For the population of the results presenting 

R ≥ Rmin, the average value and the standard 

deviation of each model parameter are 

determined. The standard deviation is a 

good measure of the parameters uncertainty. 

 

 

3   Results and Discussion 
 

3.1 Model Adequacy 
There are various sources of disturbances and 

uncertainties affecting the ability to model the 
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process dynamics. As main causes of such variances 

can be characterized the following: 

(i) The limestone and clay unstable 

composition. The average LSF of 140 

limestone samples taken during a full year is 

840 with a standard deviation of 670. The 

respective average LSF of 480 samples of 

clay is 17 with a standard deviation of 

5.This large uncertainty not only has an 

impact on the gain value, but also on the 

process time constant and delay. 

(ii) The variance of the raw materials moisture. 

For the same samples referred in (i), the 

limestone humidity is 3.4±1.2, while the 

clay one is 10.2±1.7. 

(iii) Disturbances of the RM dynamics caused by 

various conditions of grinding. For example 

variations of the gas flow and temperature, 

of the RM productivity, of the circulating 

load, of the raw mix composition etc. 

(iv) Some uncertainty of the time needed for 

sample preparation and analysis. 

(v) Some noise introduced in the measurement 

during the sample preparation and analysis 

procedure. Because of this noise and 

according to the laboratory data, the long 

term reproducibility of LSF is 0.95. 

     Due to all these unpredicted disturbances and the 

resulting uncertainties, to investigate the model 

adequacy, the cumulative distributions of the 

regression coefficients are determined for each one 

of the dynamics. The function between raw 

materials and SM is a two inputs single output 

process (TISO). The two cumulative distributions 

are depicted in Figure 4 computed from a total of 

202 data sets. 

 
Figure 4. Cumulative distributions of the regression 

coefficients. 

     If as minimum acceptable level for good 

regression a value of Rmin equal to 0.7 is chosen, 

then only 30% of the experimental sets present R ≥ 

Rmin for the dynamics from %limestone to LSF. For 

the second dynamic the percentage is noticeably 

higher - ~58%. The TISO treatment among clay, 

additive and SM results in a very reliable model. It 

must be noted that the change of the clay percentage 

results in a disturbance of the dynamics from 

%additive to SM. The same impact has a change of 

the additive percentage on the dynamics from %clay 

to SM. In the case that the model parameters were 

calculated separately from each material to SM – 

SISO model - then the percentage of R ≥ 0.7 is 

significantly lower than 58%. As to %Clay to SM 

dynamics the percentage is only 24.5% while the 

respective percentage from %Additive to SM 

reaches the 30%, both significantly lower than the 

result of the TISO model. 

     Subsequently the effect of the different 

disturbances on the model identification becomes 

clear. On the other hand the model describes 

adequately the blending process during the grinding 

of the raw mix in the closed RM circuit, for at least 

the one third of the data sets. For further calculations 

Rmin=0.7 is selected. One probable cause of this 

result is the sample size: Bigger the size, higher the 

probability a disturbance to be inserted to the 

system. To investigate deeper the above behaviour, 

for each set of M continuous data a subset of N=14 

consecutive samples is taken using a moving 

window technique. For example if a set contains 

M=20 samples then M-N+1 new subsets are derived 

and the dynamic parameters are determined. In this 

way the total number of sets is increasing to 1155. 

The computations for LSF dynamics are performed 

over all the above sets and the distribution of the 

regression coefficients is shown in Figure 5. In the 

same figure the distribution of R for the continuous 

data sets of minimum size 14 also appears. As it can 

be seen there is a substantial improvement of the 

model reliability if the size of the population is 

restricted to 14: The sets possessing R≥0.7 are the 

45.7% of the total population. The respective results 

for the SM dynamics are depicted in Figure 6. 

     To verify this positive trend of enhancement of 

the model consistency to describe the process, 

previous years data are also extracted and the same 

distributions shown in Figure 5 are derived. The 

results are depicted in Table 1. The distribution of 

the regression coefficients for 2008 data is 

demonstrated in Figure 7.  

     From these results it becomes clear that the 

reduction of the sample size to 14 contributes 

strongly to the improvement of the model reliability. 
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Figure 5. Distribution of the regression coefficients 

for LSF dynamics and 2009 data. 

 

 
Figure 6. Distribution of the regression coefficients 

for SM dynamics and 2009 data. 

 

     

Table 1. Function of the Model Regression 

Coefficient with the set size 

      Sets with  

    Size ≥14 

    Sets with  

    Size = 14 

 Work. 

hours 

Num.  

of sets 

%Sets 

with 

R ≥ 0.7 

Num.  

of sets 

%Sets 

with 

R ≥ 0.7 

2006 6617   185   57.8  3498  68.7 

2007 6109   225   43.1  2516  62.6 

2008 5928   234   53.8  2024  70.3 

2009 4892   202   30.0  1155  45.7 

 

      

 

 
Figure 7. Distribution of the regression coefficients 

for LSF dynamics and 2008 data. 

 

3.2 Correlations between the model 

parameters and regression coefficient 
As concluded from previous section, the model 

adequacy depends strongly on the sample size, due 

to the higher probability a disturbance to be inserted 

to the system, as bigger the sample size is. For this 

reason it shall be initially investigated if there is any 

correlation between the model parameters and the 

regression coefficient, R. To obtain the above the 

following procedure is followed. 

(i) For all the sets of the parameters and the 

respective regression coefficients, the range 

of R, [0,1] is partitioned in intervals of 

length 0.05. 

(ii) Within each interval, the average parameter 

value is determined 

(iii) The results are plotted to facilitate the 

search of any existing correlation.  

The parameters of the LSF transfer function against 

R are shown in Figures 8 to 10. Both parameter sets 

for sample size M ≥ 14 and M = 14 are depicted. 

 
Figure 8. Function between gain of LSF dynamics 

and R – 2009 data. 
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Figure 9. Function between time constant of LSF 

dynamics and R – 2009 data. 

 

 
Figure 10. Function between delay time of LSF 

dynamics and R – 2009 data. 

     The respective results from %clay and %additive 

to SM are indicated in Figures 11 to 14.  

 

 
Figure 11. Function between gain of %Clay to SM 

dynamics and R – 2009 data. 

 

     From these figures some essential conclusions 

can be extracted: While there is not any correlation 

between the model regression coefficients and the 

time constant or delay times, the R is strongly and 

monotonically related with the gains of both models. 

As the regression coefficient becomes better, the 

respective gain increases. Higher regression 

coefficient implies fewer and weaker disturbances 

inserted to the system and vice versa. Therefore as 

more intensive the disturbances are, lower and 

consequently erroneous the gain is. The above is an 

additional reason to select a threshold for the Rmin, to 

achieve a more accurate set of dynamic parameters. 

  

 
Figure 12. Function between gain of %additive to 

SM dynamics and R – 2009 data. 

 

 
Figure 13. Function between time constant of SM 

dynamics and R – 2009 data. 

 

 
Figure 14. Function between delay time of SM 

dynamics and R – 2009 data. 

     To verify this strong trend between model gain 

and regression coefficient all the kg and R data of 
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the years 2006-2009 for sample size M=14 are 

plotted in Figure 15 for the LSF dynamics. The two 

variables show high degree of correlation is spite 

that the slope is not the same for the four years, due 

to changes of the raw materials composition. So it is 

absolutely reasonable for further processing to use 

the dynamic parameters of the sets presenting R ≥ 

0.7 

 
 Figure 15. Function between gain of LSF dynamics 

and R – 2009 data 

 

3.3 Function between the steady state 

parameters 

To evaluate if there is any function between the 

steady state parameters the next steps are followed. 

(i) All the parameters of 2009 data, for sample 

size M=14 are considered for R ≥ 0.7.  

(ii) The functions LSF_0 = f (Lim_0) and SM_0 

= f (Add_0) are investigated. 

(iii) The range of Lim_0 is partitioned in 

intervals of length equal to 2. 

(iv) The mean and standard deviation of LSF_0, 

m and s respectively, are computed for each 

Lim_0 interval. 

(v) The same processing is performed for 

Add_0, partitioning the range to 0.025 

length intervals. 

(vi) The low and high limits of the average 

module are computed, using the formulae 

(LL, HL)
T
 = (m-s, m+s)

T
. 

(vii) The results are depicted in Figures 16, 17. 

     From the Figure 16, a clear correlation between 

Lim_0 and LSF_0 is concluded. As Lim_0 

increases, LSF_0 also augments. The variance of 

each individual point is due to the raw materials 

variance and model mismatch because of non -

linearities inserted to the process. This plot can be 

considered as the static gain function between the 

%Limestone and LSF steady state values. On the 

contrary Add_0 and SM_0 seem to be independent. 

The reason of this result is the impact of the Clay_0 

on the SM_0. 

 
Figure 16. Function between Lim_0 and LSF_0.  

      

 
Figure 17. Function between Add_0 and SM_0.  

 

3.4 Variance analysis of the model 

parameters. 
     The fundamental motivation to develop a model 

between the RM feeders and the chemical modules 

in the mill outlet is the prospect to tune off line an 

optimum controller  - usually PID type - or to utilize 

the model on line for model predictive control 

(MPC) purposes. In both cases the variance of the 

model parameters is of high importance. The 

knowledge of their uncertainty can lead to a robust 

controller tuned off line. In the case that MPC is to 

be implemented, previous information about the 

magnitude of the parameters change as function of 

time, can lead to a more effective design. 

     Therefore a variance analysis of the model 

parameters it is expected to offer valuable 

information. To evaluate their natural variability as 

well as their time evolution, the standard ISO 

8258:1991[14] is applied. By implementing this 

approach mean 𝑋   charts and range R-charts are 

constructed. The parameters natural standard 

deviation, σNat, is also estimated. The above statistics 

are computed by following the next steps: 
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(a) Calculate the absolute range Ri between two 

consecutive parameters Xi, Xi-1 and the average 

range RAver, over all the ranges population, by 

applying the equations (13): 

 

𝑅𝑖 =  𝑋𝑖 − 𝑋𝑖−1          𝑅𝐴𝑣𝑒𝑟 =
 𝑅𝑖
𝑁
𝑖=1

𝑁
             (13) 

 

(b) Calculate the maximum range, RMax, for 99% 

probability provided by the formula (14). Each  

R > RMax is considered as an outlier and the values 

are excluded from further calculations. 

  

𝑅𝑀𝑎𝑥 = 3.267 ∙ 𝑅𝐴𝑣𝑒𝑟                   (14)                                                                

 

(c) After the exclusion of all the outliers and 

calculation of a final RAver, the process natural 

deviation concerning the parameter under 

investigation is calculated using the equation (15): 

 

𝜎𝑁𝑎𝑡 = 0.8865 ∙ 𝑅𝐴𝑣𝑒𝑟                                         (15) 

 

(d) The upper and lower control limit – HL and LL 

respectively - of the mean 𝑋  are computed from the 

equations (16): 

 

𝐿𝐿 = 𝑋 − 1.88 ∙ 𝑅𝐴𝑣𝑒𝑟    
𝐻𝐿 = 𝑋 + 1.88 ∙ 𝑅𝐴𝑣𝑒𝑟                                             (16)  
 

     For parameters calculated for sample size M ≥ 14 

and M = 14 𝑋  and R-charts are determined. The gain 

charts for %limestone to LSF dynamics are 

demonstrated in Figures 18, 19 for 2009 data. The 

respective gain charts from %additive to SM transfer 

function are shown in Figures 20 and 21.  

 

 
 Figure 18. Gain R-chart of LSF dynamics.  

 

      
Figure 19. Gain 𝑋  -chart of LSF dynamics. 

 

 
Figure 20. Gain R-chart of %Additive to SM 

transfer function. 

 

 
Figure 21. Gain 𝑋  -chart of %Additive to SM 

transfer function. 

     Based on these figures and as concerns the 

average gain range between two consecutive sets, 

the passing from a sample size M ≥ 14 to M=14 

results is a severe decrease of the RAver and 

subsequently tighter LL and HL values of the 

parameter average: The process of gain 

determination is better controlled, if an adequate but 

not large population of results is chosen. To 

investigate in a more thorough manner this result, 
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the average and natural deviation of each model 

parameter is calculated over all the results available 

as to LSF dynamics and 2009 data as regards the 

SM dynamics. The results are shown in Table 2. 

 

Table 2. Average and σnat  of the model parameters  

 Aver. σnat,1 Aver. σnat,2 σnat,2/ 

σnat,1 

         M ≥ 14          M=14  

                          2009 

Kg,Lim 2.807 0.689 2.954 0.507 0.743 

T0,Lim 0.299 0.124 0.295 0.030 0.243 

Td,Lim 0.353 0.118 0.336 0.042 0.360 

Kg,Clay 0.026 0.019 0.035 0.009 0.469 

Kg,add 0.433 0.263 0.474 0.140 0.533 

T0,Clay 0.352 0.127   0.366 0.022 0.172 

Td,Clay 0.326 0.161 0.321 0.037 0.231 

                          2008 

Kg,Lim 2.090 0.458 2.303 0.245 0.534 

T0,Lim 0.233 0.048 0.258 0.014 0.292 

Td,Lim 0.345 0.109 0.319 0.035 0.320 

                          2007 

Kg,Lim 1.873 0.481 2.067 0.238 0.492 

T0,Lim 0.238 0.093 0.282 0.018 0.197 

Td,Lim 0.369 0.107 0.330 0.028 0.265 

                          2006 

Kg,Lim 1.935 0.450 2.111 0.209 0.466 

T0,Lim 0.246 0.065 0.274 0.015 0.231 

Td,Lim 0.361 0.116 0.324 0.032 0.278 
 

     From this Table the following conclusions can be 

extracted: 

- The selection of sample size M=14 outperforms 

of the one of M ≥ 14 

- As concerns the gain parameters, the ratio of 

σnat (M=14) / σnat (M ≥ 14) is found in the range 

of 0.466 to 0.743.  

- The range of the time constant and delay time 

respective ratios is from  0.172 to 0.360 

- The gain values for M=14 are always higher 

from the ones for M ≥ 14. If the analysis of the 

section 3.2 is considered for the effect of the 

disturbances on the estimated gain, then it is 

derived that the gains estimated in the first case 

are more precise. 

     Consequently the selection of a small but 

adequate data set size provides average parameters 

of less uncertainty and the off line design of a robust 

controller becomes more effective. Also due to the 

smaller range between consecutive in time 

parameters, the MPC also design is expected to be 

of higher efficiency. A model predictive control can 

be applied as following:  

(i) From the last M pairs of data, the model 

parameters are estimated.  

(ii) If the model regression coefficient is 

R≥Rmin, then using these values and by 

implementing a standard or special 

technique, the optimum controller is 

determined. If R<Rmin, the previous 

parameters or the average ones can be 

considered 

(iii) The controller output is applied for the next 

time interval. 

    As the model parameters are up to now computed 

for time intervals of continuous raw mill operation, a 

question arises what parameters could be used, from 

the RM startup up to the moment that M reach a 

predefined value. To notice that usually the RM stop 

only for some hours. A solution can be to use 

average or the previously applied parameters. 

Another solution could be to use all the data sets – 

continuous and discontinuous in time - of size M, 

taking also data before and after the RM stoppage. 

In this case it shall be studied if the model has the 

same or similar reliability as the uninterrupted in 

time one studied up to now. This investigation is 

performed for the LSF transfer function. For 

comparison the next criteria are considered:  

- The percentage of the sets population with R ≥ 

0.7 

- The average parameter value and the implied 

natural deviation σnat. To assure the validity 

of the results, several years data sets are 

processed. The results are shown in Table 3.  
 

Table 3. Comparison of continuous time sets and 

total population of sets 

 Average    σnat Average    σnat 

   Cont. time sets      All the sets 

                           2009 

Number           1155           4871 

%Sets of 

R ≥ 0.7 

           45.7           46.4 

Kg,Lim   2.954 0.507  2.868  0.462 

T0,Lim   0.295 0.030  0.300  0.017 

Td,Lim   0.336 0.042  0.332  0.026 

                          2008 

Number           2024           5894 

%Sets of 

R ≥ 0.7 

           70.3            65.5 

Kg,Lim   2.303  0.245  2.238  0.232 

T0,Lim   0.258  0.014  0.268  0.014 

Td,Lim   0.319  0.035  0.313  0.030 
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Table 3 cont. Comparison of continuous time sets 

and total population of sets 

 Average    σnat Average    σnat 

   Cont. time sets      All the sets 

                           2007 

Number           2516           6088 

%Sets of 

R ≥ 0.7 

           62.6            60.9 

Kg,Lim   2.067   0.238   2.043   0.232 

T0,Lim   0.282   0.018   0.290   0.014 

Td,Lim   0.330   0.028   0.329   0.029 

                          2006 

Number           3498            6607 

%Sets of 

R ≥ 0.7 

           68.7             69.0 

Kg,Lim 2.111 0.209  2.096  0.210 

T0,Lim 0.274 0.015  0.287  0.012 

Td,Lim 0.324 0.032  0.327  0.023 

 

     The results of the Table 3 indicate that in 

spite the discontinuity of the data, the dynamics 

is not interrupted as the fraction of the total sets 

presenting R ≥ 0.7 is comparable with that of 

continuous in time sets. This conclusion is very 

important in the case that MPC is selected as control 

strategy: From the last M data the dynamics is 

estimated and utilized to determine the control 

law to be applied to next time interval, if R ≥ 

Rmin. If R < Rmin, then a previous or an average 

dynamics can be used. 
 

3.5 Distribution of the Model Parameters 
 To have a more comprehensible representation of 

the model parameters uncertainty, the frequency and 

cumulative distributions of the gains are determined. 

The continuous time data sets of 2009 are selected 

with size M=14. The results are depicted in Figures 

22, 23, 24. 

 
Figure 22. Gain from %Limestone to LSF 

 
Figure 23. Gain from %Clay to SM 

 

 
Figure 24. Gain from %Additive to SM 

 

     From these three figures the high level of 

uncertainty of the model parameters becomes clear. 

Additionally the gain of the transfer functions from 

%Clay and %Additive to SM does not follow a 

normal distribution as the kg,Lim does. It is verified 

that the enlarged disturbances cause a substantial 

uncertainty to the determination of the model 

parameters. Subsequently it becomes evident that 

advanced automatic control techniques are necessary 

to reject the mentioned disturbances.  

     After the implementation of the convolution 

theorem given by equation (12) to the models (9) 

and (10), the measured LSFM or SMM in time I+1, 

corresponding to the average sample between the 

times I and  I+1, becomes a linear function of the 

feeders settings applied during the times I to I-N. 

These functions are given by the formulae (17) to 

(18): 

 

𝐿𝑆𝐹𝐼+1 − 𝐿𝑆𝐹0 = 𝑘𝑔,𝐿𝑖𝑚 ∙ 
𝑏𝐼,𝐿𝑖𝑚 ∙

 𝐿𝑖𝑚𝐼 −  𝐿𝑖𝑚0 

𝑁

𝐼=0

 

                                                                       (17)  
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𝑆𝑀𝐼+1 − 𝑆𝑀0 = 𝑘𝑔 ,𝐶𝑙𝑎𝑦 ∙ 
𝑏𝐼,𝐶𝑙𝑎𝑦 ∙

 𝐶𝑙𝑎𝑦𝐼 − 𝐶𝑙𝑎𝑦0 

𝑁

𝐼=0

 

+𝑘𝑔 ,𝐴𝑑𝑑 ∙ 
𝑏𝐼,𝐴𝑑𝑑 ∙

 𝐴𝑑𝑑𝐼 − 𝐴𝑑𝑑0 

𝑁

𝐼=0

                        (18) 

 
     Where: 

𝑏𝐼,𝑥 = 𝑎𝐼−1,𝑥 ∙
𝑡𝑀
𝑇𝑠

+ 𝑎𝐼,𝑥 ∙  1 −
𝑡𝑀
𝑇𝑠
  𝐼 = 0. .𝑁   (19) 

      

    Where x = Lim, Clay or Add. If I = 0, then the 

second term of the right member of the equation 

(19) is valid, while if I = N, only the first term is 

valid. The coefficients αI,x are functions of time tI 

and computed from the equations (20) - (22): 

               

𝑡𝐼+1 =  𝐼 + 1 ∙ 𝑇𝑠 − 𝑡𝑀    𝐼 = 0. .𝑁                      (20) 
      

𝑎0,𝑥 = 1 −  1 +
𝑡1 − 𝑡𝑑 ,𝑥

𝑇0,𝑥
 ∙ 𝑒𝑥𝑝  −

𝑡1 − 𝑡𝑑 ,𝑥

𝑇0,𝑥
           

                                                                       (21) 

 

𝑎𝐼,𝑥 =  1 +
𝑡𝐼 − 𝑡𝑑 ,𝑥

𝑇0,𝑥
 ∙ 𝑒𝑥𝑝  −

𝑡𝐼 − 𝑡𝑑 ,𝑥

𝑇0,𝑥
 

−   1 +
𝑡𝐼+1 − 𝑡𝑑 ,𝑥

𝑇0,𝑥
 

∙ 𝑒𝑥𝑝  −
𝑡𝐼+1 − 𝑡𝑑 ,𝑥

𝑇0,𝑥
  𝐼 = 1. .𝑁 − 1 

                                                                         (22) 

     A common delay time and time constant is 

considered for x = clay or additive in the case of the 

linear model (18). The Clay0 is determined from the 

balance: Clay0=100-Lim0-Add0. The total of the 

coefficients αI,x is equal to 1. The same is also valid 

for the coefficients bI,x. For the computed range of 

the delay time and time constant, a population of 

past data N=4 is adequate to provide a sum of the 

coefficients equal to 1. Therefore by assuming 

constant composition of the raw material within 

each time interval Ts, the model of equations (7) to 

(12) results in the linear model of the formulae (17) 

to (22). Using these equations, the propagation of td 

and T0 uncertainty to the coefficients αI and bI can 

be determined, by choosing the following approach: 

(i) The average and σNat of each time parameter 

is considered for the continuous in time sets 

of 2009 of a size M=14. 

(ii) Using a random generator, random numbers 

are generated between 0 and 1. 

(iii) Using the normal probability function and 

the random numbers as probabilities, sets of 

parameters are produced, using as normal 

distribution coefficients, the average and 

standard deviation considered in step (i) 

(iv) The equations (19) to (22) are applied for 

each set of td, T0 and the coefficients αI and 

bI are derived. 

(v) The average value and the respective 

standard deviation of  αI and bI are 

computed 

(vi) The results are depicted in Table 4. 

 

Table 4. αI and bI coefficients 

                     Limestone coefficients 

            T0             td 

Aver.(h)        0.295         0.336 

 σNat        0.030         0.043 

      α0      α 1      α 2     α 3 

Aver.   0.260   0.669   0.066  0.004 

std. dev   0.054   0.036   0.023  0.003 

   b0    b1    b2    b3    b4 

Aver. 0.152 0.499 0.317 0.030 0.002 

std. dev 0.032 0.009 0.025 0.011 0.001 

                 Clay and Additive coefficients 

            T0             td 

Aver.(h)        0.366         0.321 

 σΝat        0.022         0.037 

      α0      α 1      α 2     α 3 

Aver.   0.121   0.723   0.139  0.015 

std. dev   0.023   0.017   0.019  0.004 

   b0    b1    b2    b3    b4 

Aver. 0.071 0.472 0.382 0.067 0.006 

std. dev 0.032 0.012 0.011 0.011 0.002 

 

     As it is observed form Table 4, the uncertainty of  

αI and bI and of T0 and td are in the same range and 

not elevated.    

 

 
Figure 25. Nyquist plots of the %Limestone to LSF 

transfer function. 

      

     To investigate the impact of the parameters 

uncertainty on the Nyquist plot of the transfer 
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functions, the function from %Limestone to LSF is 

chosen and the steps (i) to (iii) of the previous 

procedure are initially applied. Then for each set of 

parameters kg,Lim, T0, td the Nyquist plot is derived. 

The results are shown in Figure 25. The solid line 

represents the average model parameters while with 

the dashed lines the transfer functions generated 

with the described procedure are depicted. 

     From this figure the large impact of the 

parameters uncertainty on the process transfer 

function is proved. The above results verify the 

necessity to include robustness criteria in the 

procedure of the controller design.  

     

 

4   Conclusions 
The dynamics of raw materials mixing in raw meal 

grinding systems is modeled effectively, by 

considering the transfer functions between the raw 

meal chemical moduli and the material proportions 

to the feeders. The sampling procedure and the delay 

time for sample preparation and analysis are taken 

into account. The process model is constituted from 

three transfer functions including five independent 

parameters each one. To compute these parameters 

with the maximum possible reliability a full year 

industrial data are collected and a specific algorithm 

is implemented. The results prove that the 

parameters uncertainty is elevated enough due to the 

large number of unpredicted disturbances during the 

raw meal production. Consequently advanced 

control theory and techniques are needed to 

attenuate the impact of these disturbances on the raw 

meal quality. The model developed can feed these 

tools with the results presented in order a robust 

controller to be achieved. The same technique to 

model the raw meal blending can also be applied to 

raw mills of the same or similar technology. 
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