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Abstract: - The paper purpose is to present some aspects regarding the control system of unmanned aerial 
vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology 
allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as 
well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF 
(degrees of freedom), and autonomous control system. This theoretical development allows us to build stability 
matrix, command matrix and control matrix and finally to analyze the stability of autonomous UAV flight .A 
robust guidance system, based on Kalman filter will be evaluated for different fly conditions and the results will 
be presented.  The flight parameters and guidance will be analyzed. The paper is inspired by national project 
SAMO (Autonomous Aerial Monitoring System for Interest Areas of Great Endurance).   
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NOMENCLATURE 
α  - Attack angle (tangent definition); 
β  - Sideslip angle (tangent definition);  

aδ  - Aileron deflection;  

eδ  - Elevator deflection;  

0eδ  The balance deflection angle for the elevator; 

rδ  - Rudder deflection; 

Tδ  - Thrust command: 
ψ  - Azimuth angle; 
θ  - Inclination angle; 
φ  - Bank angle; 
ρ  - Air density; 
Ω  - Body angular velocity;  

ECBA ,,,  - Inertia moments;  
A
z

A
y

A
x CCC ;;  -  Aerodynamic coefficients of force in 

the mobile frame; 

A
n

A
m

A
l CCC ;;  - Aerodynamic coefficients of 

momentum in the mobile frame; 
T
z

T
y

T
x CCC ;;  - Thrust coefficients in the mobile 

frame; 
T
n

T
m

T
l CCC ;;  - Thrust momentum coefficients in the 

mobile frame; 

SVF
2

2

0 ρ=  - Reference aerodynamic force; 

lFH A
o 0=  - Reference aerodynamic couple; 

0T - Reference thrust force;  

lTH T
o 0=  -Reference couple thrust; 

l - Reference length; 
m  – Mass;   

rqp ,,  - Angular velocity components along the 
axes of mobile frame;  
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S  - Reference area; 
T - Thrust vector;  
t  - Time; 
V  - Velocity vector;  

wvu ,,  - Gyroplane velocity components in a 
mobile frame;   

zyx VVV ,, -Velocity components in Earth 
frame; 

000 ZYOX  - Normal Earth-fixed frame;  
Oxyz  – Body frame (mobile frame);  

000 zyx  - Coordinates in Earth-fixed frame.  

 
1 Introduction 
The paper aims to evaluate the modelling and 
simulation of the performances of an UAV with an 
original design as shown in Fig. 1, in different 
atmospheric conditions.  

 
Figure 1 UAV Endurance configuration 

 
The UAV designed will be capable of assuring a 
great length of video monitoring (8 hours) on an 
interest area, on a preprogrammed path, or guided, 
during the mission. The subject approached is a 
great interest not only in the perspective of 
commercial and civil applications, such as 
infrastructure monitoring, search and rescue 
missions, traffic control, but also in military 
applications. For achieving this objective, there have 
been established two major research directions. The 
first direction consists in designing and achieving of 
the carrier platform-UAV, of great endurance, 
capable of transporting equipment required for 
commanding the aircraft, for communications, data 
acquisition and data processing. The second major 
research direction synthesizes and implements the 
platform’s automated command system for tracking 
the default trajectories. It is taken into account the 
attainment of a flexible infrastructure for the 
command system which will test the alternative 
algorithms used for the guidance and control of the 
platform. 
 

2 General movement equations  
 
As shown in the papers [2] and [3] the UAV’s 
dynamic equations are the projection equations of 
the force, that are achieved from the impulse 
theorem, and the moment equations, which come 
from the kinetic moment theorem. 
 
In order to obtain the dynamic equation we start by 
defining the aerodynamic coefficients in the mobile 
frame: 
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where: 

  lFHSVF o
T
0 =ρ= ;

2

2

0 .     (2) 

Similarly, if we consider the thrust T  and the 
nominal thrust as reference 0T , we can define axial 
thrust coefficient:  

0TTCT
x =         (3) 

 
The force equation can be written in mobile frame:  
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or in fixed (Earth) frame: 
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where the matrix iB  is defined using the Euler’s 
angles: 
 [ ]ji

T
ii b ,== AB ,    (6) 

with: 
θψ= coscos1,1b ;

φψ−ψθφ= cossincossinsin2,1b ; 

ψθφ+ψφ= cossincossinsin3,1b ; 

θψ−= cossin1,2b ; 

φθψ−φψ−= sinsinsincoscos2,2b ; 
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φθψ−φψ= cossinsinsincos3,2b ; 

θ= sin1,3b ; φθ−= sincos2,3b ; 

θφ−= coscos3,3b . 
The moment equation around the centre of the mass 
of the UAV, written in the mobile frame is: 
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    (7) 
where the inverse matrix for the inertia moment is 
given by: 
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The kinematical equations are additional equations, 
which allow us to obtain the linear coordinates in 
the inertial frame. If we use the component of 
velocity in mobile frame we have: 
 [ ] [ ]Ti

T wvuzyx B=000 &&& .          (9) 
Equivalent with this equation, if we use the velocity 
components in fixed frame we can write: 

[ ] [ ]Tzyx
T VVVzyx =000 &&& .    (10) 

For Euler’s angle when the rotation velocity 
components are known we have: 

 [ ] [ ]TA
T

rqpW=ψθφ &&& ,       (11) 
where 
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Supplementary, we have mass equation which 
describes mass UAV’s modification during the 
flight: 

  TCm sp−=&              (13) 

where spC  is specific fuel consumption.  

 
 
3 Guidance command  
Resuming [4], the guidance commands for UAV 
flight are start from relatives parameters   

uhz
~;~;~;~

φψθ  which are given by: 

;~;~;~
φ−φ=φψ−ψ=ψθ−θ=θ ddd  

xx V−=λ ; yy V−=λ zz V−=λ ; 

00 xxh dx −= ; 00 yyh dy −=  ; 00 zzh dz −= ; 

uuu D −=~     (14) 
where 

 DdddddD uzyx ;;;, 000ψθφ  ;     (15) 
are the input reference values. 
Also we use integral terms, defined as: 

 xx hI =& ; yy hI =& ; zz hI =& .    (16) 
 
The guidance commands are applied through the 
actuators which are approximated in the paper [4] 
by relations: 
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where reaT δδδδ ττττ ;;;  are the time constants and  
u
r

u
e

u
a

u
T kkkk δδδδ ;;;  are the  gain constants. 

 
 
4 Balance movement 

The study of flight stability will be made 
accordingly to Liapunov theory, considering the 
system of movement equations perturbed 
around the balanced movement. This involves a 
disturbance shortly applied on the balance 
movement, which will produce deviation of the 
state variables. Developing in series the 
perturbed movement  equations in relation to 
status variables and taking into account the first 
order terms of the detention, we will get linear 
equations which can be used to analyze the 
stability in the first approximation, as we 
proceed in most dynamic non linear problems. 
To determine basic movement parameters in 
equations (1) and (3) is considered 

0;0 ====== rqpwvu &&&&&&       (18) 
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5 Linear form of the general equations  
To obtain the general form of linear equations we 
start from the linear expression between 
aerodynamic variables and velocity components: 

[ ] ,0011
0

0

Tz
z
a

aV
∆

∂
∂

−∆=∆ βα VBM    (21) 

where: 
T

M
M

⎥⎦
⎤

⎢⎣
⎡ α∆β∆
∆

=∆M ; 

[ ]Twvu ∆∆∆=∆V  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

γ
α

γ
α

−

γ
β

−
γ
β

−

γαγβ−γ

=

∗∗

∗∗

∗∗∗

βα

cos
cos0

cos2
2sin

0
cos
cos

cos2
2sin

costgcostgcos

2

2

B  

By definition [8] aerodynamic angles are:  
)/arctan( uv−=α , )/arctan( uw=β .    (22) 

and: 
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Similarly, the relation between unstationary 
variables is: 
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undimensional angular velocities and non-
dimensional aerodynamic sizes: 
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where l  is reference length – body length. 
 
 
Similarly, for un-stationary components we can 
write: 

VAaV Ω−=& ,     (26) 
or in linear form: 

ΩAVAaV ∆−∆−∆=∆ Ω V
& ,    (27) 

where: 
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In this case, the expression of the aerodynamic 
force becomes: 
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where: 
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Similarly, for aerodynamic moment we can write: 
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where: 
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Considering the relationship between aerodynamic 
components and velocity components in body-frame 
the aerodynamic force becomes: 
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(30) 
Similarly, for aerodynamic moment, we can write: 

A
H0MH2

0

Hpqr
0

HzHMH0

HM
0

H
V

lH
V

lH

z
lz

a
a
M

z
H

V
H

δCVBC

ΩC

CCC

VBCH

∆+∆+

+∆

+∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−
∂
∂ρ

ρ
+

+∆=∆

δβααβ

βαβα

&
&&&

00
00

11

(31) 
 

Regarding thrust, it can be put in linear form as 
follows: 
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where: 
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Similarly, for thrust moment we can write: 
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Finally, if we know the expression of the 
components of the gravity along the mobile frame: 

0gAg i=         (34) 
we express the variation of the gravity along mobile 
frame axis: 
   

rAg ∆=∆ gR       (35) 
where: 
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Starting from force equation (4) in mobile frame, we 
obtain: 

,11
pVmm

fΩAVAgTFV ∆+∆−∆−∆+∆+∆=∆ Ω
&  

(36) 
where: 

[ ]Tpppp ZYX
m
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1f     (37) 

means perturbation force.  
Similarly, for momentum equation (7) we can write: 
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and 
[ ]Tpppp NML ∆∆∆=∆ −1Jm    (39) 

means perturbation moment. 
Starting from these relations we can write:  
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Starting from moment equation (3) we obtain: 
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δ
−

δ = U
T U CJm 1

0 ;  
Starting from cinematic equation (9) we obtain: 

rPVPp ∆+∆=∆ RV&      (42) 
where: 
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and from equation (11): 

rRΩRr ∆+∆=∆ Ω R&      (43) 
where: 
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Using linear equations (40)…(43) we can put 
the system in regular form: 

BuAxx +=&    (44) 
where: 
 [ ] 0

1
1 AAIA −−= ; [ ] 0

1
1 BAIB −−=  

 
We can also highlight the stability and control 
matrixes as: 
 
Table 1 The stability matrix with stationary 
variables 0A  

R

RV

zV

RzV

RRr

PPp

mMMΩ

GfFFV

rpΩV

Ω

Ω

Ω

00
00
00
00
00
00

0

0

Table 2 The stability matrix with nonstationary 
variables  1A  

r

p

MΩ

FV

rpΩV

V

V

&

&

&&&&

 

Table 3 Control matrix 0B  

r

p

mMΩ

fFV

δ
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TA

TA

δδ

δδ

δ

 

 
Finally, we express the perturbation vector: 
 

Table 4 The perturbation vector 0p  

r

p

mΩ

fV

p

p

∆

∆

 

 

 

4. Extended stability and control 
matrixes  

Besides the general motion equations in linear 
form as outlined above, UAVs needs other 
relationships to be added. Among them, the 
most important and which can not be neglected 
are the actuator equations and the guidance 
equations. For the autonomous flight, as is case 
of UAV's, the guidance equation is necessary to 
introduce integrated terms specific to PID-type 
controllers. 
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Starting from (17) linear form of the actuator 
equation became:  
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Similarly, linear form of auxiliary equation (16) 
became: 

 [ ] [ ] f∆+∆∆∆−=∆∆∆ T
ppp

T
zyx zyxIII &&&  

(46) 

where f∆  means reference values as input 
function. Using linear relation (45 and (46) we 
can build extended stability and control 
matrixes.  

 

Table 5 Stability extended matrix A  
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Table 6 Control extended matrix B 
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Trea uuuu

 

5 Optimal control using state vector  

Supposing to have access to extend state vector x , 
we can obtain directly the controller K  for optimal 
command: 

Kxu −=   (47) 

In order to satisfy the linear quadratic performance 
index (cost function): 

tJ TT d)(min
0

RuuQxx += ∫
∞

,   (48) 

where the extended pair ( )BA,  is controllable 
and the state weighting matrix Q  is symmetric 
and quasi positive: 

;0≥Q TQQ = . (49) 

while the control weighting matrix R  is 
symmetric and positive: 

;0>R TRR = ;    (50) 
In this case, the following relation gives the optimal 
controller 

PBRK 1 T−=     (51) 

where the matrix P  is the solution of the 
algebraic Riccati equation: 
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0QPBPBRPAPA T1T =+−+ −    (52) 
 

6 Optimal control using Kalman filter 
Using the optimal controller designed above 
requires access to all system states, very 
difficult in view of the limited number of 
sensors. In this case, for a complete description 
of the system we use a linear state estimator 
constructed as a Kalman filter. For this purpose 
we start from the regular relations: 

  
vDuCxy
GwBuAxx

++=
++=&      (53) 

where w is the external noise and v is the 
internal noise introduced by the sensors, where 
the matrixes  DC,G,  are considerate corrected with 
the stability matrix with non-stationary variables  

1A  

[ ] 0GAIG 1
1

−−= ; [ ] 0CAIC 1
1

−−= ; [ ] 0DAID 1
1

−−= , 
(54) 

The idea of estimator operation is if that the 
deliver system )(:1 DC,B,A,Σ  with state x, can  
be "predicted" by system )(:2 DC,B,A,Σ  that 
uses state z, which is accessible in this case to 
be controlled. In order that the system 2Σ  
follows the system 1Σ  we calculate a regulator 
L which brings the difference between actual 
read states 1y  and estimated states 2y  as a 
correction into the system 2Σ . In this case we 
can write: 
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1 :

&      (55) 
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DuCzy

yyLzBuAzz

2

210
2

)(
:
&     (56) 

where initial conditions are introduced by 0x , 
respectively 0z . Tracking error, including the 
initial conditions, is given by: 

 zxx −=~ ;   000
~ zxx −=        (57) 

If we decrease 2Σ  from 1Σ  and neglect the noise is 
obtained: 

  0
LCA xx ~~ )( the −= .    (58) 

Hence if L is dimensioned such that A-LC have 
eigenvalues with negative real part, the 
estimation error tends to zero.  Since z is provided 
by the estimator, we have access to all states to 
make control of the form: 

Kzu −=          (59) 
In this case the system 1Σ  is described by the 
equation: 

δδ oo xxBKBK)x(AxBKzAxx ++−=+−= ~&  
(60) 

which has the solution: 
)~( )()(

0
LCA

0
BKA xBKxx tt ehhe −− +δ=     (61) 

The process of calculating the estimator is 
similar to that described above for the optimal 
regulator. This is based on the dual system: 

uCxAx TT +=&      (62) 
for which is considered performance index: 

∫
∞

+′=
0

dmin tJ TT ]uPux)GQ(Gx[       (63) 

By solving the matrix Riccati equation: 
0GQGCRPRCRAAR 1 =+−+ − TTT     (64) 

matrix estimator is obtained: 
1PRCL −= T        (65) 

where R is the solution of Riccati equation. 
 
7 Input data, calculus algorithm and 
results 
 
7.1 Input data for the model 

7.1.1 Geometrical data 
As input data we use the geometrical elements of 
the UAV from Fig.  2.  
 

 
Figure 2 a UAV geometry 

 
 

 
Figure 2 b  UAV geometry 
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Figure 2 c UAV geometry 

Geometrical characteristics for the model are: 
Reference length – body length: ml 15.2= ; 
Reference area – cross body area: 2116.0 mS = ;.  

7.1.2 Mechanical data  
Mass characteristics of the model are: kgmi 70= ;  
Corresponding to initial mass, we have:  
Centre of mass position: mxcm 3.1= .  

Inertial moments: 210kgmA = ; 220kgmB = ; 
230kgmC = 25.0 kgmE =  

7.1.3 Aerodynamic data 
For the configuration from Figure 2, considering a 
Taylor series expanding around the origin, taking 
into account the parity of the terms, we obtain the 
following polynomial form of the aerodynamic 
coefficients in a body frame:  
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A
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 (66) 
where the coefficients 1a , 21a  … generally are  
depending on Mach number. 

In our case, for low subsonic flow, the 
coefficients 1a , 21a  … 10d  are practically constant,  
having the following values: 

53.01 −=a ; 7.421 =a ; 83.022 −=a ; 5.66 −=a ; 

6.197 −=a ; 5.68 −=a ; 5.29 −=a ;  7.610 =a  ; 

1.3213 −=a ; 5.96314 −=a  11412 .b = ; 5.442 =b ; 

5.652 −=b ; 83.16 =b ; .092 =b ; 57.710 −=b ; 

34.10 −=b ; 6.9911 −=b ; 8.141 −=b ; 47.651 =b ; 

0.091 =b ; 2.3513 =b 0.95214 =b 43.263 −=c ; 

2.05 −=c ;  62.16 =c ; ;054.013 =c 21.07 −=c ; 

179.00 =d ; 29.511 −=d ; 6.1141 −=d ; 

63.651 =d ; 0.091 =d ; 63.312 −=d ; 5.542 −=d ; 

63.652 =d ; 7.06 −=d ;  

.092 =d ; 3.610 =d . (67) 

7.1.4 Thrust 

The propeller thrust is determined by the relation: 

 T
xCTT 0=     (68) 

Where 0T  is the nominal value at ground, a fix 

point, and T
xC  and axial gas -dynamic coefficient. 

Fashioning experimental results indicated in work 
[9] we obtain the following approximate relation: 

)()()( 321 Tp
T
x fzfMfC δ=   (69) 

where the influence of the main parameters ware 
separated: 

Mach number M : 

MMf 0.31)(1 −= ;   (70)  

Altitude pz : 

  pp zzf 5
2 101.91)( −⋅−= ; (71) 

Thrust command Tδ : 

   TTf δ+−=δ 677.1677.0)(3 .          (72) 

Thrust command is limited between: 15.0 <δ< T . 
It is obvious that for the null velocity (fixed point 
flight) at ground level with maximum command the 
thrust takes the nominal value:  ][5630 NT =  

Similarly, we can obtain specific fuel consumption, 
by using relation: 
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)()()( 3210 Tpspsp gzgMgCC δ= ,   (73) 

where the Mach dependence is: 

2
1 966.0133.0026.1)( MMMg +−= ;   (74) 

Altitude dependence: 

pp zzg 6
2 10.81)( −⋅−= ;       (75)   

Thrust command influence: 

2
3 )1(3.01)( TTg δ−+=δ .     (76) 

The nominal specific consume at ground level with 
maximum command, corresponding with 0T  has the 
value: 

]//[1059.1 7
0 sNKgCsp

−×= .     (77) 

Using specific fuel consumption, we can evaluate 
fuel debit that coincides with mass variation, as we 
see in the equation (8). 

 

6.1.5 Guidance parameters 

For flight control system applying Kalman filter 
relations, we obtain the following guidance gains: 

- Controller K  values:  

01,1 =k ; 21.12,1 =k …. 181.019,4 −=k      (78) 

- Estimator L  values:  

4.121,1 =l ; .02,1 =l … 05.1019,19 =l   (79) 

7.2 Calculus algorithm 

The calculus algorithm consists in multi-step 
method Adams' predictor-corrector with variable 
step integration method: [1] [11]. Absolute 
numerical error was 1.e-12, and relative error was 
1.e-10. 

7.3 Calculus test case 

We will consider as a calculus test the situation 
when the UAV takes-off, makes a rectangular path 
with four turns maintaining velocity and altitude 

flight, followed by a descending phase. During the 
flight, after the second turn, it attends a turbulent 
zone. Crossing the turbulent zone, UAV uses the 
guidance command system, in order to maintain 
flight parameters. Turbulence zone was designed 
accordingly with work [5]. Flight parameters are 
typical for surveillance activity: altitude 

mz pd 200= , and axial velocity smud /44= . 

7.4 Results 

In Figure 3 we showed the flight-path diagram, 
the test situation when the UAV made a rectangular 
path with four turns. Fig. 4 shows the velocity 
diagram during the test flight described above. 
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Figure 3 UAV flight-path diagram 
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Figure 4 Velocity diagram 
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Fig. 5 and Fig. 6 show the ruder deflection and 
elevator deflection necessary to obtain desired 
trajectory.  
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Figure 5 Ruder deflection diagram 
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Figure 6 Elevator deflection diagram 

 

In Fig. 7 and 8 are shown the attitude angles: bank 
angle and azimuth angel, during the flight.  
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Figure 7 Bank angle diagram 

0 100 200 300 400 500 600
t[s]

0

50

100

150

200

250

300

350
ψ

[d
eg

]

 

Figure 8 Azimuth angle diagram 

In all diagrams, except flight –path diagram and 
azimuth diagram on can observe the influence of 
turbulence zone on flight parameters. 

 
7 Conclusions  
The conclusions are structured in two points as the 
following. 

Guidance scheme: A first conclusion regarding the 
guiding scheme consists in the fact that the UAV 
will have robust command structure, based on 
Kalman filter which is capable to lead the UAV on 
desired flight-path in different atmospheric 
conditions. From the diagram, previously presented, 
one can observe that the flight parameters after the 
turbulence zone came back to the normal values. 
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From this point of view we must define a number of 
evolutions that will make several guiding structures, 
which will be dedicated to each kind of evolutions. 
This part of the command structure will be able to 
evolve in the same time with the development of the 
project, when the experimental results will be 
available.   

Technical solution: Regarding the adopted solution, 
using unusual tail having two consoles arranged in 
the shape of the letter "V" inverted, instead of 
regular vertical and horizontal tail, we can obtain a 
better stability and at the same time a better control 
without increasing the deflection attach angle due to 
upstream wing.  
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