
A Mobile Robot Behavior Based Navigation Architecture using a

Linear Graph of Passages as Landmarks for Path Definition

LUBNEN NAME MOUSSI and MARCONI KOLM MADRID

DSCE – FEEC

UNICAMP

Av Albert Einstein, 400 – Cidade Universitária Zeferino Vaz, Campinas, SP

BRAZIL

lubnen_moussi@hotmail.com marconimadrid@uol.com.br

Abstract: - In this work the authors present a mobile robot architecture design for real time autonomous navi-

gation considering minimum requirements of hardware and computation. These requirements determine the use

of simple sensors and minimum representation of the environment. The approach chosen was Behavior-Based

for the design of the architecture and the behaviors. It is implemented under simulation of a differential wheels

robot inside a 2D environment with a layout very close to a real situation for laboratories, offices and class-

rooms. The solution takes into consideration local and long run navigation. A first approach utilizes only reac-

tive behaviors, solving very well local navigation. It also gives a partial solution to long run navigation in a

simple environment, with only two rooms, doing it without path definition. A complete solution for an envi-

ronment with many rooms is developed adding to the previous approach more behaviors that will take care of

path definition and control. A linear graph, having the passages as landmarks, structures the environment repre-

sentation and is the basis for the algorithm of path definition that gives an efficient solution. The architecture

has not a central planner and controller as in traditional deliberative architectures; planning and control arises

from the independent parallel functioning of all the behaviors. The results demonstrate that the design achieved

its objectives and some important points to improve it are shown.

Keywords: - autonomous navigation, mobile robotics, behavior-based robotics, emergent behaviors, path defini-

tion and control, target seek.

1 Introduction
Considering a mobile robot, the classical solution to

provide it with the capability to perform autonomous

navigation involves detailed representation of the en-

vironment and powerful computation. The good point

of this approach is the precision that it gives to all the

actions of the robot, from setting the speed and obsta-

cles avoidance to path definition and control. But, it

requires expensive navigation hardware and computa-

tion, and real time responses are difficult to obtain in

a changing environment. Not always it is of relevance

to have a precise solution, and there are situations

were real time performance might be more important.

That is the case with an autonomous robot that has to

run in an environment where the position of the ob-

stacles is changing, and with human beings inside of

it. In this case, precision is not the most important

point. Of course, if the task is to find the target and to

peek it up and hold it, the navigation to get near the

target is not required to use the optimum and precise

path, but the mechanism to peek and hold the target

requires it. This work deals with navigation, that is,

the architecture design does not require the solution

defined to be the best one, but a good and feasible

one.

In this work it is shown the implementation of a

differential wheels robot efficient intelligent architec-

ture for performing real time autonomous navigation

in a simulated two dimensional environment for labs,

offices and classrooms.

It uses Behavior-Based Robotics (BBR) and the

solution is presented in two steps. The first is a sim-

ple architecture based only on reactive behaviors,

without utilizing representation, and that solves navi-

gation in a simple environment. The second gives

solution to a more complex environment, utilizing the

prior one for local and immediate requirements and

adding new behaviors to allow long run path defini-

tion and control. A linear graph, having the passages

as landmarks, structures the environment representa-

tion and is the basis for the algorithm of path defini-

tion.

The results demonstrate that the design achieved

its objective. Some important points under considera-

tion to improve it are shown.

Section 2, Architectures for Autonomous Naviga-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 721 Issue 9, Volume 5, September 2010

tion, is a very brief introduction to Behavior-Based

Robotics directed to the reader not well familiarized

with it and also presents references for them to get

deeper into this subject. In Section 3, Choosing the

Architecture, the authors show why they elected Be-

havior-Based Robotics as the architecture for their

project of autonomous navigation and why, besides

their previous experience with Evolutionary Robot-

ics, they decided to implement the behaviors follow-

ing the Behavior-Based approach. The Simple Archi-

tecture is presented in Section 4, where it is shown

how local navigation is solved by it, the details of the

behaviors that make the architecture and the result of

its functioning. Section 5, The Simple Architecture in

a Complex Environment, explains how the oscilla-

tions are originated giving some examples, shows

also that the solution given by this architecture in a

complex environment is quite often obtained after

dangerous oscillations and, finally, how it performs

well environment exploration. The Complete Archi-

tecture design is detailed in Section 6 with an over-

view of how it was obtained, the implementation of

the linear graph of passages, the algorithm of path

definition and the results. Conclusions and perspec-

tives are given in Section 7.

2 Architectures for Autonomous

Navigation
The classical approach to mobile robot autonomous

navigation requires detailed representation and actu-

alization of the environment with the objects inside.

Usually, the layout of the environment is memorized

previously and the objects are frequently detected and

updated in the representation. Also, a deliberative or

planer based centralized architecture running very

sophisticated computer power consuming algorithms

is in charge of finding the right path to the target.

There are other alternatives. The state of the art archi-

tectures [2], [10] to solve autonomous navigation can

take, in a general and simplified overview, three dis-

tinct alternatives: deliberative, reactive and hybrid.

Behavior-Based Robotics (BBR) is located some-

where in between Reactive and Deliberative architec-

tures.

2.1 Deliberative or Planner-Based Architec-

ture
Deliberative or planner-based architectures have a

centralized nature and are highly dependent on inter-

nal representation. Sensor data are fed and analyzed,

in each step, to determine the proper action, being it

to deviate immediately from an obstacle or to proceed

according to a re-planned path to a long run goal. It

gives precise definition for the actions, but the proc-

ess takes expressive time and will usually work only

in very well controlled environments.

2.2 Reactive Architecture
A Reactive Architecture is characterized by linking

tightly sensing to action and, because of that, being

able to give quick responses. It achieves real-time

performance, in contrast with the Deliberative Archi-

tecture difficulties to accomplish it. But, in the other

hand, it only solves immediate purposes of the robot,

like object avoidance. Its quick response is due

mainly to the non use of environmental modeling, but

instead, using the environment itself as the model,

that is, the robot senses and acts upon the environ-

ment directly. This architecture normally does not use

state and bases its functioning on a mapping between

stimuli and appropriate responses. It can be noticed

also that the reactive architecture uses little reason-

ing, while deliberative needs a great amount of it.

2.3 Hybrid Architecture
First researches in artificial intelligence were mostly

deliberative. More recently, in the last decade of last

century, BBR, using reactive behaviors, started solv-

ing many of their unsolved problems, related mainly

to safe locomotion, environment exploration and tar-

get seek. One way to take advantage of these two

separate and quite opposite techniques is by a hybrid

architecture, where a reactive architecture takes care

of short run requirements and medium and long run

planning are left to a deliberative architecture. This

architecture requires usually three layers: Reactive,

Deliberative and Intermediate or Supervisory layer,

which will take care of conflicts and integration.

2.4 Behavior-Based Robotics
BBR is located somewhere in between Reactive and

Deliberative architectures. Besides the basic behav-

iors being mostly reactive, BBR can also use state

and internal representation, being able to deal with

immediate, medium and long run goals.

A behavior can be viewed as a procedure or law

that performs an action given a condition. For in-

stance, given an object in the near frontal vicinity to

the left and none to the right, turn right is an action

taken by a behavior of obstacle avoidance.

Behaviors are implemented through hardware ore

software. With hardware, they are distributed and do

not require synchronous functioning. With software

they are easily defined using decision structures like

if <condition> then <action>; for instance, if <front

left sensor sees an obstacle in a non accepted prox-

imity and the front right sensor is free> then <turn

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 722 Issue 9, Volume 5, September 2010

right>.

BBR has a decentralized nature, it is a distributed

architecture composed by behaviors that work in par-

allel, that is, each behavior is fed with sensor data and

all the behaviors are processed in each cycle. A be-

havior can also receive input from other behaviors.

Examples of basic behavior for a mobile robot are to

avoid obstacles, to follow walls and to seek a target.

All of them are fed with sensor data and processed in

parallel. Note that they could give conflicting results,

so there must be a conflicting disambiguation mecha-

nism for solving it. This mechanism, depending on

the case, can be a hierarchical definition or some

combination of their results.

Behaviors in BBR are designed and implemented

incrementally. For example, someone design the be-

havior 'deviate' to accomplish obstacle deviation. If it

is not the first one, he introduces it in the system and

implements the procedure to disambiguate possible

conflicts with the prior ones. Doing so it is possible to

develop and test each behavior to get its right design,

independently of finishing the entire project to get it.

A new behavior introduced can take advantage of the

previous ones. For instance, introducing a behavior

for wall following, it can stand without dependencies

and take advantage of a previous behavior for obsta-

cle avoidance working in parallel.

The design follows a bottom-up procedure re-

sembling biological evolution in its incremental re-

finements. More complex behaviors are usually de-

signed indirectly, obtained as an emergent result of

the combination of some of the simpler ones. In some

cases the emergency is predictable, in some not. In

case the emergency is not welcomed, it is required re-

design to solve it.

The project of an intelligent control using behav-

iors is done, most of the time, in a trial and error ba-

sis. This affirmation is valid when designing the be-

havior and also when adjusting its parameters.

Usually, a simple and basic behavior is reactive.

A number of attitudes can be solved by reactive be-

haviors, as can be seen in nature and robotics [4], [5].

But a behavior can have state and environment repre-

sentation can be implemented by behaviors. In [10]

representation is accomplished in a distributed man-

ner, in a network of behaviors. There is a strength

performed by BBR researchers to develop more com-

plex behaviors, even social [11], utilizing a combina-

tion of base behaviors and learning that gives rise, or

emergence, to more sophisticated ones.

By now, what is certain is that BBR is becoming

common sense for immediate attitudes of the robot,

and even for some medium and long run tasks like

target seek. For more complex problems the way to

take is highly dependent on its nature and on the re-

searcher's preferences, there are not yet general rules

to decide which way to take, purely BBR or hybrid

[1], [2].

The following references are for the reader inter-

ested in getting closer to BBR. Arkin [1] gives a

comprehensive view of Behavior-Based Robotics.

Applied perspectives with relevant points related to

design are found in Mataric [8], [10], and [11]. Au-

tonomous Robots [2] dedicates a chapter to architec-

tures, including BBR. Robot Programming [7] is a

simple practical guide. Flesh and Machines [6] gives

a historical vision of artificial intelligence and robot-

ics in general.

3 Choosing the Architecture

3.1 Choosing the architecture
Real time requirements, and minimum navigation

hardware and computation determine that the Delib-

erative Architecture is not a good choice. A Hybrid

Architecture might be a choice, but the authors de-

cided to try a complete BBR Architecture. This deci-

sion was reinforced by the work developed by

Mataric in [8], [9] that offered solid evidences of an

easier design and turned to be a sound inspiration for

their work.

Designing the architecture under Behavior-Based

Robotics requires the identification of the actions that

the robot has to perform to accomplish its task and

configure them into behaviors.

3.2 Implementing the behaviors
After defining a behavior, its implementation under

the Behavior-Based approach can be done by soft-

ware using mainly if ….. then …. constructions. An-

other way for implementing the behavior is utilizing

evolutionary robotics. In this way, previous work of

the authors in evolutionary robotic for obstacle

avoidance [17] [18] [13] utilizing classifiers systems

[3] led them to consider it for autonomous navigation.

However, they knew by experience that it would be a

hard work and so, prior of starting in that direction,

they decided to look for related work in the literature,

what confirmed their expectation. For instance, diffi-

culties are shown in Mataric [12], and in Nolfi and

Floreano [19] the solutions are presented for very

simplified environments with evident great effort in

design.

Therefore, the authors decided to design the ar-

chitecture and to develop the behaviors using the Be-

havior-Based approach, and found out that it was

rather simpler for them.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 723 Issue 9, Volume 5, September 2010

3.3 Solution in two steps
It looks reasonable to organize the work of designing

the architecture dividing it in smaller parts. There are

three evident indications to suggest the division of the

design in steps: reactive behaviors versus non reac-

tive behaviors, no environment representation versus

minimum environment representation, and local

navigation versus long run navigation. These indica-

tions direct the design almost naturally to two steps.

First, one architecture with only reactive behaviors,

what also means not representing the environment,

and with the task of solving local navigation. Second,

another architecture would take advantage of the

prior one and add new behaviors for minimum envi-

ronment representation and long run path definition.

However, there are other ways to look to the in-

dications, one of them being to consider one architec-

ture with only reactive behaviors and see how far it

can solve our task, adding, afterwards, non reactive

behaviors do deal with the unsolved part. The authors

decided to try this alternative and the result was that

it was possible to solve local navigation with it and to

go a little further solving partially long run naviga-

tion.

Therefore, the first step is an architecture built

with reactive behaviors, without representing the en-

vironment, which solves local navigation and, par-

tially, long run navigation. This architecture is named

in this work The Simple Architecture.

The second step is an architecture built over the

Simple Architecture to enable solution to long run

navigation in a more complex environment. Thus, it

utilizes the prior one for local and immediate re-

quirements and adds new behaviors to allow long run

path definition and control.

4 The Simple Architecture
This architecture uses only reactive behaviors, with-

out memory and environment representation and was

first presented in Lubnen and Madrid [14]. It is de-

signed to solve navigation in a simple environment

and to give a partial solution to it in a more complex

environment.

4.1 The robot and the environment
Figure 1 shows a differential wheels robot, a blue

circle. It has a circular shape, having 60 cm of diame-

ter, with a ring of 12 proximity sensors uniformly

distributed, and a bearing sensor. In the figure, the

robot is surrounded by a drawing of its proximity

sensors zones and its heading is shown by the small

blue circle. The environment is 8 x 10 m, with two

rooms and one of them has a table. The target is rep-

resented by a small red circle.

The data of the proximity sensors are classified in

four zones: danger, safe, edge and out. The danger

zone corresponds to proximities that the robot has to

avoid. The safe zone is used to align to the surface of

an object. The robot avoids objects in its forward di-

rection edge zone. Out corresponds to the inexistence

of near object.

Grid 1 x 1 m only for measurements

Fig. 1: Robot and Environment

4.2 An overview of the solution
Looking for basic behaviors it is worth to observe

that in nature and robotics a basic behavior is reactive

[4], [5]. The Simple Architecture utilizes only reac-

tive behaviors and considers the environment itself as

its representation. Consequently, there is not the bur-

den of environment representation as in the classical

approach.

For defining the behaviors to build the Simple

Architecture we have to understand what are the re-

quired actions that the robot has to perform to ac-

complish its objective. The robot has only proximity

and target direction sensors, so, through sensing the

environment, it can perform actions of running or

stopping, obstacle deviation and target seek. But,

even in local search, these actions do not guarantee

that the robot reaches the target because any obstacle

in its path will create a great difficulty, many times

unsolvable.

To solve it we can imagine that the robot, instead

of deviating from the obstacle in its path to the target,

aligns with it and follows its contour until finding a

free heading to the target. That is, defining a behavior

to align with the contour of the obstacle, or, in gen-

eral, a behavior to align with the surface of an object

when getting close to it.

To deviate, to align and target seek are quite of-

ten conflicting actions that require a manner to deal

with that will be shown in the following sub-section.

When we provide a robot with a behavior of

aligning with objects near to it actually we are giving

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 724 Issue 9, Volume 5, September 2010

something else. This attitude leads the robot to per-

form wall following, what permits it to reach a pas-

sage and to get inside the other room. It means that a

robot inside one environment with many rooms and

passages is able, with behaviors to deviate and align,

to explore it with safety. It also means that we are

solving local target seek and, at some extent, long run

target seek.

Looking to this fact in terms of dynamic systems,

the solution of the non-linearity caused by an obstacle

in the path of the robot to the target given by the be-

havior align gives also solution to the nonlinearity

caused by a wall in the path of the robot to the target

in another room. That is, the solution to local nonlin-

earity of obstacles gives also solution to nonlinearity

of walls.

It has to be noted that the solution of the conflict

raised by deviate, align and target seek when dealing

with the nonlinearity can generate oscillations. These

oscillations are increased as the complexity of the

system is increased, so, it is expected that local navi-

gation can be well solved by this architecture and

long run navigation will be very dependent on the

layout of the environment.

Hence, we have an architecture that solves local

navigation and is able to perform environment explo-

ration with safety and that solves also, at some extent,

long run navigation.

Let us see in more detail through an example the

effect of nonlinearity in the case of long run naviga-

tion. In Figure 2, we see the robot in one room and

the target in the other room, without a clean straight-

forward path linking the robot to the target. The robot

does not know where it and the target are. Its prox-

imity sensors just show the obstacles. The bearing

sensor tells the target direction. There is no informa-

tion to compute a path to the target. The robot has to

find a way to go to the passage, pass through it, get

inside the other room and run straight to the target.

With the behavior align implemented, when the robot

is running in the direction of the target and reaches

the wall it has the chance to align with it, to achieve

the passage, to enter inside the other room and to

solve target seek.

However, this architecture gives only partial solu-

tion to long run navigation. Consider again the robot

in Figure 2 running in the direction of the target and

that when reaching the wall it turns to the left to start

the alignment. It will eventually align with all the

walls in that room, running counterclockwise, until it

reaches the passage. So, it becomes clear that depend-

ing on the complexity of the layout the robot can take

a very long path to reach the target and even be un-

able to reach it.

Besides being partial, the long run solution with

the Simple Architecture is very surprising. Just re-

member that it is obtained with only reactive behav-

iors, what means that there is no map to find the tar-

get.

Fig. 2: Non-Linearity

Until now we saw the actions of deviating, align-

ing and target seek directing the robot to solve its

mission. These actions define the behaviors: Deviate,

Align and Seek. But, it is also required the actions to

start the robot in a forward direction and to stop it

that will be done by the behavior Forward. Actually,

Forward have more actions to perform that help the

robot to run safely in the environment. The details of

the functions performed by each behavior and the

solution of the conflicts generated by their parallel

functioning are shown in the next sub-section.

4.3 The architecture
The behaviors used are reactive and similar to the

basic ones utilized by Mataric [8], but they are not

equal. The architecture is shown in Figure 3.

FORWARD

DEVIATE

ALIGN

P
R

O
X

IM
IT

Y

S
E

N
S

O
R

S

EXPLORE

B
E

A
R

IN
G

SEEK

velocity

heading

Fig. 3: Architecture

All behaviors are processed in each cycle. Hierar-

chical attributes and exclusive conditions are defined

to solve conflicts. The data of the proximity sensor

classified in danger, safe, edge and out is delivered to

all the behaviors. Only Seek gets the output of the

Bearing sensor. Only the behavior Forward sets the

velocity.

The details of the behaviors actions and the condi-

tions in which they happen as well the priorities de-

fined to solve conflicts are shown in the following

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 725 Issue 9, Volume 5, September 2010

sub-sections.

4.3.1 Forward

The behavior Forward is in charge of setting the robot

to run when it is in a free direction and to stop it

when it is in danger to collide with an obstacle. The

decision to stop the robot is taken when any of the

proximity sensors shows an object in the danger re-

gion and any front sensor shows an object below the

edge region. And, once it stops the robot, this behav-

ior makes it to turn around itself until it finds a direc-

tion free of obstacles to go. The result of this occur-

rence is a sharp deviation. Failing to find a free direc-

tion to go, the robot is moved backwards for a while

in an arbitrary safe direction.

Forward is the only behavior that sets the velocity.

It is the principal behavior responsible for security; it

protects the robot and the environment and that is

why it receives the maximum priority.

4.3.2 Deviate
Deviate is inserted incrementally over Forward and

works in parallel with it. It avoids obstacle entering

the front edge region by changing the heading of the

robot. If the obstacle is in the left side the robot turns

to the right and vice versa. If the object is straight in

the front of the robot it turns randomly left or right.

The result of the action of Deviate is smoother turn-

ings then those made by Forward.

This behavior is also responsible for the robot se-

curity and diminishes the need of the use of Forward.

Deviate has lower priority then Forward. That is, if

the results of the Proximity Sensors are such that For-

ward and Deviate are able to give output, what means

that they are activated, the Simple Architecture will

accept the output of Forward and ignore the output of

Deviate.

4.3.3 Align
Align is inserted over, runs in parallel and has low

priority then the above ones. Its goal is to maintain

the robot in the proximity of the object to which it

gets near. It tries to maintain the object in the safe

zone. If any of the lateral sensors detect an object in

the safe zone, this behavior is activated and its action

brings the robot to the vicinity of the object that it is

getting near to or escaping from. When the robot

reaches the edge of a wall that it is following, like in

a passage, it turns around it, getting inside the other

room. Align is responsible for solving nonlinearity

produced by obstacles and walls.

This behavior relies on Forward and Deviate to

maintain the safety. It has lower priority then both of

them. That means that its output will be accepted by

the Simple Architecture if either Forward or Deviate

is not activated.

4.3.4 Explore

The behaviors above, Forward, Deviate and Align

give rise to the behavior Explore that emerges from

their parallel execution. It happens because the be-

havior Align allows the robot do keep wandering, and

so, to explore the environment. At the same time,

Forward and Deviate guarantees that the exploration

is done under safety.

4.3.5 Seek
Seek is added to the architecture over the other be-

haviors and runs in parallel with them. The robot

senses the bearing of the target and determines the

heading to go straight there. Seek checks if the robot

is free of obstacle in the direction of the target. If it is,

Seek overwrites the heading given by Explore.

4.4 Results
The simulation for obtaining the results is run in the

environment of Figure 1. The robot has an axis of 60

cm of diameter. The behaviors Forward, Deviate and

Align, utilize 30 degrees for each deviation. The fol-

lowing parameters had to be adjusted to get the re-

sults and the adjustments were done by trial and er-

ror:

• Velocity = 20 cm/s, is the robot speed set by

Forward.

• Iteration interval = 1.2 s, is the time interval

allowed for each iteration of the simulation.

It has to be sufficient for the time required for

all sensors readings and outputs, low level

control, and also for computation.

• Maximum distance to detect an object = 70

cm. It relates to the end of the edge region.

Adjusting this value, automatically adjusts

the dimensions of the safe and danger re-

gions.

• Bearing Sensor aperture = 90 degrees in the

heading direction. This aperture can be un-

derstood as the field of view of the robot, that

is, in which directions it can see the target.

In Figure 4 the Forward behavior is working alone

and the robot trajectory shows sharp changes in ori-

entation when an obstacle gets inside the danger re-

gion and the front sensors shows an object below the

edge region. The robot stops and keeps changing its

orientation until the front proximity sensors are free,

when it runs again. One point to observe is that the

robot stays most of the time inside one of the rooms.

Figure 5 shows the effect of Forward and Deviate

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 726 Issue 9, Volume 5, September 2010

working together. Most of the changes in orientation

are smoother then in Figure 4. There are still some

sharp deviations due to the action of Forward. There

is not yet evidence of exploring efficiently the entire

environment.

Fig. 4: Forward
 Fig. 5: Forward

and Deviate

Fig. 6: Forward, Deviate and Align -

Safe Exploration

Figure 6 shows the robot exploring safely the en-

vironment under the work of Explore that emerges

from the parallel functioning o Forward, Deviate and

Align. It is noticeable the effect in aligning with the

objects of Align, the smooth changes in orientation of

Deviate and some stops and sharp changes in orienta-

tion of Forward. And it is clear that the robot wanders

throughout the entire environment.

Target is reached after 495

iterations

Fig. 7: Target Seek

without Align

Target is reached after 108

iterations

Fig. 8: Target Seek

Figures 7 and 8 show the Simple BBR Architecture

performing Target Seek. In Figure 7 Align is turned

off, and the robot reaches the target after 495 itera-

tions, seeming almost left to chance. In Figure 8,

Align is turned on and it shows its relevance in the

solution of the nonlinearity caused by the wall. The

robot achieves the target after 108 iterations and does

not go straight to the target; however, it goes under a

good and safe path.

Therefore, it becomes clear that the Simple Archi-

tecture achieves its objective of solving local naviga-

tion. It also gives solution to long run navigation in a

simple environment, but, as expected, it has to be im-

proved. This improvement is possible with the Com-

plete Architecture.

5 The Simple Architecture in a Com-

plex Environment
It is relevant to verify the Simple Architecture work-

ing in a more complex environment to understand

better the kind of difficulties that appears and how far

it can help to solve them. In Figure 9 the environment

is 20 x 10 meters and shows the robot inside a room

separated by a wall without a passage to the other

room were the target is located.

Grid stands for measurements

Fig. 9: Robot and environment

This environment is more realistic then the one in

Figure 1, it has more rooms and the passages are nar-

rower. The parameters had to be adjusted to enable

the architecture to perform environment exploration

and were set to the following values for the simula-

tions in this section:

• Velocity = 15 cm/s

• Robot axis = 50 cm (as the passages are nar-

rower it is better to use a smaller robot)

• Iteration interval = 0.6 s

• Maximum distance to detect an object = 60

cm

The aperture will be set to different values in this

section.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 727 Issue 9, Volume 5, September 2010

5.1 Oscillations
Oscillations occur due the conflict between the be-

haviors Explore and Seek and are also dependent on

the aperture of the Bearing sensor. The conflict arises

because Explore drives the robot making it align or

deviate, while Seek attracts it to the target.

5.2 Maximum aperture
Figure 10 shows one example using 360 degrees of

aperture for the Bearing sensor. With this value the

target detection will happen independently of the ro-

bot orientation. The robot starts running in the direc-

tion of the target until it reaches the wall. Then, De-

viate makes a deviation to the right. In the next cycle,

Align enters in operation aligning the robot with the

wall and, while it is aligned with it, there is not a free

way in the target direction. When the robot reaches

the corner, Deviate makes a right turn and the robot

moves a little bit further leaving back the wall it was

aligned with. So, it has a free path almost backwards

in the direction of the target, and Seek is activated.

The robot moves in the direction of the target,

reaches the wall, and aligns with it in the opposite

direction it did before. When the robot reaches the

other corner it will enter a similar process. In the ex-

ample in Figure 10, the upper corner provides more

visual details of what happens when the robot reaches

the corner, makes a left turn, runs further a little bit,

finds a free way to the target, moves in the direction

of the target and aligns with the wall.

In this example the robot cannot escape from the

oscillation. Total aperture should not be used because

it gives a high probability of oscillation of this nature.

Fig. 10: Oscillations with 360 degrees for

the aperture of the Bearing sensor.

5.3 Minimum aperture
Figure 11 shows one example with low aperture

where it is set to 30 degrees. This aperture means that

the robot senses the target within 15 degrees to its left

side and 15 degrees to its right side.

The attraction becomes very much dependent on

the robot orientation. When the simulation starts the

robot runs in the direction of the target until it reaches

the wall. Then, Deviate makes a right turn and after

this point, in the entire trajectory shown in the figure,

the robot cannot detect the target.

Fig. 11: Trajectory with 30 degrees for the

aperture of the Bearing sensor.

The robot may be entering a low frequency oscilla-

tion, returning back again after a long run due mainly

to environment exploration. Eventually, with low

probability, the robot will achieve the target.

A minimum value might not be a good choice for

the aperture because it provides very low possibility

of attraction by the target.

5.4 Medium aperture
The example in Figure 12 has the aperture set to 180

degrees. What happens is that the robot is not oscil-

lating as with the maximum aperture and does not

ignores almost completely the target as in the mini-

mum. The robot is going away from the target, and as

the attraction is higher it might have more probability

of returning and finding the target. But, it is not guar-

anteed. Medium aperture, or a value near it, looks

more appropriate to help in solving the nonlinearity

of a complex environment.

Fig. 12: Trajectory with 180 degrees for the

aperture of the Bearing sensor.

5.5 Target seek
In Figure 13 the robot starts in the first room in the

right side. The parameters are the same as used in the

previous examples. The aperture is set to 180 de-

grees. The Simple Architecture is not designed to

solve target seek for this environment. The idea here

is to see what happens letting the simulation to run.

The graph in the figure shows the distance to the tar-

get, putting in evidence the oscillations. The robot is

almost kept imprisoned in the room near the room

were the target is. But, it escapes and finds the way to

the target.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 728 Issue 9, Volume 5, September 2010

It is clear the effect of the nonlinearity of walls

causing oscillations and great difficulty or even in-

validating target seek.

Trajectory to reach the target

Fig.13: Result for the Simple Architecture

5.6 Environment exploration
The Simple Architecture is expected to perform envi-

ronment exploration with safety, and does it well, as

can be seeing in Figure 14.

Fig. 14: Complex environment exploration

6 The Complete Architecture
This architecture is designed to give an efficient solu-

tion to autonomous navigation performing real time

target seek in a simulated 2D environment with many

rooms and passages connecting them. It utilizes only

reactive behaviors for local navigation, as done pre-

viously, and adds new behaviors to take care of iden-

tifying where the robot is and to define the path [16].

The environment in Figure 15 is 20 x 10 meters. The

robot is in the first room in the left, facing the wall

near to it. There is a table in the second room, and the

target is in the last room.

The robot characteristics are similar to the one

used for the simpler environment. Now, it utilizes

sensors for getting its position and orientation, and

does not use the bearing sensor anymore.

Grid stands for measurements

Fig. 15: Robot and environment

6.1 Overview of the solution
The first ideas of the authors to solve efficiently

autonomous navigation were presented in Moussi and

Madrid [15]. There are two points to solve to guaran-

tee a more efficient target seek. One is that the nature

of the design used here and in most of the approaches

based on intelligent control does not lead to an opti-

mum solution. However, it is better to have the possi-

bility to take a shorter way to the target, then the one

shown in Figure 8. The other is the possible danger-

ous increase in oscillation, even invalidating reaching

the target, due to the conflicts caused by Seek with

Explore, mainly when the difficulties of the environ-

ment scales up, like in Figure 15.

One way to solve them is using landmarks that the

robot can utilize for its navigation. The landmarks

have to be of easy identification by the robot and

conveniently placed to facilitate the path definition.

There are a number of alternatives, but, passages

solve the non linearity given by walls between the

robot and the target. Using passages as intermediate

goals, and building a path as a sequence of goals to

reach the real target, there is an evident minimization

of oscillations caused by the walls. In Figure 8, in-

stead of taking a straight line to the target that re-

sulted in augmenting the trajectory extension, the ro-

bot, using this method, can take an intermediate goal

to the passage and go from there straight to the target.

Utilizing the passages as landmarks solves the two

points mentioned before: it’s possible to take a

shorter way to the target and it decreases the prob-

ability of oscillations.

Therefore, the path is constructed as a sequence of

sub goals of passages. To find this path it is con-

structed a linear graph having the rooms as nodes and

the passages linking them. An algorithm running over

this graph determines the solution.

The passages as local sub goals solve properly the

non linearity given by the walls, enabling the local

architecture to guide the robot to the target.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 729 Issue 9, Volume 5, September 2010

6.2 The Landmarks and the Path Definition

Algorithm
The use of passages as landmarks facilitates the

achievement of the requirement of minimum repre-

sentation because it permits the construction of a lin-

ear graph with all the required information for navi-

gation. The graph having the locals as nodes and the

passages linking them contains the logic to find the

path from where the robot is to the target. And also,

the architecture provides a memory to store some in-

formation for each passage: the coordinates of its ex-

tremities, its angle with the axis of coordinates (an-

gles greater or equal zero and lesser then 180 de-

grees), and the rooms it connects to its left and right,

as in Table 1.

Table 1: Passages Information
conventions for Li and Pj depicted in Figure 16

px1,py1 and px2,py2 are coordinates of the extremities of the pas-

sages

coordinates in cm, angles in degrees

Passage px1 py1 px2 py2
an-

gle

local

to the

left

local

to the

right

P1 510 620 510 740 90 L1 L2

P2 1010 620 1010 820 90 L2 L3

P3 1200 610 1320 610 0 L3 L4

P4 1700 610 1820 610 0 L3 L5

Table 2: Rooms and its Passages
conventions for Li and Pj depicted in Figure 16

1 stands for the existence of the passage

 P1 P2 P3 P4

L1 1 0 0 0

L2 1 1 0 0

L3 0 1 1 1

L4 0 0 1 0

L5 0 0 0 1

Additionally, it is also stored the information of

what are the passages in each room, that are seeing in

Table 2. All these information are permanent for a

given environment, they represent fixed occurrences

on its layout, and are only changed if it happens

changes on it.

In the graph in Figure 16, rooms are nodes and arcs

are passages. The algorithm to find the best topologi-

cal path from the robot position to the target starts

spreading a message from the node where the robot is

with its identification to the nodes connected directly

to it. The node receiving the message concatenates to

it the information of the identification of the passage

it came through plus its local identification and

spreads forward this message to its neighboring

nodes. A node can receive more then one message at

the same time; in this case it will treat each of the

messages independently. Messages that return to one

local where it was before are eliminated. Therefore,

when a message achieves the local where the target

is, it contains the best topological path, with the in-

formation of all the passages to get there. When more

then one message achieves the target at the same

time, all of then are equal in terms of topology, so

any one can be chosen. A simple modification can

make the same algorithm find the ‘good’ shortest

path.

Li are rooms and Pi are passages

Fig. 16: The linear graph utilized

palphaRobot > palpha implies that the robot is in the left side of

the passage

Fig. 17: The robot and the passage

When seeking a passage, the robot uses the coordi-

nates of the center of the passage as its goal. Using

the information in Table 1, it can tell whether it is in

the left or right side of this passage. Also, it computes

the vicinity of the passage (see Figure 17: Vicinity is

a circular area about the center of a passage, having

the passage size as diameter) and determines where it

is, inside or outside. If outside, it will know when it

gets inside, and, if inside, it will know when it gets

outside. If it is inside and gets outside it just got into a

room that might be the next one or the same room it

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 730 Issue 9, Volume 5, September 2010

was before. An obstacle near the passage has a

chance to determine the robot to go back. So, it veri-

fies where it is using palphaRobot > palpha (see

Figure 17). A true result means that it is in the left

side of the passage, and a false result means that it is

in the right side. The knowledge of in which side the

robot is and Table 1 defines the local where it is.

When the robot enters a new room, it takes the next

passage as its new goal.

A reason for the use of the vicinity is to avoid suc-

cessive and unnecessary computation due to sudden

changes of local as result of obstacles near the other

side of the passage. The vicinity gives also a toler-

ance for probable sensors reading errors. These errors

result in a virtual displacement of pm, the passage

center point, and, if the displacement is somehow

minor then the vicinity radius, the vicinity compen-

sates for that. Without the vicinity, de displacement

might cause the robot to determine that it crossed the

passage that it had as intermediate goal before really

doing that. Thus, the robot behaves as having

achieved its current goal and defines the next goal in

the other room as its current goal. It might create the

situation of the robot being in one room having its

target in the other room, a source of non linearity.

6.3 The architecture
The final architecture is in Figure 18. It is build over

the behaviors of the Simple Architecture. There is a

modification in the behavior Seek and now it is

named Target Seek. There is not a Bearing sensor,

Target Seek receives the coordinates of the target

from Path Definition and calculates its direction. It,

like Seek, will accept orientations of the target only if

they fall inside its aperture. The Robot Position Sen-

sor gives the position and orientation of the robot.

The coordinates and room of the target are inserted

through the User Interface.

There are three new behaviors added to the new

architecture. They where designed, added and tested

incrementally over the prior behaviors, and all the

behaviors in the architecture run in parallel.

6.3.1 Passage Vicinity
This behavior receives data from the Robot Position

Sensor, and current goal coordinates with its related

information. It computes the vicinity and verifies

whether the robot is inside or outside the vicinity.

Passage Vicinity utilizes state memorizing where the

robot is: inside or outside the vicinity. So, the behav-

ior can tell when the robot 'is in’, ‘is out’ or ‘just got

out’ and delivers it to its output.

6.3.2 Local
The behavior Local is in charge of knowing in which

room the robot is. Once it receives a ‘just got out’

from the Passage Vicinity behavior it uses informa-

tion from the Robot Position Sensor and of the cur-

rent goal to determine the result of the comparison of

palpha with palphaRobot, being able to tell whether

the robot crossed the passage and is in a new, the next

one, room. This information is delivered to its output.

Fig. 18: The Complete Architecture

6.3.3 Path Definition
This behavior executes the Path Definition Algo-

rithm, is responsible for determining the path with

passages as sub goals to the target, and delivers the

position and identification of the current goal. Ac-

cording to the input from Local, this behavior outputs

the same goal or the next one.

This architecture defines a macro plan to get its

work done, and this plan is controlled. At the same

time it takes care of local events, the micro part of the

macro plan. The local operation does not follow a

detailed micro plan; it just takes the current goal and

tries to solve the eventual local occurrences, step by

step, as they happen to be.

Therefore, the macro and micro plan are performed

by the Complete Architecture based only on behav-

iors. Planning and control comes from the integrated

and harmonic functioning of all the system and it

even can be understood as an emergent behavior that

arises from it.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 731 Issue 9, Volume 5, September 2010

6.4 Results
The localization of the robot and the target in the en-

vironment are given in Figure 15. The absence of

more obstacles, except for one table, is intentional to

make evident the effect of the nonlinearity caused by

walls. Anyway, the obstacles are local and can be

well solved by the previous architecture. The pas-

sages are narrower compared with the passage in the

simple environment, thus, the robot has now 50 cm of

diameter. The parameters were adjusted empirically

and their values are:

• Velocity = 15 cm/s

• Iteration interval = 0.6 s

• Maximum distance to detect an object = 60

cm

• Aperture for Target Seek to detect the goal =

180 degrees

Trajectory to reach the target

Fig. 19: Result for the Complete Architecture

In Figure 19 we see the Complete Architecture

working. There is almost no oscillation. The graph

shows distance to current goal. After the robot

achieves a current goal the graph shows the distance

augmenting for a while, until it gets out of the vicin-

ity and takes the next goal. At this point occurs an

abrupt increase in the distance.

Clearly, the new architecture achieved its objective

with efficiency; the robot goes almost straight to the

target, with minimum oscillation.

It has to be observed that the robot does not go di-

rectly to the first passage, its first sub goal. The rea-

son is that this goal is not being detected by Target

Seek. Once it is detected, the robot runs straight to it.

Remembering that there is not the expectation to ob-

tain an optimal solution, but a safe and good one, it is

right to say that the solution was efficient. Anyway,

there is solution to it, shown in the next section.

7 Conclusion and Perspectives
The objective of the authors was achieved. The archi-

tecture enables the mobile robot to perform real time

autonomous navigation with efficiency in a simulated

two dimensional environment.

There are still many points to be examined and

probably implemented that are shown in the follow-

ing lines.

• The trajectory of the robot to achieve its first sub

goal, the first passage in Figure 19, is not straight.

It happens because the passage is not in the field

of view of the robot, that is, it cannot be detected

by Target Seek. The first idea to solve it is aug-

menting the aperture of Target Seek, but it also

can augment oscillations. A better way to solve it

is to augment the aperture to 360 degree when the

robot initiates a seek to a sub goal or to the target.

In this moment the robot can detect the sub goal

or target and, if this direction is free, to take it. In

the next cycle the robot assumes again the aper-

ture it was using.

• In Figure 19, the robot takes roughly 3 minutes to

run 27 meters, at 15 cm/s. It can go faster aug-

menting its speed when there are not obstacles far

away from the edge zone; what requires sensing

beyond the edge zone and deciding when to in-

crease and to decrease the speed.

• To take advantage of higher speeds it is relevant

that the robot stays far from the walls when it is

seeking a current goal. It is clear in Figure 19 that

the robot, when in the direction of the last pas-

sage, travels near the wall, because the trajectory

to the passage being the sub goal puts it there. A

way to solve it is changing the position of the sub

goal, making a displacement to move it to a point

inside the room where the robot is, but still within

the real vicinity. The robot takes the real goal

again once it enters the real vicinity.

• There are also some points that relate to technol-

ogy. This work does not address the problems of

determining the position and attitude of the robot,

whether or not it is sufficient to utilize micro-

chips with accelerometers and gyroscopes, or to

use shaft encoders, compasses, and GPS, or even

a combination of them. The approach of utilizing

the environment as its representation for the local

navigation with the constant sensing and acting

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 732 Issue 9, Volume 5, September 2010

does not require a so precise metric. But, it is

relevant to know in detail what the implications

are, mainly when dealing with the real world.

Still in simulation, it is possible to get a good un-

derstanding of the sensibility to sensors distor-

tions adding appropriate errors in the measure-

ments, and verifying how it affects the results.

• The idea is to place the robot in real world with

real obstacles and people, thus, it is relevant to

examine its flexibility to deal with moving ob-

jects and people. Up to now, the design permits

the robot to deviate from stationary or very

slowly moving objects, which is expected for the

type of environment it will inhabit. But it is not

true with people that even will be interested, just

for fun, in creating problems for the robot. There-

fore, it is required to measure the speed of the in-

coming objects, and to take the right decisions

and actions, such as decreasing speed, a high rate

of deviation, and running backwards.

• The flexibility mentioned above requires also

quick responses that are intimately linked to the

iteration time. The constraint for the minimum

time of the iteration is basically computation time

and response time of the hardware. Computation

power for the Complete Architecture is not criti-

cal; the problem might be with the response time

of the hardware. It will depend mainly on things

like the cycle of activation of the sensors, the

torque of the motors, and low level control, all

dependent on technology, which means cost.

• The behavior Explore drives the robot following

some logic. In most of the passages it will make a

rapid 180 degrees turn that can be considered as

an indicator of a passage. Most of the 90 degrees

turns that it makes correspond to the inside cor-

ners of a room. But, in the case of an outside cor-

ner, the turn is 90 degrees also, and is a passage.

What differentiates them is that the internal turn

is mostly a deviation, guided by the behaviors

Forward and / or Deviate, and the external is

mostly an alignment, guided by Align. Therefore,

once the robot gets an indication of a passage it

can perform a procedure that will detect it,

probably with the help of another type of sensor.

And so, this passage could be appended to the

ones the robot already has memorized, and actu-

alize the linear graph.

References

[1] Arkin, Ronald C., Behavior-Based Robotics. In-

telligent Robots and Autonomous Agents Series,

The MIT Press, May, 1998.

[2] Bekey, George A., Autonomous Robots: From

Biological Inspiration to Implementation and

Control. Intelligent Robots and Autonomous

Agents Series, The MIT Press, Jun, 2005.

[3] Booker, L. B., Goldberg, D. E. and Holland, John

H., 1989. Classifier Systems and Genetic

Algorithms. Artificial Intelligence, 40 pp 235-

282, 1989.

[4] Brooks, Rodney A., Intelligence Without

Representation. Artificial Intelligence Journal

(47), pp. 139–159., 1991.

[5] Brooks, Rodney A., Intelligence Without Reason.

Proc 12th Int. Joint Conf on A Intelligence,

August, 1991.

[6] Brooks, Rodney A., Flesh and Machines: How

Robots Will Change Us. Pantheon Books, Feb,

2002.

[7] Jones, Josef L., Robot Programming - A Practical

Guide to Behavior-Based Robotics. McGraw-

Hill, New York, NY, USA, 2004.

[8] Mataric, Maja J., A Distributed Model for Mobile

robot Environment-Learning and Navigation.

Master of Science Thesis in Electral Engineering

and Computer Science, Technical Report AI-TR-

1228, MIT AI Lab, May, 1990.

[9] Mataric, Maja J., Interaction and Intelligent

Behavior. Doctorate Thesis in Electral

Engineering and Computer Science, Technical

Report AI-TR-1495, MIT AI Lab, May, 1994.

[10] Mataric, Maja J., Behavior-Based Control:

Examples from Navigation, Learning, and Group

Behavior. J. of Exp. and Theoretical A. I., special

issue on Software Architectures for Physical

Agents, 9(2-3), pp. 323-336, H. Hexmoor, I.

Horswill, and D. Kortenkamp, eds., 1997.

[11] Mataric, Maja J., Behavior-Based Robotics as a

Tool for Synthesis of Artificial Behavior and

Analysis of Natural Behavior. Trends in

Cognitive Science, pp. 82-87, Mar, 1998.

[12] Mataric, Maja J. and Cliff, Dave, Challenges In

Evolving Controllers for Physical Robots in

Evolutional Robotics. special issue of Robotics

and Autonomous Systems, 19(1), pp. 67-83, Oct,

1996.

[13] Moussi, Lubnen N., Aplicações de Sistemas

Classificadores para Robótica Autônoma Móvel

com Aprendizado. Master of Science Dissertation

in Electrical Engineering, UNICAMP, Nov,

2002.

[14] Moussi, Lubnen N. and Madrid, M. K., Simple

Target Seek Based on Behavior, proc 6th WSEAS

International Conference on Signal Processing,

Robotics and Automation (ISPRA '07), Corfu,

Greece, February 16-19, 2007

[15] Moussi, Lubnen N. and Madrid, M. K., Solving

Target Seek with a Behavior-Based Architecture.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 733 Issue 9, Volume 5, September 2010

WSEAS Transactions On Systems And Control,

Issue 2, Volume 2, pp. 176-184, ISSN 1991-

8763, February 2007.

[16] Moussi, Lubnen N. and Madrid, M. K.,

Behavior Based Autonomous Navigation Using

Passages as Landmarks for Path Definition,

proc 12
th
 WSEAS International Conference on

Automatic Control, Modelling & Simulation (

ACMOS’10), pp. 131-137 in New Aspects of

Automatic Control, Modelling & Simulation,

EUROPMENT Press ISBN 978-954-92600-1-4,

Catania, Sicily, Italy, May, 2010

[17] Moussi, L. N., Gudwin, R. R., Von Zuben, F. J.

and Madrid, M. K, Neural networks in classifier

systems (NNCS): An application to autonomous

navigation, in V.V. Kluev & N.E. Mastorakis

(eds.) Advances in Signal Processing, Robotics

and Communications, Electrical and Computer

Engineering Series, WSES Press, pp. 256-262,

2001.

[18] Moussi, L. N., Von Zuben, F. J., Gudwin, R. R.

and Madrid, M. K, A Simulator using Classifier

Systems with Neural Networks for Autonomous

Robot Navigation, proceedings of the IEEE

International Joint Conference on Neural

Networks (IJCNN'2002), vol. 1, pp. 501-506, in

the 2002 IEEE World Congress on

Computational Intelligence (WCCI'2002),

Honolulu, Hawaii, 12-17 maio, 2002.

[19] Nolfi, S. and Floreano, D., Evolutionary

Robotics: The Biology, Intelligence, and

Technology of Self-Organizing Machines,

Intelligent Robots and Auton. Agents Series, The

MIT Press, Nov, 2000.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lubnen Name Moussi, Marconi Kolm Madrid

ISSN: 1991-8763 734 Issue 9, Volume 5, September 2010

