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Abstract: This paper presents a controller design method for multi-input multi-output (MIMO) nonlinear time-
varying systems using Radial Basis Funtion (RBF) neural network. The developed neuro-controller generates
optimal control signals abiding by constraints, if any, on the control signal or on the system output. The proposed
controller does not require an explicit knowledge of the states of the system or any apriori knowledge of the
structure of nonlinearity of the system. Time based variations in system parameters as well as system nonlinearities
are successfully compensated by the neural network. Simulation results for nonlinear time-varying systems are
included at the end and controller performance is analyzed.
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1 Introduction

Nonlinear adaptive control has been a subject of im-
mense interest among researchers. Almost every real
life process has nonlinear behavior. At the same time,
systems in real life are prone to change in parame-
ters due to several internal and external factors affect-
ing the process. Hence, robust controller design for
nonlinear systems has become a vital requirement in
modern control theory and practice. The nonlinearity
in systems are most often beyond the limit of linear
controllers. This has propelled a lot of nonlinear con-
trol techniques to surface over the past two decades
like nonlinear PID control. The extended version of
nonlinear PID control constitutes sliding mode con-
trol which defines an error surface and tries to drive
the error to zero.

Amongst several techniques that have surfaced in
the recent past to cater to the challenging problem of
nonlinear control, artificial neural networks (ANN)
have emerged as an efficient class of machines ca-
pable of learning complex nonlinear functions. The
use of neural networks in controller design is there-
fore a natural choice. Neural networks have been used
for pattern recognition, function approximation, time-
series prediction and classification problems for quite
some time [1]. The ability of neural networks to map
complex input output relationships make them ideal
for compensating plant nonlinearities and hence make
them ideal for controller design problem.

Several techniques involving neural network have
surfaced in the past decade for nonlinear adaptive con-
trol. However, in many adaptive control approaches,
it is well understood that there exists a necessary as-
sumption that the controlled system has to be a mini-
mum phase system [2, 3, 4], i.e. the zero dynamics of
the system must be stable. Several nonlinear adaptive
control techniques like those of Chen and Narendra
[5], Fu and Chai [6] and Wang and Huang [7] have
based their controller on this assumption. Many other
works on nonlinear control like those of Wang and
Huang [7], Hayakawa et al. [8], and Petre et al. [10]
require state-feedback. While state-feedback poses no
harm to controller performance, it requires state mea-
surement at every sampling time using sensors, which
can increase the implementation cost if the system has
significant number of states. As compared to state-
feedback, an output-feedback scheme can be less ex-
pensive owing to the fact that controlled outputs are
a smaller subset of system states in most cases. The
controller in [8] also requires a process model derived
from mass and energy balance equations, thus requir-
ing a rigorous model. Complete or partial knowl-
edge of the model of the system is a requirement for
many such neuro-control schemes [9]. Zhuo et al.
[11] also propose an adaptive neural network con-
trol scheme for systems containing non-smooth non-
linearities in the actuator device. Though the authors
make no assumptions on the unknown system param-
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eters and nonlinearities, the control scheme like Wang
and Huang [7] is limited to single-input single-output
(SISO) systems.

In this paper, a neural network based controller
for nonlinear time-varying systems is proposed. The
proposed controller utilizes a feedback signal of the
controlled outputs rather than all the states, and does
not require a rigorous time-varying model. The pro-
posed controller utilizes RBF neural network as com-
pared to multi-layer feed-forward (MF) neural net-
work or Cellular neural network (CNN) used in sev-
eral control schemes [12, 7, 13, 14]. RBF networks,
as described in future sections of the paper, consist of
only one hidden layer and hence have significantly re-
duced learning time as compared to multi-layer per-
ceptrons (MLP)s [1, 15]. RBF has been employed
in the literature for controlling specific time-invariant
systems like mobile robots as well [16].

A primitive version of the proposed controller for
linear time-varying systems was presented in [17].
This work seeks to successfully extend the work in
[17] to systems having nonlinearities and having mul-
tiple inputs and outputs.

This paper is arranged as follows. Section 2 takes
a look at the proposed design. Section 3 seeks to gen-
eralize the derived weight update equations for MIMO
systems. Once, neural network training scheme and
update equations are successfully derived, a detailed
look at the performance of the controller under differ-
ent conditions is analyzed in section 4. Throughout
this paper, the following convention for notations has
been used. Variables in lower case represent scalar
quantities. Lower case bold variables represent vector
quantities. Upper case bold variables represent matri-
ces. The only exception to this convention is in the
choice of a more conventional J for the cost function.

2 Controller design
Consider a single-input single-output time-varying
nonlinear system given by

x(t+ 1) = f(x(t), t) + g(u(t), t)

y(t) = h(x(t), t). (1)

It is required that the process outputs follow a desired
reference r(t). The nonlinear time-varying process is
approximated by a linear time-invariant (LTI) model
using offline identification.

x(t+ 1) = Ax(t) + Bu(t)
ŷ(t) = Cx(t) + Du(t). (2)

As will be shown with the aid of simulation results,
the robustness of the RBF network allows us to con-
trol the desired system without any knowledge of the

model of the plant based on physical laws. Instead,
a rough estimate of the system acquired using initial
identification provides a good enough learning plat-
form for the neural network and unlike conventional
adaptive control approaches, the neural network does
not require updating the model. The controller con-
sisting of an RBF nerual network is given by

v(t) = wφT (t), (3)

where w ε � q defines synaptic weights for the RBF
output layer and φ(t) is the basis function vector
which is given by

φ(t) = [φ(‖r(t)− c1‖) · · · φ(‖r(t)− cq‖)]. (4)

In the above equation, q denotes the number of neu-
rons in the hidden layer, ci is the center vector for
the ith neuron of that layer, φ is the radial basis func-
tion, and ‖.‖ denotes norm. Further, to cope with con-
straints, if any, on the control signal, an arrangement
has to be sought. Constraints in many practical cases
are on the magnitude of the control signals, or on the
rate of change of control signals.

umin ≤ u(t) ≤ umax,

Δumin ≤ Δu(t) ≤ Δumax. (5)

To meet this constraint the output of the RBF network
is transformed by a tangent-sigmoid activation func-
tion forming the constrained control signal

uj(t) = α
e kvj(t) − 1

e kvj(t) + 1

= α
e kwjφ(t) − 1

e kwjφ(t) + 1
, (6)

where α = |umin| = |umax| denotes the upper and
lower limits of the constraints and k is used to adjust
the slope of the linear part of tangent-sigmoid func-
tion. Figure 1 shows the tangent-sigmoid constraint
function with different values of k.

The difference between the reference r(t) and the
process output ŷ(t) gives the error e(t). In order to
update the controller, the weights of the RBF network
are trained in the negative direction of the derivative
of cost function J which is given by

J = e2(t). (7)

The weight update equation is given by (8) as

w(k + 1) = w(k)− η
∂J

∂w
. (8)
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Figure 1: Tangent-Sigmoid function of equation (6)
with α = 5

Now finding the partial derivative of I w.r.t w

∂J

∂wj
= 2e2(t)

∂

∂w
e(t)

= 2e2(t)
∂

∂w
(r(t)− ŷ(t))

= −2e2(t)
∂

∂w
ŷ(t)

Since ˆy(t) is defined in terms of a state space model
given in equation (2), the above equation can be re-
written as

∂J

∂wj
= −2e2(t)

∂

∂w
(Cx(t) + Du(t)) ,

which can be written as

∂J

∂wj
= −2e2(t)

∂

∂w
(C{Ax(t− 1) + Bu(t− 1)}

+Du(t)).

The terms independent of w would vanish1,

∂J

∂w
= −2e2(t)

(
∂CBu(t− 1)

∂w
+
∂Du(t)
∂w

)
. (9)

1Since x(t−1) depends on u(t−2) which in turn is a function
of w, the dependence of state vector x(t − 1) on the weights w
of the neural network is acknowledged. However the term for
derivative of CAx(t − 1) w.r.t w is deliberately neglected since
expansion of x(t) into past state terms Ax(t − n) + Bu(t − n)
for n ≥ 2 does not yield significant improvement on controller
result.

Finding the derivative of tangent-sigmoid function

∂u(t)

∂w
= α

∂

∂w
e kwφ(t) − 1

e kwφ(t) + 1

= α
2kφ(t)ekwφ(t)

(ekwφ(t) + 1)2
. (10)

Equation (9) can now be written as

∂J

∂w
= −2e2(t)

(
CB∂u(t− 1)

∂w
+

D∂u(t)
∂w

)

= −4αe(t)k

(
CBφ(t− 1)ekwφ(t−1)

(ekwφ(t−1) + 1)2

+
Dφ(t)ekwφ(t)

(ekwφ(t) + 1)2

)
(11)

Thus, the final weight update equation is given by

w(k + 1) = w(k)− 4ηαe(t)k

(
Dφ(t)ekwφ(t)

(ekwφ(t) + 1)2

+
CBφ(t− 1)ekwφ(t−1)

(ekwφ(t−1) + 1)2

)
. (12)

3 Generalization to MIMO systems
Having derived a weight update equation for the pro-
posed controller, in this section, we seek to extend the
proposed controller to MIMO nonlinear time-varying
systems. Consider therefore, a multi-input multi-
output nonlinear process having p inputs and m out-
puts as shown in figure 2. It is required that the pro-
cess outputs follow a desired set of reference points
r(t) = [r1(t) · · · rm(t)]. The linear time-invariant ap-
proximation, as in the SISO case, will be obtained us-
ing offline identification.

x(t+ 1) = Ax(t) + Bu(t)
ŷ(t) = Cx(t) + Du(t). (13)

Notice that the bold variables u(t) and ŷ(t) indicate an
array of multiple inputs and outputs at every time in-
stant. The RBF network controller will generate con-
trol signals u(t). Of the p RBF outputs, a vector of
synaptic weights wj will be updated for each RBF
output. The jth output of the RBF network is given
by

vj(t) = wjφ
T (t), (14)
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Figure 2: Proposed Neuro-Controller for nonlinear time-varying systems

where wj is the vector for weights of jth RBF output,
given by

wj = [w1j · · ·wqj], (15)

Keeping the same constraint functions, each RBF out-
put vj(t) is mapped into constrained control signal
uj(t). The MIMO nonlinear system generates out-
puts ŷ(t). The difference between the reference r(t)
and the process output ŷ(t) gives the error e(t) =
[e1(t) · · · em(t)]T . The cost function J for multivari-
able system would be given by

J = eT (t)e(t). (16)

The weight update equation for jth control signal
uj(t) is given in equation (17) as

wj(k + 1) = wj(k)− η
∂J

∂wj
. (17)

Now finding the partial derivative of J w.r.t wj

∂J

∂wj
= 2eT (t)

∂

∂wj
e(t)

= 2eT (t)
∂

∂wj
(r(t)− ŷ(t))

= −2eT (t)
∂

∂wj
ŷ(t)

= −2eT (t)
∂

∂wj
[ŷ1(t · · · ŷm(t))]

= −2eT (t)
∂

∂wj
(Cx(t) + Du(t)) ,

Proceeding as before, the expression for partial
derivative of cost function can be written as

∂I

∂wj
= −2eT (t)

∂

∂wj
(C{Ax(t− 1) + Bu(t− 1)}

+Du(t)).

Once again, the dependence of the state vector x(t−1)
on the weights wj is neglected for reasons mentioned
in the previous footnote. The equation for partial
derivative of J therefore becomes

∂J

∂wj
= −2eT (t)

(
CB∂u(t− 1)

∂wj
+

D∂u(t)
∂wj

)
(18)

Now since C and B are not single row or single col-
umn vectors, the expression is expanded as

∂J

∂wj
= −2eT (t)

⎛
⎜⎜⎝
⎡
⎢⎣

ψ11 · · ·ψ1p
...

. . .
...

ψm1 · · ·ψmp

⎤
⎥⎦
⎡
⎢⎢⎣

∂
∂wj

u1(t− 1)
...

∂
∂wj

up(t− 1)

⎤
⎥⎥⎦
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+

⎡
⎢⎣

d11 · · · d1p
...

. . .
...

dm1 · · · dmp

⎤
⎥⎦
⎡
⎢⎢⎣

∂
∂wj

u1(t)
...

∂
∂wj

up(t)

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (19)

where Ψ ε �m×p is the product of C ε �m×n and B
ε � n×p. The derivative of all terms except uj(t − 1)

and uj(t) would vanish. Substituting ∂uj(t)
∂wj

from the
derivative equation 10,

∂J

∂wj
= −2eT (t)

⎛
⎜⎜⎝
⎡
⎢⎢⎣
ψ1j

∂
∂wj

uj(t− 1)
...

ψmj
∂

∂wj
uj(t− 1)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
d1j

∂
∂wj

uj(t)
...

dmj
∂

∂wj
uj(t)

⎤
⎥⎥⎦
⎞
⎟⎟⎠ (20)

= −2eT (t)

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ1jα
2kφ(t−1)ekwjφ(t−1)

(ekwjφ(t−1)+1)2

...

ψmjα
2kφ(t−1)ekwjφ(t−1)

(ekwjφ(t−1)+1)2

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

d1jα
2kφ(t)ekwjφ(t)

(ekwjφ(t)+1)2

...

dmjα
2kφ(t)ekwjφ(t)

(ekwjφ(t)+1)2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)

Equation (24) on the next page gives the final weight
update equation for MIMO nonlinear time-invariant
systems, where el(t) corresponds to error at the lth

output, ψlj is the element at the lth row and jth col-
umn of the matrix Ψ, η is the learning rate of the RBF
neural network, wj is the vector for the weights of jth

RBF output, m is the number of outputs of the pro-
cess, and φ(t) is the basis function vector.

4 Simulation Results
A two input two output time-varying Hammerstein
type nonlinear system is considered.

x(t+ 1) =⎡
⎢⎣ −0.0096 −0.133 −0.0692 + e−t

−0.082 + e−t −0.0714 + e−t 0.0852
0.0294 0.1624 + e−t 0.1254

⎤
⎥⎦

x(t) +

⎡
⎢⎣ 4.8 + e−t 0.5 + e−t

1.93 0.8
1.21 1

⎤
⎥⎦ v(t),

y(t) =

[
1 0 0
0 1 0

]
x(t),

where the input v(t) to the linear subsystem is a non-
linear function of the input u(t), and is given by[

v1(t)
v2(t)

]
=

[
u1(t)u

2
2(t)

tan[u2(t)]

]

The control objective is to keep the two outputs at a
desired reference trajectory. An RBF network with
only six neurons is initialized with random synaptic
weights. Centers are chosen around the desired set-
points and are fixed. A learning rate of 10−3 is cho-
sen. Spread of the Gaussian function is chosen as the
mean value of distance between consecutive centers.
A control signal constraint of ±2 is enforced, hence,
α is taken as 2 and k is taken as 1. These parameters
provide excellent trajectory tracking. Figures 3 and 4
show output tracking of the two outputs. The tracking
error converges to a measure of 10−25. Tracking error
is shown in figure 5 while control signals are shown
in figures 6 and 7. As seen from the figures, the con-
troller has damped the system sufficiently and there
are very small overshoots in the transient response. It
can be seen from figures 6 and 7 that the conroller is
abiding by the constraints on the control signal and
the value of |u1,2(t)| ≤ 2.

4.1 Performance in the presence of noise

To analyze the performance of the controller in the
presence of noise, normally distributed additive ran-
dom noise with a variance of 0.01 is added at the out-
put. The results are shown in figures 8, 9, 10, 11 and
12, and the controller performs well in noisy environ-
ment as well. Control signals abide by the constraint
as before.

4.2 Robustness

The measure of robustness of a controller can be
gauged from its performance keeping in mind the fact
that the controlled system is constantly changing. A
robust controller will quickly adapt to changes in sys-
tem parameters. The controller proves to be robust
enough to control the system without needing an up-
date in the linearized estimate of the system required
in Self Tuning Regulators (STR) and other adaptive
control methods. To test the performance of the con-
troller for greater variation in system parameters, the
system given in the above example is modified such
that the rate of decay of the exponential term in the
system is decreased. This can be translated into the
fact that variation in system parameters is increased
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∂J

∂wj
= −2[e1(t) · · · em(t)]

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ1jα
2kφ(t−1)ekwjφ(t−1)

(ekwjφ(t−1)+1)2
+ d1jα

2kφ(t)ekwjφ(t)

(ekwjφ(t)+1)2

...

ψmjα
2kφ(t−1)ekwjφ(t−1)

(ekwjφ(t−1)+1)2
+ dmjα

2kφ(t)ekwjφ(t)

(ekwjφ(t)+1)2

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

= 2e1(t)

(
ψ1jα

2kφ(t− 1)ekwjφ(t−1)

(ekwjφ(t−1) + 1)2
+ d1jα

2kφ(t)ekwjφ(t)

(ekwjφ(t) + 1)2

)

· · · − 2em(t)

(
ψmjα

2kφ(t− 1)ekwjφ(t−1)

(ekwjφ(t−1) + 1)2
+ dmjα

2kφ(t)ekwjφ(t)

(ekwjφ(t) + 1)2

)
. (23)

Finally, the weight update equation for jth control signal uj(t) becomes

wj(k + 1) = wj(k) + 2η
m∑
l=1

el(t)

(
ψljα

2kφ(t− 1)ekwjφ(t−1)

(ekwjφ(t−1) + 1)2
+ dljα

2kφ(t)ekwjφ(t)

(ekwjφ(t) + 1)2

)
. (24)

for a longer period of time and the system will take
longer to cancel the effect of the exponential terms.
The modified system is given as

x(t+ 1) =⎡
⎢⎣

−0.0096 −0.133

−0.082 + e
−t
2.5 −0.0714 + e

−t
2.5

0.0294 0.1624 + e
−t
2.5

−0.0692 + e
−t
2.5

0.0852
0.1254

⎤
⎥⎦

x(t) +

⎡
⎢⎣ 4.8 + e

−t
2.5 0.5 + e

−t
2.5

1.93 0.8
1.21 1

⎤
⎥⎦ v(t),

y(t) =

[
1 0 0
0 1 0

]
x(t).

The nonlinearity at the input is kept unchanged.
The modified system will have more time variation
for a longer period of time as compared to the un-
modified system. Hence, controller performance for
smaller values of time t will be crucial. This is done
to gauge the performance of the controller in the pres-
ence of greater variation in system parameters. The
proposed controller is used to control the modified
system. Constraints on the control signal, number of
neurons, spread of the Gaussian function are all kept
unchanged. The performance of the controller can be

seen from figures 13 and 14. Control efforts and con-
vergence of error can be seen in figures 15, 16, and 17
respectively.

4.3 Response to disturbance

A step disturbance of magnitude 2 is introduced from
discrete time 200 ≤ t ≤ 208. The response of
the controller is shown in figures 18 and 19. The
controller performs well and steers the system output
back to the desired output.

5 Final Remarks

The proposed neural network controller provides ex-
cellent control results for trajectory tracking of non-
linear time-varying multivariable systems and abides
by constraints on the control signal or the output. The
proposed controller forces the system output to con-
verge to the reference trajectory. The derived adapta-
tion algorithm provides excellent learning for the neu-
ral network. It is noteworthy that the developed con-
troller is robust enough to control the system without
requiring an update in the initial linearized estimate
of the system, as required in Self Tuning Regulators
(STR) and other adaptive control methods. Besides,
although it is in the knowledge of the authors that lin-
ear time-invariant systems are not a subject of discus-
sion in this paper, it is noteworthy that when dealing
with linear time-invariant systems, most adaptive con-
trollers require a condition of stability on the zero dy-
namics of the system. This condition, known as the
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Figure 3: Output trajectory tracking (first output y1(t)).
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Figure 4: Output trajectory tracking (second output
y2(t)).
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Figure 5: Output trajectory tracking error.
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Figure 6: Control effort u1(t).
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Figure 7: Control effort u2(t).

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

discrete time samples (t)

ou
tp

ut
 y

1(t
)

 

 
reference signal
controlled output

Figure 8: Output trajectory tracking in the presence of
noise (first output y1(t)).
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Figure 9: Output trajectory tracking in the presence of
noise (second output y2(t)).
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Figure 10: Control effort u1(t) in the presence of output
noise.
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Figure 11: Control effort u2(t) in the presence of output
noise.
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Figure 12: Trajectory tracking error in noisy environ-
ment.
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Figure 13: Output trajectory tracking for modified system
with increased parameter variation (first output y1(t)).
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Figure 14: Output trajectory tracking for modified system
with increased parameter variation (second output y2(t)).
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Figure 15: Control effort u1(t) for modified system with
increased parameter variation.
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Figure 16: Control effort u2(t) for modified system with
increased parameter variation.
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Figure 17: Output trajectory tracking error for modified
system with increased parameter variation.
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Figure 18: Effect of disturbance on output y1(t).
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Figure 19: Effect of disturbance on output y2(t).
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condition of minimum-phase system, is also relaxed
for the proposed controller if applied to linear time-
invariant systems. The universal learning capability
of the RBF network makes it ideal for estimating the
nonlinearity as well as for compensating the change
in system parameters.
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