
Extended TP Model Transformation for Polytopic Representation
of Impedance Model with Feedback Delay
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Abstract: In force controlled industrial robots, haptic and telemanipulation devices stability and control perfor-
mance are contradicting requirements. In distributed systems where the sensors, actuators and control logic are
separated in space, due to the network delays the control process may become unstable. In our research, we con-
sider the coupled impedance type control algorithms as common used method in telemanipulation and interaction
control of robots. In this paper, an extended TP model transformation is proposed to convert the delayed system
into a polytopic tensor product (TP) model considering the value of the feedback delay as a parameter. Using such
model, controller design become tractable as it does not contain feedback delay. A numerical example for a single
degree of freedom impedance model with feedback delay is discussed. The results are confirmed by simulation.

Key–Words: Delayed systems, Feedback systems, Interaction control, Telemanipulation, Haptics, TP Model Trans-
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1 Introduction
Time delays are inherent attributes of feedback sys-
tems that usually have unfavorable effects on the per-
formance of the controlled process. Distributed robot
control and internet based teleoperation are typical ex-
amples where communication delay play crucial role
[1, 2], but similar problem arises in haptic devices as
well [3]. In this paper, telemanipulation is emphasized
as a possible field of application but the results stand
for impedance control generally. The key problem is
that the transparency and stability of teleoperation can
not be guaranteed at the same time under time de-
lay. Transparency and stability of bilateral teleopera-
tion was studied by Lawrence [4]. In the past decades
several approaches were published addressing the sta-
bility problem of closed loop force reflecting telema-
nipulation. A comprehensive survey can be found in
[5]. Common problem of the published approaches
that however the stability is guaranteed even under un-
known varying delay, the operator loses the realistic
force sensation.

The class of compliance model based force re-
flecting algorithms [6, 7, 8, 9] is regarded in this pa-
per. Compliance method is also common in robot
interaction control [10]. Figure 1 illustrates the op-
eration of such algorithms in teleoperation scenario.
The goal of this research is to develop a model based

Figure 1: Scheme of the coupled impedance force re-
flecting algorithm

control scheme wherein the feedback gains are de-
signed according to a non-delayed model, but the con-
trol signal acts in the original delayed system. As first
step, the delayed system must be substituted with a
non-delayed model as powerful control design tools
are available for systems without delay. This paper
introduces the extended tensor product (TP) model
transformation to convert a system with feedback de-
lay into a non-delayed quasi-linear parameter varying
(qLPV) model where the actual value of the delay τ(t)
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becomes a parameter of the model. Proposed method
results a qLPV state space model in finite element TP
type polytopic form.

The paper is structured as follows: Section 2 de-
fines the terms and notations. Section 3 gives the defi-
nitions of the conceptual basics are involved through-
out this paper. The process of TP model transforma-
tion is discussed step by step in the section 4. Section
5 introduces an extension of TP model transformation
for system models where the nonlinear terms are not
known in analytical form. Section 6 goes trough the
application of extended TP model transformation via
a simple mass-damper compliance model with feed-
back delay: Reveal the effect of feedback delay, shows
the process of extended TP model transformation on a
numerical example, apply complexity-accuracy trade-
off on the resulted TP model and finally, validate the
results by numerical simulation. Section 7 concludes
the paper.

2 Nomenclature
Fh Interaction force/torque with the operator [N ]
Fe interaction force/torque with the

remote environment [N ]
x position of the impedance model [m]
m mass [kg]
k stiffness [N/m]
b viscous damping [Ns/m]
τ delay [s]
M discretization grid
a, b, . . . scalar values
a,b, . . . vectors
A,B, . . . matrices
A,B, . . . tensors
A×n U n-mode product of a tensor by a matrix

A
N
�
n=1

Un multiple n-mode product as

A×1 U1 ×2 U2 · · · ×N UN

3 Basic concepts
The following definition are used in this paper:

Definition 1 (qLPV model): Consider the Linear Pa-
rameter Varying State Space model:

ẋ(t) = A(p(t))x(t) +B(p(t))u(t) (1)

y(t) = C(p(t))x(t) +D(p(t))u(t),

with input u(t), output y(t) and state vector x(t). The
system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
(2)

is a parameter-varying object, where p(t) ∈ Ω
is time varying N−dimensional parameter vector,
where Ω = [a1, b1]× [a2, b2]× ..× [aN , bN ] ⊂ RN is
a closed hypercube. p(t) can also include some ele-
ments of x(t), in this case (2) is termed as quasi LPV
(qLPV) model. Therefore this type of model is con-
sidered to belong to the class of non-linear models.
Assume that the size of the system matrix S(p(t)) is
O times I .

Definition 2 (Finite element polytopic model):

S(p(t)) =

R∑
r=1

wr(p(t))Sr (3)

where p(t) ∈ Ω. S(p(t)) is given for any parameter
vector p(t) as the parameter varying combinations
of LTI system matrices Sr ∈ R(m+k)×(m+k) called
LTI vertex systems. The combination is defined by the
weighting functions wr(p(t)) ∈ [0, 1]. By finite we
mean that R is bounded.

Definition 3 (Finite element TP type polytopic
model): We say TP model for the sake of brevity.
S(p(t)) in (3) is given for any parameter as the
parameter-varying combination of LTI system
matrices Sr ∈ R(m+k)×(m+k) .

S(p(t)) =

I1∑
i1=1

I2∑
i2=1

..

IN∑
iN=1

wn,in(pn(t))Si1,i2,..,iN ,

(4)
applying the compact notation based on tensor alge-
bra (Lathauwer’s work [11] we have:

S(p(t)) = S
N
�
n=1

w (pn (t)) (5)

where the (N+2) dimensional coefficient tensor S ∈
RI1×I2×···×In×(m+k)×(m+k) is constructed from the
LTI vertex systems Si1,i2,..,iN (5) and the row vec-
tor wn (pn (t)) ∈ [0, 1] contains one variable
and continuous weighting functions wn,in(pn(t))
,(in = 1 . . . IN ) .

Remark 4 : TP model (5) is a special class of poly-
topic models (2), where the weighting functions are
decomposed to the Tensor Product of one variable
functions.
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Definition 5 The TP model is convex if the weighting
functions satisfy the following criteria:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0, 1]; (6)

∀n, pn(t) :
In∑
i=1

wn,i(pn(t)) = 1. (7)

We can define various types of convex TP models.
These types can readily be determined via constraints
defined for the weighting functions. Let us define the
type of TP model which we use in this paper; the other
possible types of TP models are discussed in [12]

Definition 6 (NO/CNO, NOrmal type TP model):
The convex TP model is a NO (normal) type model,
if its w(p) weighting functions are Normal, that is, if it
satisfies (6), (7) , and the largest value of all weighting
functions is 1. Also, it is CNO (close to normal), if it is
satisfies (6), (7) and the largest value of all weighting
functions is 1 or close to 1.

Remark 7 : NO/CNO type convex TP model defines
tight convex hull of a system [13].

Definition 8 (Exact / Non-exact TP model): A TP
model is termed Exact TP model, if for all p(t) ∈ Ω

S(p) = S
N
�
n=1

wn(pn) (8)

A TP model is termed Non-Exact TP model if:

Ŝ(p) = S
N
�
n=1

wn(pn) (9)

holds, where Ŝ(p) is only an approximation of S(p),
where the error γ is defined as:

max ∥S(p)− Ŝ(p)∥L2 = γ (10)

4 Steps of TP model transformation
In this section, the key phases of TP model transfor-
mation is introduced.

4.1 Discretization
The goal is to represent the a given parameter depen-
dent system by a tensor that is ready to find the tensor
product structure according to the parameter depen-
dent system. First, we define the transformation space
Ω in which we expect the TP model be relevant.

The transformation space Ω is a bounded hyper
rectangular space where the parameter vector of the
system matrix varies: p(t) ∈ Ω : [a1, b1]× [a2, b2]×

.. × [aN , bN ] ⊂ RN . Ω can be arbitrarily defined,
however the resulting TP model is interpretable only
in Ω. In practice, Ω should be defined according to the
working space os p.

Ω is discretized according to a hyper rectangular
discretization grid M . In general, de grid points can
be arbitrarily located in the intervals, however equidis-
tant grid is suggested.

SD discretized system matrix represents the dis-
cretized qLPV model over the hyper rectangular grid
M in Ω. The entries of SD are

SD
m1,m2,...,mN

= S(p) (11)

where p denotes the parameter vector in Ω ac-
cording to the grid points of M .

4.2 Extracting the TP structure
The goal of this step to reveal the TP structure of
the given qLPV model and find the minimal number
of LTI components and perform accuracy trade-off in
case of searching a non-exact TP model. Higher Or-
der Singular Value Decomposition (HOSVD) is used
to find the TP structure of the model. HOSVD is a
generalization of matrix SVD for higher order tensors.
Introduction of HOSVD can be found in [11]. Apply-
ing HOSVD on SD and discarding the zero singular
values we get the form:

SD = S�
n
Un (12)

Where the size of S is I1×I2×...×In×(m+k)×(m+
l). In = rankn(S

D) ≤ Mn∀n = 1..N . Here, rankn
denotes the n-mode rank of a tensor [11]. Tensor S
contains the LTI systems Si1,i2,...,iN , in = 1..In.

If we would like further decrease the number of
the LTI systems we can execute RHOSVD (Reduced
Higher Order SVD). In RHOSVD, we discard non-
zero singular values (not only the zero ones) and the
corresponding singular vectors, then the decomposi-
tion results in an approximation of SD. Discarding
non-zero singular values, we can perform trade-off
between the error and the complexity in terms of the
number of LTI systems.

Having the HOSVD based canonical TP struc-
ture, the matrix transformation T can be defined to
transform singular matrices Un to U′

n:

U′
n = Un(T )n (13)

Then the LTI systems can be calculated as:

S′ = S�
n
Tn (14)

If the transformation Tn is defined in a special way
we obtain S′ in such a way that the LTI systems de-
fines different types of convex hull of the system. (e.g.
CNO type convex hull is defined in Definition 6)
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4.3 Determination of the weighting functions
The parameter dependent system matrix can be ob-
tained by (5) if the weighting functions are known.
The matrices Un or U′

n defines the discretized
weighting functions: The inth column vector un,in of
matrix Un ∈ RMn×In determines wD

n that is the dis-
cretization of wn,in(pn)(n = 1..N) over M . Contin-
uous weighting functions can be calculated by simple
linear interpolation between the discretized values.

Further details on TP model transformation can
be found in [14, 15] and the TP Tool website [16].
In the past few years several studies have been pub-
lished on the TP model based control design, some of
them are referred here: Precup et al. investigated the
stability of nonlinear Fuzzy control systems [17] and
the possibilities of the combination of TP and fuzzy
models for control system development [18]. Kolonic,
Poljugan and Petrovic applied the TP model transfor-
mation for gantry crane control system [19].

5 Extended TP model transforma-
tion

The key idea is to apply the TP model transformation
on a set of LTI state space models representing the de-
layed system on a discretized space of possible delay
values. In the investigated problem, the larger feed-
back delay cause increased settling time while the sys-
tem goes to instability. The nonlinear terms of system
parameters characterizing the delay dependent behav-
ior are not known in analytical form. The TP model
transformation is extended with a preliminary step, in
which the sampled set of parameter-dependent (delay
dependent) system matrices are determined by black
box identification.

5.1 Reformulation and discretization
The non-delayed system is represented by its LTI state
space model:

ẋ(t) = Ax(t) +Bu(t) (15)

y(t) = Cx(t) +Du(t)

A system with internal delay can be described by
the following system of delay-differential-algebraic
equation. For the details see [20].

ẋ = Ax(t) +B1u(t) +B2w(t) (16)

z(t) = C2x(t) +D21u(t) +D22w(t)

w(t) = [z1(t− τ), ..., zN (t− τ)]T

y(t) = C1x(t) +D11u(t) +D12w(t)

The delayed model can be approximated by a sys-
tem without delay. The approximated system is sim-
ilar to the original (delayed) system in term of input-
response characteristics. The quasi equivalent system
model is determined by black box identification. In
this paper the output error model (17) is used, but
many other methods are applicable. The coefficients
of the polynomials are estimated using a prediction er-
ror/maximum likelihood method. For further details
on the model and the algorithm see [21].

y(t) =
B(q)

F (q)
u(t− nk) + e(t) (17)

The identified non-delayed model can be converted
into continuous state space form. Executing the iden-
tification at each discrete τ value on an interval, the
tensor SD become ready in the same form as it is writ-
ten in section 4.1.

5.2 The rest of the algorithm
Steps of TP model transformation can be a applied
without modification, as it is presented in the subsec-
tions 4.2 and 4.3. The transformation results a qLPV
state space model in finite element TP type polytopic
form.

6 Application of extended TP
model transformation for delayed
impedance model

In this section, the extended TP model transforma-
tion will be applied on single degree of freedom
impedance model with feedback delay. The content
of this chapter is broken into three parts. Firstly, the
feedback delay and its unfavorable effect is discussed
in a typical impedance model that is commonly used
in robotics. In the second subsection the extended TP
model transformation is demonstrated on a numerical
example and a compromise is made between the ac-
curacy and the complexity of the model. In the third
part, the resulted TP model is validated under constant
and varying delays via numerical simulation.

6.1 Problem formulation
Consider the single degree of freedom mechanical
system depicted by Figure 2 as a simplified model of
impedance control. Mass m and viscous damping b
are virtual properties defining the desired dynamics of
the interaction. Stiffness k means the stiffness of the
environment. In real case, the environment usually
more complicated, but this simplified model is suit-
able for investigating the effect of time delay.
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Figure 2: Mass-Spring-Damper system

In the scheme of coupled impedance based
force reflecting algorithm (also referred as force-sum-
driven internal virtual model) [6, 7] (Figure 1), the
mass m and the viscous damping b are virtual pa-
rameters characterizing the dynamic behavior of the
telemanipulator devices, while the stiffness k rep-
resents the remote environment. Virtual parameters
are chosen according to the transparency ↔ stability
trade-off: The lower mass and damping values result
the more transparent behavior and the less robustness
against feedback delay. The equation of motion of this
system is as follows:

ẍ(t) =
Fh(t)

m
− b

m
ẋ(t)− Fe(t) (18)

Introducing the time delay τ in the remote inter-
action:

ẍ(t) =
Fh(t)

m
− b

m
ẋ(t)− Fe(t− τ(t)) (19)

The remote environment is modeled as a single
ideal spring (linear stiffness). Substituting the k stiff-
ness into the formula the equation of motion is:

ẍ(t) =
Fh(t)

m
− b

m
ẋ(t)− k

m
x(t− τ(t)). (20)

One can see that the resulted equation represents a
mass-spring-damper system where the effect of the
spring is delayed by τ(t). Figure 3 illustrates the
resulted delayed model. The network delay and the
remote environment block contains the overall com-
munication delay, the actuator dynamics , and the en-
vironment dynamics. In the discussed example, the
dynamics of the actuator is neglected and the remote
environment is considered as a linear stiffness (k).

Figure 3: Impedance model with feedback delay

Figure 4 shows the effect of τ feedback delay: By
the increasing delay, the system getting more suscepti-
ble for oscillation. In other words the so-called damp-
ing coefficient become smaller and the system become
unstable. Over a certain value of feedback delay the
system become unstable.
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time [s]

po
si

tio
n 

[m
]

 

 

Non−delayed system
Tau=0.0329 s
Tau=0.0561 s

Figure 4: Step response of the model with various de-
lay values

6.2 Transformation and Complexity
Trade-off

The model characterized by equation (20) can be con-
verted into an LTI state space model with internal de-
lay as described in the section 5.1. To reach this form,
the stiffness term must be treated separately and con-
nected to the mass-damper part in a negative feedback
term with input delay.

Going through the steps of the extended TP model
transformation, the polytopic form of the delay depen-
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dent model results as:

S(τ) =
R∑

r=1

wr(τ)Sr (21)

where R equals the rank of the SD coming from the
HOSVD.

A numerical example is presented using the fol-
lowing parameter set: m = 1kg, k = 2000N/m,
b = 100Ns/m. The non-delayed systems poles are
p1 = −27.64, p2 = −72.36 so the system is over-
damped. The one dimensional discretization grid M
is defined over the interval τ = [0..0.7] contains 137
equidistant points.

The non-delayed system can be represented by its
linear state space model:

ẋ(t) = Ax(t) +Bu(t) (22)

y(t) = Cx(t) +Du(t)

Where the elements in this concrete example are the
follows according to the eq.(20) if τ = 0:

x(t) =

[
ẋ
x

]
u(t) = Fh(t)

A =

[
−100 −2000
1 0

]
B =

[
1
0

]
C =

[
0 1

]
D = 0

The state space system changes if delay τ > 0 intro-
duced in the stiffness term of eq.(20). Due to the black
box identification, the state variables lose their origi-
nal physical meaning. As example, the identified state
space system at τ = 0.252:

A =

[
−983.9 1016
−984.5 −1015

]
B =

[
0.001805
−0.001249

]
C =

[
1 0

]
D = 0

If τ = 0.51:

A =

[
996.6 1003
−996.9 −1003

]
B =

[
0.00356

−0.003279

]
C =

[
1 0

]
D = 0

In the 6.1 it is shown, how the system behavior is
changing due to the feedback delay. After the identifi-
cation, the time constants of the resulted systems can
be analyzed. Figure 5 illustrates the excursion of the
poles in the function of τ delay. The pole trajectories
are parameterized by τ that is increasing in the direc-
tion of the arrows. Initially, the poles getting closer

to each other on the real axis then become complex
conjugates with decreasing real parts until reach the
imaginary axis and become unstable. This behavior is
consistent with the step responses shown in Figure 4.

−80 −60 −40 −20 0
−30

−20

−10

0

10

20

30

Real

Im

Figure 5: Displacement of the poles with increasing τ

By the identification the system is sampled over
the one dimensional discretization grid M in 137
equidistant points. The resulted systems are arranged
in the following matrix form:

SD
i = [Ai | Bi] ∈ R2×3 (23)

Where i ∈ [1..137]. Matrices C and D are omit-
ted as they are constants.

Executing the HOSVD on the tensor of dis-
cretized LTI systems, the number of resulted singu-
lar values (rank) was 6. Our aim is to apply LMI
based control design method on the polytopic model.
NO/CNO type TP model is generated as it defines
tight convex hull of the qLPV system that is suitable
for LMIs [22]. For this reason, CNO type models are
discussed.

If all nonzero singular values are used, the poly-
topic model is exact. The singular values are 2.3414×
104, 349.52, 0.4567, 0.0025, 6.2041 × 10−4 and
7.7044 × 10−7 in decreasing order. Figure 6 shows
the CNO weighting functions of the exact model.
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Figure 6: CNO weighting functions of the exact TP
model

The relatively large number of vertex systems
(LTI system) means gratuitous complexity and so
large computational cost in the course of the control
design. It is reasonable to make trade-off between
the accuracy and the complexity of the model. Of
course, after the controller design the closed-loop sys-
tem must be verified carefully, because it is not trivial
to judge if the simplification was permissible. A non-
exact TP model has been created by discarding the 3
smallest nonzero singular values. Figure 7 displays
the weighting functions of the non-exact model.
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Figure 7: CNO weighting functions of the non-exact
model keeping the three largest singular values

The resulted vertex LTI system are the follow-
ings:

S1 =

[
971.3454 1028.5 −4× 10−4

−972.2555 −1027.5 1.3× 10−3

]
S2 =

[
1000.5 999.47 4.1× 10−3

−1000.6 −999.28 −3.9× 10−3

]
S3 =

[
949.7911 1051.6 0.08× 10−3

−950.7800 −1050.6 0.87× 10−3

]
The exact and non-exact models are compared

in term of the error expression defined in 10. The
numbers should be treated with circumspection be-
cause the effect of differences of γ is not traceable
in the time domain behavior of the TP model. Table 1
contains γ for the exact (6sv) and the non-exact(6sv)
models. The difference is smaller than one order of
magnitude, so the non-exact model can be considered
as a good approximation.

Table 1: Accuracy comparison of the exact and non-
exact TP models

γ (error)
Exact model (6 sv) 0.0262
Non-exact model (3 sv) 0.0947

6.3 Validation
In the simulation, the previously introduced non-exact
TP model were used. The comparison of the TP model
and the original delayed system was done by a MAT-
LAB/Simulink model (Figure 8). The upper part of
the block diagram represents the original system with
delay in the feedback loop. The value of the transport
delay can be set as constant τ value. The lower part
of the figure contains the TP model, where ẋ is com-
puted by the ”TP dx” block and a StateSpace block
is used for the integration. For the computation of ẋ,
the measured (estimated) delay value τ(t) is required
in real implementations. In the constant delay simu-
lation τ is known and wired directly to the ”TP dx”
block.

Figure 8: Simulink diagram of the validation
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Figure 9 shows the step response of the compared
systems. As input signal, a 1N force step was used
at 0.1s in the simulation. As can be seen from the
time plot, at an arbitrarily chosen delay value (τ =
0.04752), the identified system is in very close fitting
with the original one. For the quantitative comparison
the L2 norm of the position error and the maximum
error is computed at four arbitrarily chosen τ values.
(neither of them are among the discretized τs.) The
result are displayed in Table 2.
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Figure 9: Example for the validation τ = 0.04752s

Table 2: Results of the comparison
L2 error Max error

τ = 0.01375s 2.6279× 10−5 9.8521× 10−7

τ = 0.02941s 4.0380× 10−5 5.9765× 10−6

τ = 0.04752s 4.3281× 10−5 1.0500× 10−5

τ = 0.06393s 1.0851× 10−4 1.3048× 10−5

The models have been compared under varying
delay as well. The value of τ(t) was varied as a sine
function of time τ(t) = 0.03 + sin(tπ)0.025. The
input signal was a square wave with the frequency of
2Hz and amplitude of 1N . Figure 10 shows the result
of the simulation.

Figure 10: Comparison under varying delay

As worst-case scenario, the models was compared
under random delay. τ was generated as uniform ran-
dom number between 0.001s and 0.07s in each sim-
ulation step. Result of the simulation under random
delay is shown in Figure 11.

Figure 11: Comparison under random delay

Results with constant delay show very close fit-
ting. Under varying time delay the TP model still
follows the original delayed system with reasonable
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accuracy. The varying delay case is more realistic re-
garding the application in telemanipulation systems.

7 Conclusion
In this paper, an extended version of TP model trans-
formation were applied to represent a system with
feedback delay in finite element TP type polytopic
form. As consequence of the transformation the value
of the feedback delay become the parameter of the
model. As a possible application example, the type of
impedance model based control scheme was consid-
ered as it is often used in distributed control systems
such as bilateral telemanipulation, haptic devices and
compliance control of robots. In these systems, feed-
back delays occurs due to the computer network be-
tween the sensor-, actuator- and processing devices.

The proposed transformation method was intro-
duced generally and via a concrete numerical exam-
ple of a single degree of freedom compliance model.
The effect of feedback delay in the discussed system
was demonstrated. Simulated results shows, that in
case of constant time delay the polytopic model gives
practically coincident step responses with the origi-
nal delayed system. Under varying time delay, the TP
model follows the simulated delayed system fairly but
with less accuracy. We assume, that the model confor-
mity under varying delay, highly depends on the char-
acteristics of the delay curve: Smooth τ(t) function
with bounded gradients results better conformity. The
investigation of this relationship will be the subject of
further research.

The resulted polytopic model provides a good ba-
sis for LMI based control design. The crux of the
method is that the actual value of the feedback de-
lay should be estimated in real-time during the con-
trol process. This approach requires that the comput-
ing elements be programmed so that the delay value is
traceable.
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