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Abstract: - This paper deals with the topic of qLPV state-space model based control design in which LMIs are used to 
optimize the multi-objective control performance. In this paper we investigate how the manipulation convex hull of the 
polytopic model influences the control performance which is derived by LMIs. We examine these influences through 
the control design of the two dimensional aeroelastic system’s example. First we define various TP type polytopic 
model representations of a wing section whose vertices define different convex hulls. In the second step we investigate 
how these models lead to different control performances. 
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1 Introduction 
In the past few years various studies of aeroelastic 
systems have emerged. Regarding their properties one 
can find the studies of free-play nonlinearity by Price at 
al. in[2] and by Lee and LeBlanc [3] as well as a 
complete study of a class of nonlinearities [4]. O’Neil 
and Straganac[5] examined the continuous structural 
nonlinearity of these systems. Recent analysis is given in 
[6]. These papers conclude that an aeroelastic system 
may exhibit nonlinear phenomena such as limit cycle 
oscillation, flutter and even chaotic vibrations.  
     Control strategies have also been derived for 
aeroelastic systems. Block and Straganac[7] show that in 
the case of large amplitude limit cycle oscillation 
behavior the linear-control methodologies do not 
stabilize these system consistently. At the NASA 
Langley research center a benchmark active control 
technique (BACT) wind tunnel model has been designed 
and control algorithms for flutter suspension have been 
developed by Waszak[8], Mukhopadhyay[9] and Keller 
and Joshi[10]. For an aeroelastic apparatus, tests have 
been performed in a wind tunnel to examine the effect of 
nonlinear structural stiffness, and control systems have 
been designed using linear control theory, feedback 
linearization techniques and adaptive control 
strategies.[11-12] 
     One can find studies focusing attention on the two 
dimensional prototypical aeroelastic wing section. Block 
and Straganac[8] and Ko et et al.[13] proposed nonlinear 
feedback control methodologies  for a class of non linear 
structural effects of the prototypical aeroelastic wing 
section. In this regard Ko et al. [11] developed a 
controller via partial-feedback linearization. It has been 

shown that that global stabilization can be achieved by 
applying an additional control surface (e.g., in [15]). 
Adaptive-feedback linearization and global-feedback-
linearization techniques were introduced for two control 
actuators in [11] and the Ricatti-equation based method 
was used in [18]. Neural network based design was also 
discussed in [17]. 
     Time delays are inevitable in control loops [18]. Time 
delay effects were introduced by Marzocca [19] and Yu 
et al. [20] focused on time delay feedback control of 
supersonic lifting surface on flutter boundary. Zhao [18] 
presented a systematic study on aeroelastic stability with 
single or multiple time delays in the feedback control 
loop. 
     Tensor Product (TP) type polytopic model based state 
feedback, output feedback and LMI based controller 
design was proposed in [21, 22]. In [25] the effect of the 
convex hull manipulation of the TP models on the 
control performance is discussed. We proved that in 
modern LMI based multi objective control design the 
optimization of the control performance must include the 
manipulation of the convex hull beside constructing 
LMIs, and the TP model transformation offers a 
systematic solution. We can see some examples in [26-
29, 31 33] where TP model transformation is applied. 
     In this paper we show that the manipulation of the 
convex hull is necessary for the the LMI based  
controller and observer design. 
 
 

2   Nomenclature 
a  = nondimensional distance from the midchord to 

the elastic axis; 
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b  = semichord of the wing; 
hC  = plunge structural damping coefficient; 

αlc  = lift coefficients per angle of attack; 

βl
c

 = lift coefficients per control surface deflection; 

αmc
 = moment coefficients per angle of attack; 

βmc
 = moment coefficients per control surface  

deflection; 
αc  = pitch-structural damping coefficient; 

h  = plunging displacement; 
αI  = mass moment of inertia; 
hk  = plunge structural spring constant; 

( )ααk  = nonlinear stiffness contribution; 
L  = aerodynamic force; 
M  = aerodynamic moment; 
m = mass of the wing; 
U  = free stream velocity; 

αx  = nondimensional distance between the elastic 
axis and the center of mass; 

α  = pitching displacement; 
β  = control surface deflection; 
ρ  = the density of the air; 

,...,ba  = scalar values; 
,...ba,  = vectors; 
,...,BA  = matrices; 

A,B... = tensors 

 = multiple product as A×1U1×2U2×3…×N UN; 
( ) nji ,,⋅

 = indices; 
( ) NJI ,,⋅  = index upper bound: for example: i=1…I; 
 
 

3  Tensor Product model transformation 
 
 
3.1 Concept of TP type polytopic model 
The following definition are used in this paper: 
Definition 1 (qLPV model): Consider the Linear 
Parameter Varying State Space model: 
 

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( )ttttty

tttttx

upDxpC

upBxpA

+
+

=

=&
                     (1) 

 
where u(t) is the input, y(t) is the output. The system 
matrix applying the state space model: 
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where ( )( )tpS  is a parameter varying object, and ( ) Ω∈tp  
is time varying N dimensional parameter vector, where 

[ ] [ ] [ ] N
NN bababa ℜ⊂×××=Ω ...2211  is a closed 

hypercube. Parameter ( )tp  can also include some 
elements of  , in this case (2) is termed as quasi LPV 
(qLPV) model. Therefore this type of model is 
considered to belong to the class of non-linear models. 
Let us  assume, that the size of ( )( )tpS  is O times I. 
Definition 2 (Finite element polytopic model): 

 ( )( ) r

R

1r
r Stpw=))t(p(S ∑

=

⋅           (3) 

where Ω∈)(tp . ))(( tpS is given for any parameter vector 
)(tp  as the parameter varying combinations of linear 

time invariant (LTI) system matrices )()( lmkm
r R +×+∈S  

also called LTI vertex systems. The combination is 
defined by the weighting functions ( )( ) [ ]1,0∈tpwr . By 
finite we mean that R is bounded. 
The TP model belongs to the class of polytopic models. 
In case of the TP model the multi variable weighting 
functions ( )pwr are decomposed to the product of one 
variable weighing functions ( )nn pw . 
Definition 3 (Finite element TP type polytopic model): 
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applying the compact notation based on tensor algebra 
(Lathauwer’s work [1]) we have: 
 

,                     (5) 

 
where the (N+2) dimensional coefficient tensor 

)()(...21 lmkmIII NRS +×+××××∈  is constructed from the LTI vertex 
systems 

Niii ...2,1
S (4) and the row vector ( )( ) [ ]1,0∈tpnnw  

contains one variable and continuous weighting functions 
( )( ) [ ]1,0, ∈tpw nin n

, ( )Nn Ii ...1=  .(4) 

Remark 1: TP model (5) is a special class of polytopic 
models (2), where the weighting functions are 
decomposed to the Tensor Product of one variable 
functions. 
For Linear Matrix Inequality based design, the convexity 
of the TP model is required. Therefore let us define the 
following types of TP models: 
Definition 4 (Convex type TP model): The TP model is 
convex if the weighting functions satisfy the following 
criteria: 

( ) ( )( ) 1:, ,
1

=∀ ∑
=

tpwtp nin

I

i
nn n

n

n

,                  (6) 
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( ) ( )( ) 10:,, , ≤≤∀ tpwtpi ninnnn n

.                 (7) 

 
We can define various types of convex TP models. 
These types can readily be determined via constraints 
defined for the weighting functions. Let us define two 
types of TP models which we use in this paper; the other 
possible types of TP models are discussed in [21] 
Definition 5 (NO/CNO, NOrmal type TP model): The 
convex TP model is a NO (normal) type model, if its 
w(p) weighting functions are Normal, that is, if it 
satisfies (5, 6) , and the largest value of all weighting 
functions is 1. Also, it is CNO (close to normal), if it is 
satisfies (5, 6) and the largest value of all weighting 
functions is 1 or close to 1. 
Definition 6 (IRNO, Inverted and Relaxed NOrmal type 
TP model): The TP model is IRNO type, if the smallest 
values of all weighting functions are 0, and the largest 
values of all weighting functions are the same. 
 
 
3.2 Execution 
Step 1: Discretisation 
     The goal of this step is to represent the given 
parameter dependent system matrix by tensor that is 
ready to find the tensor product structure in the model. 
First of all we define the transformation space Ω in 
which we expect the TP model be relevant, then we 
discretise the qLPV model in M points. 
Definition 7 (Transformation space Ω). Ω is a bounded 
hyper rectangular space where the parameter vector of 
the system matrix varies: p(t) 

[ ] [ ] [ ]NN bababa ×××Ω ...: 2211  Practically should be 
defined according to the working space of p that is 
determined based on the physical behavior of the model. 
Definition 8 (Discretisation grid M). M denotes a hyper 
rectangular discretisation grid defined in Ω. Mn (n = 1… 
N) denotes the number of grid on the n-th dimension. 
Step 2: Extracting the TP structure 
     The goal of this step is to reveal the TP structure of 
the given qLPV model and find the minimal number of 
LTI components .We use Higher Order Singular Value 
Decomposition (HOSVD) to find the TP structure of the 
model.  In this paper we generate the exact minimized 
form, this means that we eliminate only the zero singular 
values. In [32] a detailed description of HOSVD form 
can be found. 
Step 3: Determination of the weighting function 
     The weighting functions can be determined in 
discretised and also in continuous form. While we apply 
TP toolbox, we generate the weighting functions in 
descretised form. 

Remark 2: To get convex TP model of the proper 
nonlinear system transform the weighting functions to 
complete (6-7) criteria. 
     These steps can be easily executes by TPtoolbox for 
Matlab.[23] 
 
 

4 The qLPV model 
We recall the qLPV model of the system presented in 
[21]: 
 

 
Figure 1. The aeroelastic wing section 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( )






=+

t

t
ttttttx

u

x
pSupBxpA=&           (7) 

 
where 
 

( )

( )
( )
( )
( ) 


















=





















=

α

α

&

&h

h

tx

tx

tx

tx

t

1

1

1

1

x ,                             (8) 

 
and ( ) β=tu . 
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where: 
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where 
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where ( ) 2=ℜ∈ Ntp  contains values ( ) α=tx2  and U. Note 
that the equations of motion are also dependent upon the 
elastic axis location a. In the present case we assume that 
a is a constant. 
 
 

5   Convex TP models 
We create two convex TP models of the aeroelastic 
system, the IRNO and the CNO type. In order to 
generate them, we utilize the TP model transformation. 
For a detailed description see [21, 24, 25]. For this 
purpose we TP toolbox MatLab [23] According to the 
3.2 subsection of this paper, first let we define the 
transformation space Ω. We are interested in the interval 

[ ]2514∈U m/s and [ ]1.01.0−∈α .This has practical 
significance, because the prototypical aeroelastic model 
is accurate for low speeds. Therefore, let 

[ ] [ ]1.01.02514: −×Ω in the present example. Let he 
grid density be defined as 21 MM × ; let M1 =101 and 
M2=101. After the execution of the TP model 
transformation (see section 3.2), we can observe that in 
the first dimension the rank is 3, and the rank of the 
second dimension is 2. The basis functions are: ( )( )tUw i,1

, i=1…3 and ( )( )txw j 2,2 , j=1…2. At this point we 

formulated the TP model type polytopic convex model 
of the system: 

 

 
Figure 2. CNO type weighting functions 
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Figure 3. IRNO type weighting functions 
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that is 
 

 ,                 (23) 

 
where ( )( )tpnnw  contains the elements of the weighting 
functions. 
     The solution of the TP model transformation dives us 
the convex type weighting functions, see Definition 4. 
 
 
5.1 CNO type TP model 
The weighting functions ( iw ,1  and jw ,2 ), of this TP 

model can be seen in Figure 2. This is a tight convex 
hull. 
 
 
5.2 IRNO type TP model 
The weighting functions of this TP model can be seen in 
Figure 3. This is a large convex hull. 
 
 
5.3 Manipulation of the TP models 
We can manipulate the TP type polytopic models via 
convex hull manipulation. We make a transition from 
IRNO to CNO type hull, and investigate the trajectory of 
the vertex systems. 
     The advantage of the TP type polytopic model is that 
the convex hull can be manipulated in each dimension 
by the weighting functions. The manipulation can be 
executed in two steps: 
Step 1: We generate the new weighting functions 
between IRNO and CNO type applying simple linear 
approximation: 
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where λ  is a coefficient and its value goes from 0 to1. 
Note, that the linear interpolation conserves the 
convexity. We discretize λ  in 30 equidistant points 
(z=1…Z; Z=30). So as we generate Z number of 
different TP model representations for further 
investigation. 
Step 2: We compute the LTI vertex systems according to 
the new weighting functions. We do this by executing 
the 3rd step of the TP model transformation [21]. 
 

( )( ) ( )λλ znz Stp ⇒,w  
 

Finally we obtain 30 different TP model representing the 
same system, ))(( tpS : 
 

.                (25) 

 
 
5.3 The geometry of the convex hulls 
     Let us investigate the geometrical location of the 
vertex systems. The number of elements in ))(( tpS  is 20, 
so we may need a 20 dimensional space for drawing. For 
the sake of simplicity, let us consider only the nonlinear 
elements of ))(( tpS : 
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Since the number of nonlinear elements is 8, we use 2 
dimensional section of this 8 dimensional space..In order 
to investigate the convex hull defined by the vertices we 
represent some elements Sz(3,2) and Sz(4,2) in a two 
dimensional coordinate system, (see Figure 4). In this 
coordinate system we draw the elements of ))(( tpS for all 
possible Ω∈)(tp , and it is drawn by the bold line in the 
Figure 4. Actually this line is a “space” (if we draw the 
20 elements it is a 20 dimensional space), where ))(( tpS

is varying. The vertices of the IRNO (Z=1) type TP 
model are drawn by dots. Connecting these dots, the two 
dimensional section of the convex hull can be seen. The 
two dimensional section of the CNO (Z=30) type convex 
hull is represented by the connected stars. We can find 
out that the IRNO type is a wide convex hull, and the 
CNO type is very tight; significantly tighter than the 
classical convex hull defined by connected squares. 
 
 

6   LMI based multi-objective control 
 
 
6.1 LMI based controller design 

     After convex hull manipulation (described in the 
previous section) we found that we need the tightest hull 
to obtain the best control performance. For details see 
[25].Therefore we applied CNO type TP model to 
generate the feedback gains via LMI, for simulation 
purposes.  
We seek the control value u. The controller takes the 
same TP type polytop form and the weighting 
coefficients as the system has.  Thus the control value is 
formulated as: 
 

( )( ) ( )( ) rji
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     We can generate the control feedback gains by the 
execution of the following steps:  
Step 1: Deriving the polytopic model of the system. In 
the present case we use a finite element convex TP type 
polytopic models. 
Step 2: Selecting the LMI for the desired multi-objective 
control performances; in this case asymptotic stability 
and decay rate control. 
To obtain different control performances, we define the 
following LMIs: 

 
Figure 4. Representation of different convex hulls  

 
 
Theorem 1 (Asymptotic stability design for continuous 
convex polytopic models). Polytopic model (22) with 
control value (26) is asymptotically stable if there exist 
X > 0 and  M r  satisfying equations 

 
0,      - rrr

T
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for , except the pairs (r; s) such that 

, and where the feedback gains 
are determined form the solutions X and Mr as 
 

1
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     The speed of the response of the controlled system is 
related to decay rate, that is, the largest Lyapunov 
exponent. Based on this fact define the following 
theorem: 
Theorem 2 (Decay rate control). Assume the polytopic 
model (22) with controller (26). The largest lower bound 
on the decay rate by quadratic Lyapunov function is 
guaranteed by the solution of the following generalized 
eigenvalue minimizations problem (GEVP): 
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for , except the pairs (r; s) such that 

, and where the feedback gains 
are determined form the solutions by () 
     In practical control designs we have to deal with the 
physical constraints of the system. In order to overcome 
such difficulties we may guaranty such constraints via 
the following LMIs: 
Theorem 3 (Constraint on the control value). Assume 
that ( ) φ≤0x ,where x(0) is unknown, but the upper 

bound φ  is known. The constraint ( ) µ≤
2
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at all times 0≥t if the LMIs  
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hold. 
Theorem 4 (Constraint on the output). Assume that 

( ) φ≤0x , where x(0) is unknown, but the upper bound 

φ  is known. The constraint ( ) λ≤
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     In order to ensure the above condition for a large set 
of initial states, we can set φ to be a large quantity even 
if x(0) is unknown. However, one should note that a 
large φ  could lead to conservative designs .Note that the 
LMIs of the above Theorems 4 and 5 must be 
simultaneously solved with the LMIs of the selected 
stability theorem. These derivations and further LMIs 
developed for multi-objective control design of discrete 
systems are detailed in [30] 
Step 3: Substituting the vertices of the polytopic model 
into the LMIs 
Step 4: Solving the LMIs. We are capable of 
determining the feedback vertices Fr of the controller. 
We substitute respectively z=1…Z, different vertex 
systems into the selected LMI we find out in the cases of 
Z=1…18 the LMIs are not feasible, however in case of 
Z=19…30, the solution is feasible. This means that only 
those TP model type polytopic representations give 
feasible solutions for the LMI, where Z≥19. We refer to 
Figure 6 where we can see a convex hull defined by 
connected diamonds, whenever the system is surely 
controllable.  
 
 
6.2 LMI based observer design 
In this section we investigate the polytop model LMI 
based observer design. The typical steps of this observer 
design are the same four steps what we applied during 
the controller feedback design. In the fourth step we get 
the observer feedback gains, Kr. 
First of all, let us define the polytop observer structure 
we are going to deal with. Note that, there are various 
alternative ways for output feedback and observer design 
(in this regard we refer to (Scherer and Weiland 2000; 
Tanaka and Wang 2001)). The observers are required to 
satisfy 
 

( ) ( ) 0ˆ →− ttx x  as ∞→t , 
 
where ( )tx̂ denotes the state-vector estimated by the 
observer. This condition guarantees that the steady-state 

error between x(t) and ( )tx̂ converges to 0. In order to 
achieve this goal we introduce the following observer 
polytopic structure. 
 
The state values can be estimated as 
 

Rsr ≤<
0)()(:)( =∀ twtwt sr ppp

Rsr ≤<
0)()(:)( =∀ twtwt sr ppp
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where ( ) ( )tt xCy ⋅= and ( ) ( )tt xCy ˆˆ ⋅= . 
Theorem 5 (Globally and asymptotically stable 
observer): Assume the polytopic model (22) with 
controller (26) and observer structure (27). This output-
feedback control structure is globally and asymptotically 
stable if there exists such  X > 0 and; rN  (r = 1,…., R) 
satisfying equations 
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for Rsr ≤< , except the pairs (r; s) such that 

0)()(:)( =∀ twtwt sr ppp , and rXKN =r . The feedback 
gains and the observer gains can then be obtained from 
the solution of the above LMIs as r

1NXK −=r . 
     We use the same four steps to obtain the observer 
feedback gains what we have applied in the previous 
subsection for the controller design process. We can 
select also the LMIs according to the desired 
performance. In this paper we select asymptotic stability 
criteria. See Theorem 5. 
     When we substitute in order z=1…Z, that means 30 
different vertex systems into the selected LMI we find 
out in all the cases of Z=1…30 the LMIs are feasible, 
this means we can apply also a large convex hull, and 
IRNO type TP model gives good solution for observer 
design. We check the performance of the observer with 
simulation. 
 
 

7 Simulation results 
 
 
7.1 Closed loop simulation 
In the followings we investigate how the control 
performance varies when we change the value of Z in the 
“feasible” domain (Z=19…30). 
We apply constraint on the control value. We applied the 
LMIs defined in Theorem 5. In the case of controllers we 
searched the minimal bound of the present control value 
while the LMIs are feasible. The response of the 
resulting controllers (Z=19, Z=25, Z=30) is presented on 
Fig. 8. We can see the control value (torque) is 7 Nm, if 
Z=30 (CNO) and it is significantly smaller than the other 
cases. 

7.2 Open loop simulation 
Our goal is to estimate precisely plunge (h) and pitch (α) 
parameters. We check the performance of the observer 
by open loop simulation. We set the free stream velocity 
U=20 m/s. We select 4 different observer gain system 
out of 30: Z=1, it is for the IRNO type TP model; Z=10, 
Z=20, Z=30 is for the CNO type TP model. We can see 
that we can obtain the best observer performance if we 
apply CNO type TP model. See Figure 6. In the figure 
the dotted line signs the trajectory of the observer, 
continuous line is the real one. 
 
 

8   Conclusion 
In this paper we demonstrated that the LMIs are very 
sensitive on the convex hull defined by the selected 
polytopic model. While changing the convex hull, the 
performance of the controller and also the observer is 
changing. 
     The paper shows that the manipulation of the convex 
hull is just important not only for the controller but also 
for the observer design and optimization. 
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