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Abstract: In this paper a novel kinematic model is proposed where the transformation between the robot posture
and the system state is bijective. Two control approaches are proposed to solve the tracking problem. One approach
is based on the Takagi-Sugeno fuzzy model where a parallel distributed compensation control is used. The alter-
native approach is to use Lyapunov stability analysis to construct a nonlinear controller that achieves asymptotic
stability if reference velocities satisfy the condition of persistent excitation.
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1 Introduction
The use of fuzzy techniques has been widely ac-
cepted for the control of nonlinear systems [19, 2,
21, 20, 8, 26, 27, 16, 22]. Sector nonlinearity ap-
proach represents a very elegant way of construct-
ing a Takagi-Sugeno (TS) fuzzy model of a nonlin-
ear system. When combined with a Takagi-Sugeno
based controller with the same antecedent part, the
approach is called parallel distributed compensation
(PDC) [23]. It is very elegant to treat the stability of
the PDC controllers. The stability analysis often re-
sults in a set of limitations that have to be met. These
limitations are usually represented by a system of lin-
ear matrix inequalities (LMI). If the LMIs are solved,
the suitable control gains are obtained and therefore
this stability analysis can be seen as a constructive
one.

The problem of nonholonomic systems control
has attracted numerous researches in the past. A thor-
oughly studied case with great practical significance
is wheeled mobile robot with kinematic model sim-
ilar to a unicycle [13]. A very important class of
control approaches tackle the problem of posture con-
trol by redefining the problem as the tracking control
one [10]. By doing so, the problem is divided into
two separate problems. The first one is how to de-
sign the desired path. This procedure can be done
using optimisation techniques taking into account dif-
ferent limitations, such as obstacle avoidance, short-
est path, minimum energy path, minimum travel time,
etc., [14, 25, 18, 28, 11, 24, 3].

The area of trajectory tracking control is very

rich in literature. Many control algorithms were pro-
posed in this framework such as PID [9], Lyapunov
based nonlinear controllers [17], model based predic-
tive controllers [12], the approach with disturbance
observer [29], etc. Several attempts also exist when
the problem is coped with a fuzzy controller [6, 2, 4].

The problem statement is given in Section 2, the
development of the third and the fourth order er-
ror model is given in Sections 3 and 4, respectively.
The Lyapunov and the TS control approaches are de-
scribed in Sections 5 and 6, respectively. Both ap-
proaches are compared in Section 7. The conclusions
are stated in Section 8.

2 Problem statement
Assume a two-wheeled, differentially driven mobile
robot as the one depicted in Fig. 1 where (x, y) is the
wheel-axis-centre position andθ is the robot orienta-
tion. The kinematic motion equations of the mobile
robot are equivalent to those of a unicycle. Robots
with such an architecture have a nonholonomic con-
straint of the form:

[

sin θ(t) cos θ(t)
]

[

ẋ

ẏ

]

= 0 (1)

resulting from the assumption that the robot cannot
slip in the lateral direction. Only the first-order kine-
matic model of the system will be treated in this paper:

q̇ =





ẋ

ẏ

θ̇



 =





cos θ 0
sin θ 0

0 1





[

v

w

]

(2)
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Figure 1: Two-wheeled, differentially driven mobile
robot

where v and w are the tangential and the an-
gular velocities, respectively, whileqT (t) =
[

x(t) y(t) θ(t)
]

is the vector of generalized co-
ordinates. The control design goal is to follow the vir-
tual robot or the reference trajectory (Fig. 2), defined
by

q
T
r (t) =

[

xr(t) yr(t) θr(t)
]

(3)

whereqr(t) is a-priori known and smooth. It is very
easy to show that the system (2) is flat [5] with flat
outputs beingx andy. Consequently, (3) can be pro-
duced by uniformly continuous control inputsvr(t)
and wr(t) in the absence of initial conditions, para-
sitic dynamics and external disturbances. The goal is
to design a feedback controller to achieve the track-
ing and the tracking should be asymptotic under the
persistency of excitation (PE) throughvr(t) or wr(t).

3 Third order error model of the sys-
tem

The posture error is not given in the global coordinate
system, but rather as an error in the local coordinate
system of the robot:ex gives the error in the direction
of driving, ey gives the error in the lateral direction,
and eθ gives the error in the orientation. The pos-
ture errors are depicted in Fig. 2. The posture error

e =
[

ex ey eθ

]T
is determined using the actual

postureq =
[

x y θ

]T
and the reference posture

qr =
[

xr yr θr

]T
:





ex

ey

eθ



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (qr − q) (4)

From (2) and (4) and assuming that the virtual robot
has a kinematic model similar to (2), the posture error
model can be written as follows:




ėx

ėy

ėθ



 =





cos eθ 0
sin eθ 0
0 1





[

vr

wr

]

+





−1 ey

0 −ex

0 −1



 u

(5)
The transformation (4) is theoretically imposed by the
group operation noting that the model (2) is a system
on the Lie group SE(2) [15]. The approach itself was
adopted in [10] where the authors also proposed the
PID control for the stabilization of the robot at the
reference posture. Later, many authors used the error
model (5) for the tracking controller design.

Very often [9] the following controlu is used to
solve the tracking problem:

u =

[

v

w

]

=

[

vr cos eθ + vb

wr + wb

]

(6)

Inserting the control (6) into (5), the resulting model
is given by:

ėx = wrey − vb + eywb

ėy = −wrex + vr sin eθ − exwb

ėθ = −wb

(7)

whereu
T
b =

[

vb wb

]

is the feedback signal to be
determined later.

4 Fourth order error model of the
system

The problem of using the third order error model pre-
sented in the previous section is that the transforma-
tion between the robot posture and the error model
is not bijective. This can be observed from the fact
that any error-state

[

0 0 2kπ

]T
(k ∈ Z) corre-

sponds to the same robot posture. This should be
somehow reflected in the kinematic model of the sys-
tem and also in the error model of the system. This
can be achieved by increasing the order of the system
to 4. The variableθ(t) from the original kinematic
model (2) is exchanged by two new periodic variables
s(t) = sin(θ(t)) andc(t) = cos(θ(t)). Their deriva-
tives are:

ṡ(t) = cos(θ(t))θ̇(t) = c(t)w(t)

ċ(t) = − sin(θ(t))θ̇(t) = −s(t)w(t)
(8)

The new kinematic model is then obtained:

q̇ =









ẋ

ẏ

ṡ

ċ









=









c 0
s 0
0 c

0 −s









[

v

w

]

(9)
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Figure 2: Illustration of the trajectory tracking control

The new error states are defined as:

ex = c(xr − x) + s(yr − y)
ey = −s(xr − x) + c(yr − y)
es = sin(θr − θ) = src − crs

ec = cos(θr − θ) = crc + srs

(10)

After derivation of Eq. (10) and some manipulations
we obtain the error model of the system:

ėx = vrec − v + eyw

ėy = vres − exw

ės = wrec − ecw

ėc = −wres + esw

(11)

or in the equivalent matrix form









ėx

ėy

ės

ėc









=









ec 0
es 0
0 ec

0 −es









[

vr

wr

]

+

+









−1 ey

0 −ex

0 −ec

0 es









[

v

w

]

(12)

5 Lyapunov based control design

An exponentially stable controller will be developed
based on Lyapunov approach. The statesex, ey, and
es should be driven towards 0, whileec should con-
verge to 1 if we want to achieve perfect tracking. The
following Lyapunov function candidate is proposed to
achieve this goal:

V =
kx

2
e
2

x +
ky

2
e
2

y +
ks

2
e
2

s +
kc

2
(ec − 1)2 (13)

wherekx, ky, ks, andkc are positive constants. Its
derivative is:

V̇ = kxex(vrec − v + eyw) + kyey(vres − exw)+

+ kses(wrec − ecw) + kcec(−wres + esw)−

− kc(−wres + esw) (14)

After simple analysis it is obvious thatkx = ky = k

and ks = kc should be used where the latter two con-
stants can be set to 1 without loss of generality. Taking
this into account, many terms in Eq. (13) cancel:

V̇ = kex(vrec − v) + es(keyvr + wr − w) (15)

Since the values in the parentheses in Eq. (15) should
be chosen to make the derivative of the Lyapunov
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function negative semi-definite, the following control
law is proposed:

v = vrec + αxex

w = wr + keyvr + αses
(16)

By taking into account the control law Eq. (16), the
function V̇ becomes:

V̇ = −kαxe
2

x − αse
2

s (17)

Note that the control law (16) is the same as the one
proposed by Kanayama et al. [9].

Two very well-known lemmas will be used in the
proof of a theorem in this section. The first one is
Barbălat’s lemma and the other one is a derivation of
Barbălat’s lemma. Both lemmas are taken from [7]
and are given below for the sake of completeness.

Lemma 1 (Barbălat’s lemma). If limt→∞

∫ t

0
f(τ)dτ

exists and is finite, andf(t) is a uniformly continuous
function, thenlimt→∞ f(t) = 0.

Lemma 2. If f, ḟ ∈ L∞ and f ∈ Lp for somep ∈
[1,∞), thenf(t) → 0 ast → ∞.

Theorem 3. If the control law (16) is applied to the
system wherek is a positive constant,αx andαs are
positive bounded functions, the reference velocitiesvr

andwr are bounded, then the tracking errorsex and
es converge to 0. The convergence ofey to 0 is guar-
anteed provided that at least one of the two conditions
is met:

1. vr is uniformly continuous and does not go to 0
as t → ∞ whileαs is uniformly continuous,

2. wr is uniformly continuous and does not go to 0
as t → ∞ while vr, αx, and αs are uniformly
continuous.

Proof:
It follows from (17) thatV̇ ≤ 0, and therefore the

Lyapunov function is non-increasing and thus has the
limit limt→∞ V (t). Consequently, the following can
be concluded:

ex, ey, es, ec ∈ L∞ (18)

Based on (18), it follows from (16) that the control
signals are bounded, and from (11) that the derivatives
of the errors are bounded:

v,w, ėx, ėy, ės, ėc ∈ L∞ (19)

where we also took into account thatvr, wr, k, αx,
and αs are bounded. It follows from Eqs. (18) and
(19) thatex, ey, es, andec are uniformly continuous

(note that the easiest way to check the uniform conti-
nuity of f(t) on [0,∞) is to see iff, ḟ ∈ L∞).

In order to show the asymptotic stability of the
system, let us first calculate the following integral:

∞
∫

0

V̇ dt = V (∞)−V (0) = −

∞
∫

0

kαxe
2

xdt−

∞
∫

0

αse
2

sdt

(20)
SinceV is a positive definite function, the following
inequality holds:

V (0) ≥

∞
∫

0

kαxe
2

xdt +

∞
∫

0

αse
2

sdt ≥

≥ kαx

∞
∫

0

e
2

xdt + αs

∞
∫

0

e
2

sdt (21)

where the lower bounds of functionsαx(t) andαs(t)
are introduced:

αx(t) ≥ αx > 0
αs(t) ≥ αs > 0

(22)

It follows from (21) thatex, es ∈ L2. Applying
Lemma 2, the convergence ofex(t) andes(t) to 0 fol-
lows immediately. Sincees andec are the sine and the
cosine, respectively, of the same argument,e

2
c con-

verges to 1. Because ofes → 0, it follows from (11)
that ėc → 0 and consequently the limitlimt→∞ ec(t)
exists and is either1 or −1. It has been shown that
the limit limt→∞ V (t) also exists, and consequently
limt→∞ ey(t) also exists.

Until now we only established the convergence of
ex(t) andes(t) to 0, while ec(t) was shown to con-
verge either to 1 or to−1. To show the convergence
of ey(t) to 0, at least one of the conditions 1 or 2
of Theorem 3 have to be fulfilled. Let us first an-
alyze case 1. Applying Lemma 1 oṅes(t) ensures
that limt→∞ ės(t) = 0 if limt→∞ es(t) exists and is
finite (which has already been proven) andės(t) is
uniformly continuous. The latter is true (see (11)) if
(wr − w)ec is uniformly continuous. It has already
been shown thatec is uniformly continuous. The sig-
nal w − wr defined in (16) is uniformly continuous
sinceαs andvr are uniformly continuous by the as-
sumption in case 1 of the theorem. The statement
limt→∞ ės(t) = 0 which is identical to

lim
t→∞

(

(wr(t) − w(t)) ec(t)
)

= 0 (23)

has therefore been proven. Sinceec(t) converges to 1
or to −1, the following can be concluded from (16):

lim
t→∞

(w − wr) = lim
t→∞

(keyvr + αses) = 0 (24)
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The convergence ofey to 0 follows from (24):

keyvr + αses → 0, es → 0 ⇒ keyvr → 0
keyvr → 0, ky > 0, vr 9 0 ⇒ ey → 0

(25)

where it was taken into account thatvr does not di-
minish ast → ∞.

For the second case we again have to guarantee
that limt→∞(w − wr) = 0. This is true ifvr and
αs are uniformly continuous as shown before. Then
Barbălat’s lemma (Lemma 1) is applied onėx in Eq.
(11) after inserting the control law (16):

ėx = vrec − v + eyw =

= −αxex + eywr + ke
2

yvr + αseyes (26)

It has already been shown thatex, ey, andes are uni-
formly continuous, whilevr, wr, αx, andαs are uni-
formly continuous by the assumption of case 2 of the
theorem. It has been proven thatlimt→∞ ėx(t) = 0.
The first term in Eq. (26) goes to 0 ast goes to in-
finity. The last two terms also converge to 0 due to
limt→∞(w − wr) = 0. Consequently, the product
wrey goes to 0. Sincewr is persistently exciting and
does not go to 0,ey has to go to 0. ⊓⊔

6 Takagi-Sugeno fuzzy control de-
sign

In this section the Takagi-Sugeno (TS) model of the
mobile robot kinematic model (11) or (12) will be de-
veloped. Firstly, the control signals will be separated
to the the “feedforward” term and the feedback term
to be determined by the TS control law:

v = vrec + vb

w = wr + wb
(27)

where “feedforward” is not entirely suitable since the
linear velocity command depends on the stateec. But
on the other hand, if the control law is chosen prop-
erly, ec should converge to 1, thus meaning thatvrec

would converge to a feedforward termvr. Inserting
Eq. (27) into Eq. (11) we obtain:

ėx = −vb + eywr + eywb

ėy = vres − exwr − exwb

ės = −ecwb

ėc = eswb

(28)

or in the equivalent matrix form








ėx

ėy

ės

ėc









=









0 wr 0 0
−wr 0 vr 0

0 0 0 0
0 0 0 0

















ex

ey

es

ec









+

+









−1 ey

0 −ex

0 −ec

0 es









[

vb

wb

]

(29)

The TS model of (29) can be constructed by the sec-
tor nonlinearity approach ifvr, wr, ex, ey, es, andec

are chosen as the antecedent variables with a-priori
known upper and lower bounds [1, 6]. A natural way
to control such a system is to use parallel distributed
compensation (PDC) [23]. It is very easy to determine
that the PDC design on the model (29) would result in
an infeasible system of linear matrix inequalities. This
is due to the fact that the system is not controllable in
the linear sense. This problem can be circumvented if
the state space description is split into two systems:

ė =





ėx

ėy

ės



 =





0 wr 0
−wr 0 vr

0 0 0









ex

ey

es



+

+





−1 ey

0 −ex

0 −ec





[

vb

wb

]

(30)

ėc =eswb (31)

First, the TS model of the system (30) will be de-
veloped and then the PDC control will be designed
for this system. Eq. (31) represents the uncontrollable
mode of the system, and it will be important to check
if ec converges to 1 as desired.

6.1 Takagi-Sugeno model of the systen

The TS model is represented through the following
polytopic form:

ė(t) =

r
∑

i=1

hi (z(t)) (Aie(t) + Biu(t)) (32)

In order to construct the TS model the sector nonlin-
earity approach will be used. This means that the non-
linearities have to be taken from the nonlinear model
and used in the premise (or antecedent) vectorz(t).
The antecedent vector has 5 elements in this case:

z(t) =













wr(t)
vr(t)
ey(t)
ex(t)
ec(t)













(33)
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The system (30) is controllable in the vicinity of the
point

[

ex ey es

]T
=

[

0 0 0
]T

if ec does
not approach 0 and eithervr or wr do not approach
0. This are actually the conditions for the feasibility
of LMIs for the determination of control gains as it
will be shown later. The lower boundszj and the up-
per boundszj (j = 1, 2, 3, 4, 5) of the elements of the
antecedent vector are needed for the construction of
the PDC control. The bounds onvr andwr are ob-
tained from the actual reference trajectory, while the
bounds on the tracking error are selected on the basis
of any a priori knowledge available.

The matricesAz andBz are:

Az =





0 z1 0
−z1 0 z2

0 0 0





Bz =





−1 z3

0 −z4

0 −z5





(34)

The number of fuzzy rules isr = 25 = 32. The ma-
trices of the linear submodels are:

Ai =





0 ε
1

i 0
−ε

1

i 0 ε
2

i

0 0 0





Bi =





−1 ε
3

i

0 −ε
4

i

0 −ε
5

i





i = 1 . . . 25

(35)

where

ε
j
i = zj + ij

(

zj − zj

)

, i = 1 . . . 25
, j = 1 . . . 5

and the mapping fromi to ij is defined so that all the
vertices of the hypercube are numbered using binary
enumeration:

i1 =

{

0 i ≤ r
2

1 else

i2 =

{

0 i − r
2
i1 ≤ r

4

1 else

i3 =

{

0 i − r
2
i1 −

r
4
i2 ≤ r

8

1 else

i4 =

{

0 i −
∑

3

l=1

r
2l il ≤

r
24

1 else

i5 =

{

0 i −
∑

4

l=1

r
2l il ≤

r
25

1 else

(36)

Finally the membership functionshi(z) in (32) need
to be defined:

hi(z) =
∏

5

j=1
w

i
ij

(zj) i = 1, 2, . . . 32

w
j
1
(zj) =

zj−zj

zj−zj
, w

j
0
(zj) = 1 − w

j
1
(zj) j = 1 . . . 5

6.2 PDC based tracking control of a mobile
robot

In order to stabilize the TS fuzzy model (32), a PDC
(Parallel Distributed Compensation) control law is
used:

ub(t) = −

r
∑

i=1

hi (z(t))Fie(t) = −Fze(t) (37)

Several results concerning the stability of the TS
model with the PDC controllers exist. The problem
is often solved within the LMI framework.

Here the solution that tries to optimise the decay
rate of the system will be used [23, 6]:

minimize
X,M1...Mr

γ subject to

Υii < 0 i = 1, 2, . . . r
2

r−1
Υii + Υij + Υji < 0 i, j = 1, 2, . . . r, i 6= j

(38)
with Υij = XA

T
i + AiX − M

T
j B

T
i − BiMj + γX

whereγ > 0. The solutions of the above generalized
eigen-value problem give the control gains:

Fi = MiX
−1

, i = 1, 2, . . . r (39)

7 Comparison of the two control ap-
proaches

An extensive simulation study was performed to com-
pare both approaches under the same circumstances.
The reference trajectory is the same in all the experi-
ments:

xr(t) = cos(ω0t)
yr(t) = sin(2ω0t)

(40)

with ω0 = 0.34. The experiment always started at
t = 0 and finished att = 2π

ω0
. The control signalsvb

andwb were saturated to±10. The experiment was
conducted with different initial conditions.

In order to choose the T-S control gains the gen-
eralized eigen value problem (38) has to be solved.
We have to know the maximum values of the refer-
ence velocities a priori. We also have to know lower
and upper bound on the errors. In our case±0.1 was
chosen forex andey, while ec was between 0.1 and
1. Note that it is not possible to find a solution ifec

is negative. Thus the orientation error is bounded to
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±90◦. The solution for the first 16 control gains ac-
cording to Eq. (39) is:

F1 =

[

−37.421 2.2619 0.89260

1.1669 −13.296 −21.976

]

F2 =

[

−37.426 2.1300 0.61430

−0.27874 −26.206 −41.995

]

F3 =

[

−37.427 2.2044 0.72928

−0.053279 −23.987 −37.524

]

F4 =

[

−37.430 2.0940 0.57824

−0.20485 −25.847 −41.729

]

F5 =

[

−37.248 −0.57792 −3.7756

−0.66309 −13.294 −21.971

]

F6 =

[

−37.404 0.66145 −1.7262

0.76778 −26.185 −41.959

]

F7 =

[

−37.289 −0.47157 −3.5982

0.79428 −24.151 −37.768

]

F8 =

[

−37.397 0.71481 −1.6811

0.80535 −25.824 −41.692

]

F9 =

[

−37.440 2.5666 1.3526

−0.99369 −28.580 −45.813

]

F10 =

[

−37.432 2.1168 0.62534

−0.40629 −27.075 −43.103

]

F11 =

[

−37.443 2.3814 1.0903

−0.55093 −27.775 −45.646

]

F12 =

[

−37.435 2.1088 0.62682

−0.26462 −26.414 −42.772

]

F13 =

[

−37.339 −0.47666 −3.5440

2.5489 −28.515 −45.698

]

F14 =

[

−37.408 0.70385 −1.6557

0.77689 −27.061 −43.076

]

F15 =

[

−37.357 0.15622 −2.6337

2.0320 −27.728 −45.561

]

F16 =

[

−37.403 0.77476 −1.5740

0.84901 −26.395 −42.739

]

(41)

The remaining control 16 gains are:

F17 =

[

−37.248 0.57792 3.7756

0.66310 −13.294 −21.971

]

F18 =

[

−37.404 −0.66145 1.7262

−0.76778 −26.185 −41.959

]

F19 =

[

−37.289 0.47157 3.5982

−0.79428 −24.151 −37.768

]

F20 =

[

−37.397 −0.71481 1.6811

−0.80535 −25.824 −41.692

]

F21 =

[

−37.421 −2.2619 −0.89260

−1.1669 −13.296 −21.976

]

F22 =

[

−37.426 −2.1300 −0.61430

0.27874 −26.206 −41.995

]

F23 =

[

−37.427 −2.2044 −0.72928

0.053279 −23.987 −37.524

]

F24 =

[

−37.430 −2.0940 −0.57824

0.20485 −25.847 −41.729

]

F25 =

[

−37.339 0.47666 3.5440

−2.5489 −28.515 −45.698

]

F26 =

[

−37.408 −0.70386 1.6557

−0.77689 −27.061 −43.076

]

F27 =

[

−37.357 −0.15622 2.6337

−2.0320 −27.728 −45.561

]

F28 =

[

−37.403 −0.77476 1.5740

−0.84901 −26.395 −42.739

]

F29 =

[

−37.440 −2.5667 −1.3526

0.99369 −28.580 −45.813

]

F30 =

[

−37.432 −2.1168 −0.62534

0.40629 −27.075 −43.103

]

F31 =

[

−37.443 −2.3814 −1.0903

0.55093 −27.775 −45.646

]

F32 =

[

−37.435 −2.1088 −0.62682

0.26462 −26.414 −42.772

]

(42)

We can observe from the solution that some gains
are relatively insensitive to changes of the operating
point (e.g.f11), while most of them vary significantly,
which again stresses the nonlinear nature of the sys-
tem and the controller. A simple “average” controller
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Figure 3: Lyapunov-based control –(x, y) plot

gain is:

Fa =

[

−37.435 −2.1088 −0.62682

0.26462 −26.414 −42.772

]

(43)

The average control law is therefore:

[

vba

wba

]

=

[

−37.435 −2.1088 −0.62682

0.26462 −26.414 −42.772

]





ex

ey

es



 (44)

Comparing Eq. (44) and Eq. (16) we can see that
the control laws are quite different. If trying to make
fair comparison,αx will be set to37, while αs will
beset to43. The initial values for the experiment are:
ex = 0.1, ey = 0.1, es = sin(π/4), ec = cos(π/4).
Figures 3, 4, and 5 show the results of the Lyapunov-
based approach. Figures 6, 7, and 8 show the results
of the PDC-based approach. These results and also
other tests suggest that Lyapunov-based approach is
better than PDC-based one.

8 Conclusion
In this paper a novel kinematic model is proposed
where the transformation between the robot posture
and the system state is bijective. Two control ap-
proaches are proposed to solve the tracking problem.
One approach is based on the Takagi-Sugeno fuzzy
model where a parallel distributed compensation con-
trol is used. The alternative approach is to use Lya-
punov stability analysis to construct a nonlinear con-
troller that achieves asymptotic stability if reference
velocities satisfy the condition of persistent excitation.
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Figure 4: Lyapunov-based control – time plots of the
velocitiesv(t) andw(t)
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Figure 5: Lyapunov-based control – time plots of the
errors
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Figure 6: PDC-based control –(x, y) plot
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Figure 7: PDC-based control – time plots of the ve-
locitiesv(t) andw(t)
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Figure 8: PDC-based control – time plots of the errors

Although the proposed fourth order model is not
controllable in the linear sense and the associated
PDC control design is not feasible, the Lyapunov
based control design easily results in a controller that
achieves asymptotic stability under the usual demands
of persistently exciting reference velocities. When the
uncontrollable node is separated from the controllable
states, the PDC control is obtained for the controllable
part but the stateec is restricted to the interval(0, 1]
(the orientation error must be within±90◦) while in
the Lyapunov based design it is restricted to(−1, 1]
(the orientation error must be within±180◦).
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