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Abstract: In the present work, we propose a novel polynomial approach to approximate the Input-State feedback
linearization control. The aim of this new method is to simplify the implementation complexity of the exact Input-
State feedback linearization.
Indeed, the present approach leads to an analytical control law via analytical nonlinear transformations without
need to resolve a set of partial differential equations. In fact, the analytical control law, determined via the proposed
work, is dependent to an arbitrary choice of some parameters. So and in order to ensure a satisfactory evolution of
the control input, we resort to optimization methods to have the optimal values of parameters. A study simulation
is presented to show the effectiveness of the proposed approach.
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1 Introduction
The Input-State feedback linearization is one of the
most popular ways to nonlinear control design [1–5].
The main idea of this technique is to transform non-
linear dynamics into a linear form by using state feed-
back [6–8]. However, the Input-State feedback lin-
earization approach requires rigorous conditions sum-
marized as involutivity, controllability and smooth-
ness [1, 2, 8, 9]. Thus, finding a suitable diffeomor-
phism is a very difficult, since it mainly based on
the resolution of a set of partial differential equations
[1, 2, 8–10]. All these rigorous and difficulties, un-
derlying the Input-State feedback linearization, return
a complexity in its practical exploitation and imple-
mentation and non sure task [11–13]. To solve this
problem, various approaches to approximate feedback
linearization are developped [14–19].

The first idea of this work is developed a new
approach in order to simplify the practical imple-
mentation complexity of the Input-State feedback lin-
earization. This new approach is mainly based on the
use of approximate polynomial developments of the
functions characterizing the original nonlinear model
and the powerful mathematical tools of the Kronecker
product. Thus, this approach consists in synthesizing
a polynomial approximate state feedback via a poly-
nomial approximate nonlinear transformation.
In a very recent work [20], we have shown that some
parameters of the determined polynomial control can

be chosen arbitrary, so a second problem may arises:
which are the best parameters that ensure the effec-
tiveness of nonlinear approximate transformation and
guarantee the performances of the polynomial con-
trol?
As a result, the second purpose of the present work is
to exploit the unconstraint and constraint optimization
algorithms in order to solve the stated problem.

This work is structured as follows: In section 2,
the problem of synthesis of an approximate state feed-
back via a polynomial nonlinear polynomial trans-
formation is solved. Section 3 studies the optimiza-
tion problem. A background about optimization meth-
ods is presented and the choice of Monte Carlo algo-
rithm to solve considered optimization problem is ex-
plained. The results of a numerical simulation study
are presented in section 4. In section 5, the study prob-
lem is summarized via a conceptual algorithm. Sec-
tion 6 concludes this paper.

2 Synthesis of an approximate feed-
back linearization

In this paper, we consider the control-affine nonlinear
SISO system in the following analytical form:

ẋ =
∑

i>1

fix
[i] + g0u =

∑

i>1

f̃ix̃
[i] + g0u (1)
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where x ∈ Rn is the vector of state variables and
u ∈ R is the input variable. It is assumed that f (x) =∑
i>1

fix
[i] is analytical vector fields on Rn and can be

developed as generalized Taylor series using the Kro-
necker product and power of vectors. x[i] is the i-th
redundant Kronecker power of vector x [21], and x̃[i]

is the i-th non-redundant Kronecker power of vector
x [22]. The relation between the non-redundant Kro-
necker power x̃[i] and the redundant Kronecker power
x[i] of vector x can be written as [22]: x[i] = Ri

nx̃[i]

or x̃[i] =
(
Ri

n

)†
x[i] where Ri

n ∈ <ni×ni is called ma-

trix of redundance with ni = Ci
n+i−1 and

(
Ri

n

)† is the
Moore-Penrose pseudo-inverse of Ri

n.
The purpose of the polynomial input-state feedback
linearization technique, proposed in this work, is the
synthesis of a plynomial control described by:

u = α (x) + β (x) v (2)

via a nonlinear analytical transformation:

z = φ (x) (3)

Thus, the original system (1) will be transformed into
a linear one in the controllable canonical form given
by:

ż = Az + bv (4)

where v ∈ R is a new external input, (A; b) is a con-
trollable pair of constant matrices of appropriate di-
mensions.
Note that, in literature [1, 3, 23], the new linear sys-
tem have a Brunowsky canonical form. In the present
work, the original system (1) is transformed to a linear
one provided that it be stable.
Since the transformed system (4) is linear, the next
step is to employ linear pole-placement techniques in
order to arbitrarily assign the poles of the closed-loop
system. In the particular case, one can calculate a con-
stant gain vector , like the static state feedback law:

v = −kz (5)

induces the closed-loop dynamics :

ż = (A− bk) z (6)

when applied to the linear system (4).
Using the analytical nonlinear transformation given
by:

z = φ(x) =
∑

k>1

φkx
[k] (7)

we will determine an analytical static state feedback
written as:

u =
∑

i>1

αix
[i] +

∑

j>0

βjx
[j]v (8)

Consequently, the studied problem consists in deter-
mining the unknown coefficients φk, αi and βj which
characterize, respectively, the nonlinear transforma-
tion φ(.) and the state feedback u.
Moreover, the seeking of components φ(.) of the non-
linear transformation can be solved via the determi-
nation of the unknown components of the analytical
nonlinear reverse transformation defined by:

x = φ−1 (z) = S (z) =
∑

i>1

S1
i z[i] (9)

To solve this problem, The key idea can be stated as
follows:
Starting from the analytical expression (1) and us-
ing the powerful mathematical tool of the kronecker
power of the vector x given by:

x[k] =
∑

i>k

Sk
i z[i] (10)

where:

Sn
p =

p−n+1∑

j=1

(
Sn−1

p−j ⊗ S1
j

)
(11)

we obtain a new representation of the considered sys-
tem (1) in terms of the new variable z, written as:

ẋ =
∑

i>1

f1S
1
i z[i] +

∑

i>2

f2S
2
i z[i] + . . .

+
∑

i>p

fpS
p
i z[i] + g0u

(12)

Moreover, if we use the following derivative of i-th
Kronecker’s power of vector x [21]:

(
x[i]

)
x

=
dx[i]

dt
= V [i]

(
In ⊗ x[i−1]

)
(13)

where V [i] =
i−1∑
j=0

(Unj×n ⊗ In(i−j−1)) and Up×q des-

ignates the Kronecker permutation matrix [21], one
obtains another expression of the derivative given by:

ẋ =
∑

i>1

S1
i V [i]

(
In ⊗ z[i−1]

)
ż (14)

Replacing ż by its expression (6), one has:

ẋ =
∑

i>1

S1
i v[i] ((A− bk)⊗ In(i−1))z[i] (15)
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When expressing the input control u in terms of z, we
obtain the new following expression:

u =
∑

i>1

α1S
1
i z[i] + . . . . . . +

∑

i>p

αpS
p
i z[i]

−

β0kz + . . . . . . +

∑

i>p

(βpS
p
i ⊗ k) z[i+1]




(16)
Replacing u by its new expression (16) in (12), yields
the expression of the derivative ẋ in terms of z. The
identification of elements of this equation with those
of equation (15) leads to the following recurrent algo-
rithm which exposes the solution of the studied prob-
lem:

1. For p = 1




S1
1 = In

f1 + g0α1 = A− bk

A− bk is stable

β0 arbitrary

(17)

2. For p ≥ 2




vec(S1
p) = −pinv (Ap) vec

(
p∑

i=2
fiS

i
pR

p
n

)

αp = pinv (g0) g0

[(
−

p−1∑
i=2

αiS
i
pR

p
n

)

+
(

p−1∑
i=1

(
βiS

i
p−1 ⊗ k

)
Rp

n

)]
pinv (Sp

pRp
n)

Ap =
(
(Rp

n)T ⊗ (f1 + g0α1)
)

−
([

V (p) [(A− bk)⊗ (Inp−1)]Rp
n

]T ⊗ In

)

βp−1 arbitrary
(18)

where vec(.) designates the vectorization operator and
pinv(.) designates the Moore-Penrose inverse.
Using this algorithm, we can deduce the components
of the nonlinear transformation defined by (7) as:





φ1
1 =

(
S1

1

)−1

φ1
k = − (

S1
1

)−1

(
k∑

i=2

S1
i φi

k

)

φi
k =

k−i+1∑

j=1

(
φi−1

k−j ⊗ S1
j

)
(19)

According to the solution given by the above recurrent
algorithm, we can deduce that the dynamical behav-
ior of the considered system (1) controlled by (8), is

strongly related to the choice of parameters αi and βj .
Indeed, the original system (1) must be equivalent to
linear one (4). So and in order to ensure this equiv-
alence, the nonlinear transformation (7) must yield
the same dynamical behavior as obtained for the exact
vector z of (4).
In the next section, we will resort to optimization
methods to ensure the effectiveness of the nonlinear
transformation by the determination of the optimal
values of considered parameters βj .

3 Optimization Methods
3.1 Background
We have shown in the previous section that the evolu-
tion of the analytical control, and consequently the ef-
ficiency of the nonlinear transformation, is controlled
by the choice of parameters αi and βj . Thus, the prob-
lem, considered in this section, becomes an optimiza-
tion problem.
Solving an optimization problem requires not only the
comprehension of the problem but also knowledge
about the optimization tools. So, and firstly, we will
give, in the sequel, the basic concepts of an optimiza-
tion problem [24]:

• Objective function:
It is a mathematical function which present what
one aims to optimize (maximize or minimize).
The objective function is called variously as: cost
function, energy function.

• Decision variables:
Decision variables are the variables of the cost
function. These variables (or parameters) are ad-
justed by the optimization algorithm to obtain the
optimal values

• Search space/Choice set:
The search space of an optimization problem is
a set containing all elements which could be its
solution called candidate solutions or feasible so-
lutions.

• Constraints:
The set of constraints, imposed to the objective
function, can be equalities or inequalities. These
latter must be satisfied by the elements of the
search. So, these constraints limits the choice set.

There is a wide variety of optimization algorithms.
Generally, the optimization algorithms can be divided
in two basic classes: deterministic and probabilistic
algorithms.
Deterministic algorithms are most often used if a clear
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relation between the characteristics of the possible so-
lutions and their utility for a given problem exists.
Then, the search space can efficiently be explored us-
ing for example a divide and conquer scheme. If the
relation between a solution candidate and its ”fitness”
are not so obvious or too complicated, or the dimen-
sionality of the search space is very high, it becomes
harder to solve a problem deterministically.
Then, probabilistic algorithms come into play. The
initial work in this area which now has become one
of most important research fields in optimization [25–
28] was started about 59 years ago [29].
An especially relevant family of probabilistic algo-
rithms are the Monte Carlo-based approaches. They
trade in guaranteed correctness of the solution for a
shorter runtime.

3.2 Monte Carlo’s algorithm
The Monte Carlo (MC) optimization algorithm is a
class of randomized algorithms (probabilistic algo-
rithms) [30–33]. Such algorithms includes at least one
instruction that acts on the basis of random numbers.
Moreover, the MC algorithm as defined by Conley for
mathematical programming problems consists of gen-
erating a random sample of many feasible solutions
and selecting the best one.
In the considered problem, we have not any idea about
the values of the parameters in question. Thus, we
will use the MC optimization method and generate
randomly and independently 50 vectors of βp (search
space).
Note That these 50 randomly parameters are different
then those taken in [20].
In each simulation, we calculate the Normalized
Square Error (NSE) which presents the objective
function of considered optimization problem, defined
as:

NSEz =
‖z − ẑ‖2

2

‖z‖2
2 (20)

where z is the exact solution given by:




ż = Az + bv

z (0) = φ (x (0))

v = −kz

(21)

and ż is the approximate solution given by (7) and
(19):

ẑ =
∑

k>1

φkx
[k] (22)

‖.‖2 denotes the norm 2.
The optimization principle of the studied problem can
be schematized as follows:

Figure 1: Block diagram of the optimization algo-
rithm

4 Illustrative example and simula-
tion results

Consider the following single-input nonlinear dy-
namic system [34]:

{
ẋ1 = 3 sinx2

ẋ2 = −x1x2 + u
(23)

The study is considered in the neighborhood of the
equilibrium point x0 =

[
0 0

]T .
The system (23) developed as generalized Taylor se-
ries, truncated to the third order, yields the following
polynomial system:

{
ẋ1 = 3x2 − 0.5x3

2

ẋ2 = −x1x2 + u
(24)

The analytical form of the system (24) is given by:

ẋ = f1x + f2x
[2] + f3x

[3] + g0u (25)

with

f1 =
[

0 3
0 0

]
;

f2 =
[

0 0 0 0
0 −1 0 0

]
;

f3 =
[

0 0 0 0 0 0 0 −0.5
0 0 0 0 0 0 0 0

]
and

g0 =
[

0
1

]
.

4.1 First study: Unconstrained optimization
In this first study, we will discuss the effectiveness of
the Monte Carlo’s algorithm to determine the non-
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linear analytical transformation and the static feed-
back. In this subsection, we will solve the optimiza-
tion problem without imposed any constraint to the
objective function defined by the equation (20).
The nonlinear system (25) will be changed to a linear
one given by (4) with:

A =
[

0 3
1 −0.5

]
; b =

[
0
1

]
.

and the new control law v = −kẑ is chosen like the
linear system is defined by poles -1.5 and -2 which
correspond to a gain matrix k =

[
2 3

]
.

The polynomial feedback control and the state trans-
formation are truncated to the order 3.
Then, according to equation (9), the analytical state
reverse transformation is given by:

x̂ = S (z) = S1z + S2z
[2] + S3z

[3] (26)

and the polynomial feedback control law is written as:

u = α (x) + β (x) v

= α1x + α2x
[2] + α3x

[3] +
(
β0 + β1x + β2x

[2]
)

v

(27)
The initial conditions have been chosen as:
x (0) = [0.5 - 0.5]T .
For arbitrary choices of βp such as:
β0 = 0.0986;
β1 =

[
6.8656 0.5063

]
;

β2 =
[

9.2868 0.8746 0.2371 1.1250
]
.

we have obtain the following parameters αi:
α1 =

[ −0.8027 −3.2041
]
;

α2 =
[

13.7312 10.8047 10.8047 1.5188
]
;

α3 =
[

α31 α32

]
with

α31 =
[

28.9287 14.4385 14.4385 4.3193
]
,

α32 =
[

14.4385 4.3193 4.3193 3.8509
]
.

Using (18) and (19), we can deduce and calculate the
values of the compoments of nonlinear transformation
defined by (22) as:

ẑ = φ1x + φ2x
[2] + φ3x

[3] (28)

with

φ1 =
[

1 0
0 1

]
;

φ2 =
[

- 4.3874 −5.1417 −5.1417 −6.3581
3.4278 3.7305 3.7305 4.5521

]
;

φ3 =
[

φ31 φ32

]
with

φ31 =
[ −5.2593 −8.5150 −5.9021 −8.3910

5.9021 8.9830 6.0391 8.7160

]
,

φ32 =
[ −3.2893 −6.6188 −4.8466 −7.3906

3.0952 6.1032 3.4903 5.8441

]
.

We simulate the variations of the exact and ap-
proximate states (z1; ẑ1) and (z2; ẑ2) , represented, re-
spectively, in figure 2 and figure 3.

It is obvious, in these figures, that the exact vari-
ables of system (21) and the approached one of system
(22) have not the same dynamical behavior. However,
one can note that the variables of the two systems are
asymptotically stable although arbitrary choices of pa-
rameters β0, β1 and β2. The important difference be-
tween (z1; ẑ1) and (z2; ẑ2) will cause the change of
the operating conditions for the state vector and then
the whole local performances are not achieved.

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time(sec)

z1

ẑ1

Figure 2: Evolution of the variables z1 and ẑ1.

0 2 4 6 8 10
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time(sec)

z2

ẑ2

Figure 3: Evolution of the variables z2 and ẑ2.

These results are confirmed in figures 4 and 5
which represent the behaviors of the state variables
x = [x1 x2], solution of equation (25), and x̂ =
[x̂1 x̂2], given by the equation (26).
It appears in the below figures the convergence of the
state variables, x and x̂, to the origin. But, they have
not the same dynamical evolution. Then, we can con-
firm, again, the non validity of the nonlinear transfor-
mation. Consequently, we check the bad influence of
bad choice of the parameters βj .
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0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time(sec)

x1

x̂1

Figure 4: Evolution of the variables x1 and x̂1.

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time(sec)

x2

x̂2

Figure 5: Evolution of the variables x2 and x̂2.

When implementing the MC optimization
method, we have obtained these following parameters
among 50 candidates, according to objective function
(20) :
β0 = 0.0858;
β1 =

[
1.8341 3.8404

]
;

β2 =
[

9.7181 7.0742 6.9618 9.0388
]
.

which correspond to the following αi:
α1 =

[ −0.8285 −3.2427
]
;

α2 =
[

3.6681 6.5915 6.5915 11.5212
]
;

α3 =
[

α31 α32

]
with

α31 =
[

22.3325 22.2969 22.2969 23.1994
]
,

α32 =
[

22.2969 23.1994 23.1994 31.0437
]
.

Thus, the components of the nonlinear transformation
φ(x) are:

φ1 =
[

1 0
0 1

]
;

φ2 =
[ −4.5168 −5.3063 −5.3063 −6.5720

3.5375 3.8645 3.8645 4.7221

]
;

φ3 =
[

φ31 φ32

]
with

φ31 =
[ −5.4867 −8.9122 −6.1698 −8.8008

6.1698 9.4187 6.3329 9.1619

]
,

φ32 =
[ −3.4274 −6.9321 −5.0635 −7.7524

3.2470 6.4195 3.6771 6.1705

]
.

In figure 6, we represent the variation of the vari-
ables (z1;ẑ1) , and in figure 7, we represent the vari-
ables (z2;ẑ2). These figures show the good concor-
dance between the state variables given by (21) and
those defined by (22). This confirms the validity of
the approximate transformation. Consequently, we
deduce the importance of the implementation of MC
algorithm.

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(sec)

z1

ẑ1

Figure 6: Evolution of the variables z1 and ẑ1.

0 2 4 6 8 10
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time(sec)

z2

ẑ2

Figure 7: Evolution of the variables z2 and ẑ2.

Moreover, the effectiveness of the use of the MC
optimization method to obtain an available nonlinear
approximate transformation, is checked by the same
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dynamical behaviors of the state vectors x and x̂ pre-
sented in figures 8 and 9.

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time(sec)

x1

x̂1

Figure 8: Evolution of the variables x1 and x̂1.

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time(sec)

x2

x̂2

Figure 9: Evolution of the variables x2 and x̂2.

In table 1, we compare the NSE, defined by (20)
for the parameters βp (p = 0, 1, 2) determined arbi-
trarily in a first study, and by the use of MC in a sec-
ond one. It appears that the NSE is very reduced in
the case of MC optimization which explain the ac-
curate concordance of variables of systems (21) and
(22). This second comparison study will conclude the
big advantage of implementing MC optimization rou-
tine when determining the βp parameters.

Arbitrary choices MC choices
NSEz 2.4772 0.0029

Table 1: Comparison of NSE

In Figure 10, we represent the dynamical evolu-
tion of the control inputs respectively obtained with
variable of transformation (21) and (22). An impor-
tant over shoot is observed in the case of arbitrary
choice of βp parameters. This will induce saturation
behavior of control variable in the case of physical
processes. However, a satisfactory behavior is ob-
tained with optimized βp parameters.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time(sec)

Control variable for arbitrary choices

Control variable for MC choices

Figure 10: Evolution of Control inputs.

From this simulation, a new problem may arises.
Thus, the above solution can lead to a valid nonlinear
approximate transformation. But, one can not ensure
that the obtained control input is saturated or not. To
solve this problem, we resort, in the next subsection,
to an optimization algorithm where some constraints,
concerning the non-saturation of the control input, are
imposed to the objective function.

4.2 Second study: Constrained Optimiza-
tion

In this study, we consider the same objective function
where some constraints are imposed. These latter will
be on the control variable.
Then, the considered problem becomes:
Minimize the objective function given by:

NSEz =
‖z − ẑ‖2

2

‖z‖2
2

under constraints:

umin ≤ u ≤ umax (29)

In the present simulation:
umin = 0 and umax = 1,
The following parameters are the best parameters
which yield the minimum value of the objective
function and satisfy the imposed constraints.
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β0 = 0.0829;
β1 =

[
2.2084 8.3464

]
;

β2 =
[

9.4788 2.9673 5.2031 8.5939
]
.

these latter lead to the best αi parameters:

α1 =
[ −0.8342 −3.2513

]
;

α2 =
[

4.4168 11.6590 11.6590 25.0392
]
;

α3 =
[

α31 α32

]
with

α31 =
[

22.4813 20.8346 20.8346 20.2213
]
,

α32 =
[

20.8346 20.2213 20.2213 34.4779
]
.

and also, we obtain the following components of the
approximate nonlinear transformation:

φ1 =
[

1 0
0 1

]
;

φ2 =
[ −4.5471 −5.3449 −5.3449 −6.6223

3.5633 3.8960 3.8960 4.7621

]
;

φ3 =
[

φ31 φ32

]
with

φ31 =
[ −5.5402 −9.0059 −6.2329 −8.8976

6.2329 9.5216 6.4022 9.2673

]
,

φ32 =
[ −3.4598 −7.0060 −5.1145 −7.8379

3.2828 6.4943 3.7212 6.2477

]
.

So that, we solve the considered problem by the de-
termination of:

- an effectiveness nonlinear approximate transfor-
mation. This effectiveness is checked by the
small error: NSEz = 0.0033 which confirms
a perfect concordance between the exact and ap-
proximate nonlinear transformations.

- a satisfactory control without worries about satu-
ration of this latter. Thus, the figure 11 shows
that the control input does not exceed the im-
posed limits.

0 2 4 6 8 10
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0.2

0.4

0.6

0.8

1

Time(sec)

Control variable

Figure 11: Evolution of Control input.

5 Conceptual Algorithm
This paragraph is reserved to present the conceptual
algorithm of the developed method:
Given the control-affine nonlinear system of the fol-
lowing form:

ẋ = f (x) + g (x) u (30)

Step 1: Transform the system (30)to the analytical
form described by equation (1).
Step 2: Determine a stable linear equivalent system
defined by (4).
Step 3: Initialize randomly and independently the pa-
rameters: β0, β1, . . . , βq, where q is a truncation order.
Step 4: Determine the parameters of the nonlinear re-
verse transformation: S1, S2, . . . , Sq, and the parame-
ters of the static feedback: α1, α2, . . . , αq, using (18).
Step 5: Determine the parameters of the nonlinear
transformation φ1, φ2, . . . , φq, using (19).
Step 6: Calculate the value of the objective function
(20) for these parameters.
Step 7: Repeat step 3 to step 6 until the constraints
umin ≤ u ≤ umax is not satisfied.

6 Conclusion
The first idea developed, in this paper, is the synthesis
of a new polynomial approach to solve practical im-
plementation difficulties of Input-State feedback lin-
earization method. To achieve this goal we have used
analytical representations and the Kronecker product
and power tools. The new approximate approach con-
sists in: firstly, determining a nonlinear change of co-
ordinates to a linear stable system, secondly, deriving
a polynomial approximate control law via this trans-
formation.
The purpose of the second part, is ensuring the effec-
tiveness of such transformation and obtaining a satis-
factory dynamical behavior of the control signal. So
that, we have exploit the Monte Carlo optimization
method without and under contraints to determine the
optimal parameters which achieve the second goal.
Our future work will focus on the design of a stability
analysis by the search of a Lyapunov function. This
will ensure the maximization of asymptotical stability
regions around the considered operating points.
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