
Weather Condition Double Checking in Internet SCADA Environment

Tai-hoon Kim
Multimedia Engineering Department,

Hannam University
133 Ojeong-dong, Daeduk-gu, Daejeon,

Korea
taihoonn@hnu.kr

Abstract: - The function of SCADA is collecting of the information, transferring it back to the central site,
carrying out any necessary analysis and control and then displaying that information on a number of operator
screens. Systems automatically control the actions and control the process of automation. Internet SCADA
was developed to widen the coverage span of the SCADA system. In this paper, we design a double checking
scheme for Weather Condition in Internet SCADA Environment. This is to improve the accuracy of data and
to improve the performance of SCADA systems.

Key-Words: - SCADA, TeleControl, API, Control Systems

1 Introduction
Supervisory Control and Data Acquisition

(SCADA) systems are now used in mining
industries, modern manufacturing and industrial
processes, public and private utilities, leisure and
security industries. In these situations, telemetry is
needed to connect systems and equipment separated
by long distances. Some of this ranges to up to
thousands of kilometers. In these cases, SCADA are
sometimes connected through the Internet. The
purpose of this is to widen the coverage span of the
SCADA System. To improve the accuracy of data
and to improve the performance of SCADA systems,
we design a double checking scheme for Weather
Condition in Internet SCADA Environment. This
scheme uses data from weather API Providers.
Many API Provider such as Google, Yahoo, etc have
Weather API’s. Weather API’s can give weather
condition and forecast about a specific place.

2 Related Technologies

In this section, we discuss the related technologies
for this work. SCADA or Supervisory Control and
Data Acquisition Systems and its components are
discussed. The integration of SCADA to the Internet
is studied and lastly, the API’s and its functionality.

2.1 Supervisory Control and Data Acquisition

Systems

Supervisory Control and Data Acquisition
(SCADA) existed long time ago when control
systems were introduced. SCADA systems that time
use data acquisition by using strip chart recorders,
panels of meters, and lights. Not similar to modern
SCADA systems, there is an operator which
manually operates various control knobs exercised
supervisory control. These devices are still used to
do supervisory control and data acquisition on power
generating facilities, plants and factories.

Telemetry is automatic transmission and
measurement of data from remote sources by wire or
radio or other means. It is also used to send
commands, programs and receives monitoring
information from these remote locations. SCADA is
the combination of telemetry and data acquisition.
Supervisory Control and Data Acquisition system is
compose of collecting of the information,
transferring it to the central site, carrying out any
necessary analysis and control and then displaying
that information on the operator screens. The
required control actions are then passed back to the
process. [1]. Typically SCADA systems include the
following components: [2]

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 623 Issue 8, Volume 5, August 2010

1. Operating equipment such as pumps, valves,
conveyors and substation breakers that can be
controlled by energizing actuators or relays.

2. Local processors that communicate with the site’s
instruments and operating equipment.

3. Instruments in the field or in a facility that sense
conditions such as pH, temperature, pressure,
power level and flow rate.

4. Short range communications between the local
processors and the instruments and operating
equipment.

5. Long range communications between the local
processors and host computers.

6. Host computers that act as the central point of
monitoring and control.

The measurement and control system of SCADA

has one master terminal unit (MTU) which could be
called the brain of the system and one or more
remote terminal units (RTU). The RTUs gather the
data locally and send them to the MTU which then
issues suitable commands to be executed on site. A
system of either standard or customized software is
used to collate, interpret and manage the data.

Supervisory Control and Data Acquisition
(SCADA) is conventionally set upped in a private
network not connected to the internet. This is done
for the purpose of isolating the confidential
information as well as the control to the system itself.
Because of the distance, processing of reports and
the emerging technologies, SCADA can now be
connected to the internet. This can bring a lot of
advantages and disadvantages which will be
discussed in the sections.

Conventionally, relay logic was used to control
production and plant systems. With the discovery of
the CPU and other electronic devices, manufacturers
incorporated digital electronics into relay logic
equipment. Programmable logic controllers or PLC's
are still the most widely used control systems in
industry. As need to monitor and control more
devices in the plant grew, the PLCs were distributed
and the systems became more intelligent and smaller
in size. PLCs (Programmable logic controllers) and
DCS (distributed control systems) are used as shown
in Figure 1.

Figure 1. Conventional SCADA Architecture

Data acquisition begins at the RTU or PLC level and
includes meter readings and equipment status reports
that are communicated to SCADA as required. Data
is then compiled and formatted in such a way that a
control room operator using the HMI can make
supervisory decisions to adjust or override normal
RTU (PLC) controls. Data may also be fed to a
Historian, often built on a commodity Database
Management System, to allow trending and other
analytical auditing.

SCADA systems typically implement a
distributed database, commonly referred to as a tag
database, which contains data elements called tags or
points. A point represents a single input or output
value monitored or controlled by the system. Points
can be either "hard" or "soft". A hard point
represents an actual input or output within the
system, while a soft point results from logic and
math operations applied to other points. (Most
implementations conceptually remove the
distinction by making every property a "soft" point
expression, which may, in the simplest case, equal a
single hard point.) Points are normally stored as
value-timestamp pairs: a value, and the timestamp
when it was recorded or calculated. A series of
value-timestamp pairs gives the history of that point.
It's also common to store additional metadata with
tags, such as the path to a field device or PLC
register, design time comments, and alarm
information.

2.1.1 SCADA Human Machine Interface

In SCADA and in the industrial design field of
human-machine interaction, the user interface is (a
place) where interaction between humans and
machines occurs. The goal of interaction between a
human and a machine at the user interface is
effective operation and control of the machine, and

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 624 Issue 8, Volume 5, August 2010

feedback from the machine which aids the operator
in making operational decisions. Examples of this
broad concept of user interfaces include the
interactive aspects of computer operating systems,
hand tools, heavy machinery operator controls and
process controls.

The goal of human-machine interaction
engineering is to produce a user interface which
makes it easy, efficient, and enjoyable to operate a
machine in the way which produces the desired
result. This generally means that the operator needs
to provide minimal input to achieve the desired
output, and also that the machine minimizes
undesired outputs to the human.

Ever since the increased use of personal
computers and the relative decline in societal
awareness of heavy machinery, the term user
interface has taken on overtones of the (graphical)
user interface, while industrial control panel and
machinery control design discussions more
commonly refer to human-machine interfaces.

The design of a user interface affects the amount
of effort the user must expend to provide input for
the system and to interpret the output of the system,
and how much effort it takes to learn how to do this.
Usability is the degree to which the design of a
particular user interface takes into account the
human psychology and physiology of the users, and
makes the process of using the system effective,
efficient and satisfying.

Usability is mainly a characteristic of the user
interface, but is also associated with the
functionalities of the product and the process to
design it. It describes how well a product can be
used for its intended purpose by its target users with
efficiency, effectiveness, and satisfaction.

Figure 2. An Example of a SCADA Human
Machine Interface

SCADA system includes a user interface which is
usually called Human Machine Interface (HMI).
The HMI of a SCADA system is where data is
processed and presented to be viewed and monitored
by a human operator. This interface usually includes
controls where the individual can interface with the
SCADA system. HMI's are an easy way to
standardize the facilitation of monitoring multiple
RTU's or PLC's (programmable logic controllers).
Usually RTU's or PLC's will run a pre programmed
process, but monitoring each of them individually
can be difficult, usually because they are spread out
over the system. Because RTU's and PLC's
historically had no standardized method to display
or present data to an operator, the SCADA system
communicates with PLC's throughout the system
network and processes information that is easily
disseminated by the HMI. HMI's can also be linked
to a database, which can use data gathered from
PLC's or RTU's to provide graphs on trends, logistic
info, schematics for a specific sensor or machine or
even make troubleshooting guides accessible. In the
last decade, practically all SCADA systems include
an integrated HMI and PLC device making it
extremely easy to run and monitor a SCADA
system.

The HMI package for the SCADA system
typically includes a drawing program that the
operators or system maintenance personnel use to
change the way these points are represented in the
interface. These representations can be as simple as
an on-screen traffic light, which represents the state
of an actual traffic light in the field, or as complex as
a multi-projector display representing the position of
all of the elevators in a skyscraper or all of the trains
on a railway.

Alarm handling is an important part of most
SCADA implementations. The system monitors
whether certain alarm conditions are satisfied, to
determine when an alarm event has occurred. Once
an alarm event has been detected, one or more
actions are taken (such as the activation of one or
more alarm indicators, and perhaps the generation of
email or text messages so that management or
remote SCADA operators are informed). In many
cases, a SCADA operator may have to acknowledge
the alarm event; this may deactivate some alarm
indicators, whereas other indicators remain active
until the alarm conditions are cleared. Alarm

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 625 Issue 8, Volume 5, August 2010

conditions can be explicit - for example, an alarm
point is a digital status point that has either the value
NORMAL or ALARM that is calculated by a
formula based on the values in other analogue and
digital points - or implicit: the SCADA system
might automatically monitor whether the value in an
analogue point lies outside high and low limit values
associated with that point. Examples of alarm
indicators include a siren, a pop-up box on a screen,
or a colored or flashing area on a screen (that might
act in a similar way to the "fuel tank empty" light in
a car); in each case, the role of the alarm indicator is
to draw the operator's attention to the part of the
system 'in alarm' so that appropriate action can be
taken. In designing SCADA systems, care is needed
in coping with a cascade of alarm events occurring
in a short time, otherwise the underlying cause
(which might not be the earliest event detected) may
get lost in the noise. Unfortunately, when used as a
noun, the word 'alarm' is used rather loosely in the
industry; thus, depending on context it might mean
an alarm point, an alarm event or an alarm indicator.

2.1.2 SCADA Hardware

A SCADA system consists of a number of remote
terminal units (RTUs) collecting field data and
sending that data back to a master station, via a
communication system. The master station displays
the acquired data and allows the operator to perform
remote control tasks.

The accurate and timely data allows for
optimization of the plant operation and process.
Other benefits include more efficient, reliable and
most importantly, safer operations. This results in a
lower cost of operation compared to earlier
non-automated systems.

Supervisory Control and Data Acquisition
Systems usually have Distributed Control System
components. PLCs or RTUs are also commonly
used; they are capable of autonomously executing
simple logic processes without a master computer
controlling it. A functional block programming
language, IEC 61131-3, is frequently used to create
programs which run on these PLCs and RTUs. This
allows SCADA system engineers to perform both
the design and implementation of a program to be
executed on an RTU or PLC. From 1998, major PLC
manufacturers have offered integrated

HMI/SCADA systems, many use open and
non-proprietary communications protocols. Many
third-party HMI/SCADA packages, offering built-in
compatibility with most major PLCs, have also
entered the market, allowing mechanical engineers,
electrical engineers and technicians to configure
HMIs themselves. Many other hardware are also
basing its functionality to those of PLC’s. [11]

The communications system provides the
pathway for communication between the master
station and the remote sites. This communication
system can be wire, fiber optic, radio, telephone line,
microwave and possibly even satellite. Specific
protocols and error detection philosophies are used
for efficient and optimum transfer of data.

The master station (or sub-masters) gather data
from the various RTUs and generally provide an
operator interface for display of information and
control of the remote sites. In large telemetry
systems, sub-master sites gather information from
remote sites and act as a relay back to the control
master station.

2.1.3 SCADA Software

Supervisory Control and Data Acquisition software
can be divided into proprietary type or open type.
Proprietary software are developed and designed for
the specific hardware and are usually sold together.
The main problem with these systems is the
overwhelming reliance on the supplier of the system.
Open software systems are designed to
communicate and control different types of
hardware. It is popular because of the
interoperability they bring to the system. [1]
WonderWare and Citect are just two of the open
software packages available in the market for
SCADA systems. Some packages are now including
asset management integrated within the SCADA
system.

2.1.4 SCADA Communication

SCADA systems have traditionally used
combinations of radio and direct serial or modem
connections to meet communication requirements,
although Ethernet and IP over SONET / SDH is also
frequently used at large sites such as railways and
power stations. The remote management or

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 626 Issue 8, Volume 5, August 2010

monitoring function of a SCADA system is often
referred to as telemetry.

This has also come under threat with some
customers wanting SCADA data to travel over their
pre-established corporate networks or to share the
network with other applications. The legacy of the
early low-bandwidth protocols remains, though.
SCADA protocols are designed to be very compact
and many are designed to send information to the
master station only when the master station polls the
RTU. Typical legacy SCADA protocols include
Modbus RTU, RP-570, Profibus and Conitel. These
communication protocols are all SCADA-vendor
specific but are widely adopted and used. Standard
protocols are IEC 60870-5-101 or 104, IEC 61850
and DNP3. These communication protocols are
standardized and recognized by all major SCADA
vendors. Many of these protocols now contain
extensions to operate over TCP/IP. It is good
security engineering practice to avoid connecting
SCADA systems to the Internet so the attack surface
is reduced.

RTUs and other automatic controller devices
were being developed before the advent of industry
wide standards for interoperability. The result is that
developers and their management created a
multitude of control protocols. Among the larger
vendors, there was also the incentive to create their
own protocol to "lock in" their customer base. A list
of automation protocols is being compiled here.

Recently, OLE for Process Control (OPC) has
become a widely accepted solution for
intercommunicating different hardware and
software, allowing communication even between
devices originally not intended to be part of an
industrial network.

Central computer of the data acquisition system,
located in the hydro power plant, provides
measurements performance according to a preset
program, the instrumentation existing at this time
and remote communications by RS485 bus, using
Master-Slave architecture and IEC1107, Modbus
RTU, ASCII protocols.[10]

2.2 Internet SCADA

Conventional SCADA only have 4 components: the
master station, plc/rtu, fieldbus and sensors. Internet
SCADA replaces or extends the fieldbus to the

internet. This means that the Master Station can be
on a different network or location.

In Figure 3, you can see the architecture of

SCADA which is connected through the internet.
Like a normal SCADA, it has RTUs/PLCs/IEDs,
The SCADA Service Provider or the Master Station.
This also includes the user-access to SCADA
website. This is for the smaller SCADA operators
that can avail the services provided by the SCADA
service provider. It can either be a company that uses
SCADA exclusively. Another component of the
internet SCADA is the Customer Application which
allows report generation or billing. Along with the
fieldbus, the internet is an extension. This is setup
like a private network so that only the master station
can have access to the remote assets. The master also
has an extension that acts as a web server so that the
SCADA users and customers can access the data
through the SCADA provider website.

Figure 3. Internet SCADA Architecture [3]

One may ask why we need to connect SCADA on

the Internet even though there are a lot of issues
surrounding it. The answer is because of many
advantages it presents. [4]

• Parallel Polling
• Redundancy and Hot Standby
• Large addressing range
• Wide area connectivity and

pervasive
• Standardization
• Routable
• Integration of IT to Automation and

Monitoring Networks

2.3 Web API

API's or application program interface, are set of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 627 Issue 8, Volume 5, August 2010

routines, protocols, and tools for building software
applications. A good API makes it easier to develop
a program by providing all the building blocks. A
programmer then puts the blocks together. [5]

When used in the context of web development, an
API is typically a defined set of Hypertext Transfer
Protocol (HTTP) request messages, along with a
definition of the structure of response messages,
which is usually in an Extensible Markup Language
(XML) or JavaScript Object Notation (JSON) format.
While "Web API" is virtually a synonym for web
service, the recent trend (so-called Web 2.0) has
been moving away from Simple Object Access
Protocol (SOAP) based services towards more direct
Representational State Transfer (REST) style
communications.[6] Web APIs allow the
combination of multiple services into new
applications known as mashups.[7]

The practice of publishing APIs has allowed web
communities to create an open architecture for
sharing content and data between communities and
applications. In this way, content that is created in
one place can be dynamically posted and updated in
multiple locations on the web.[5]

2.3.4 Web Services

Web services are typically application programming
interfaces (API) or web APIs that are accessed via
Hypertext Transfer Protocol and executed on a
remote system hosting the requested services. Web
services tend to fall into one of two camps: Big Web
Services and RESTful Web Services.

Big Web Services use Extensible Markup
Language (XML) messages that follow the Simple
Object Access Protocol (SOAP) standard and have
been popular with traditional enterprise. In such
systems, there is often a machine-readable
description of the operations offered by the service
written in the Web Services Description Language
(WSDL). The latter is not a requirement of a SOAP
endpoint, but it is a prerequisite for automated
client-side code generation in many Java and .NET
SOAP frameworks (frameworks such as Spring,
Apache Axis2 and Apache CXF being notable
exceptions). Some industry organizations, such as
the WS-I, mandate both SOAP and WSDL in their
definition of a web service.

Web API is a development in web services (in a

movement called Web 2.0) where emphasis has been
moving away from SOAP based services towards
Representational State Transfer (REST) based
communications. REST services do not require
XML, SOAP, or WSDL service-API definitions.

Web APIs allow the combination of multiple web
services into new applications known as mashups.

When used in the context of web development,
web API is typically a defined set of Hypertext
Transfer Protocol (HTTP) request messages along
with a definition of the structure of response
messages, usually expressed in an Extensible
Markup Language (XML) or JavaScript Object
Notation (JSON) format.

When running composite web services, each sub
service can be considered autonomous. The user has
no control over these services. Also the web services
themselves are not reliable; the service provider may
remove, change or update their services without
giving notice to users. The reliability and fault
tolerance is not well supported; faults may happen
during the execution. Exception handling in the
context of web services is still an open research
issue.

The W3C defines a "web service" as "a software
system designed to support interoperable
machine-to-machine interaction over a network. It
has an interface described in a machine-processable
format (specifically Web Services Description
Language WSDL). Other systems interact with the
web service in a manner prescribed by its description
using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction
with other web-related standards."

The W3C also states, "We can identify two major
classes of web services, REST-compliant Web
services, in which the primary purpose of the service
is to manipulate XML representations of Web
resources using a uniform set of "stateless"
operations; and arbitrary Web services, in which the
service may expose an arbitrary set of operations."

Most operating environments, such as
MS-Windows, provide an API so that programmers
can write applications consistent with the operating
environment. Although APIs are designed for
programmers, they are ultimately good for users
because they guarantee that all programs using a
common API will have similar interfaces. This
makes it easier for users to learn new programs. [5]

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 628 Issue 8, Volume 5, August 2010

Figure 4. Data transmission of Weather API’s

Many API Provider such as Google, Yahoo, etc

have Weather API’s. Weather API’s can give
weather condition and forecast about a specific
place.

2.3.4 Example of API Implementations

-A Java API for Using a Native PGP [8]

The Java PGP API has been implemented within the
Java class PGPi. This class provides the interface
between Java applications and the C library. PGPi
offers five different types of methods:

• Constructors
• Native methods
• Control methods
• Status methods
• Error handling

This API offers Java application developers access
to a native implementation of the widely used public
key encryption application PGP. This API makes it
possible to use an approved encryption
implementation not only for files and emails but also
for network traffic. For most uses this API provides
faster performance than the script-based solution
because the encrypted and signed messages
(software agents) sent over the network will be
mostly smaller than 50kB. Furthermore, this API
compiles and works under Windows, too. So there is

no need to adapt the shell scripts and the
output-parsing algorithm if one intends to use it on a
different platform. The script-based solution needs
to parse the output produced by PGP in order to
determine whether a signature is valid, who is the
signer and whether a message has been encrypted or
just signed. This output can differ from platform to
platform and it surely differs between different PGP
versions.

-A WSDL-based service and its container[9]

The services deployed by the grid is described by a
Web Service Description Language (WSDL)
(http://www.w3c.org) document that allows a remote
interface to be exposed. The document describes the
service as a collection of communications endpoints
or ports; it includes abstract and technical
information. All the interactions are supported by
messages transported within the SOAP protocol and
the data being exchanged are specified as part of the
message included in the SOAP document.

Every type of action allowed at an endpoint is
considered an operation. Collections of operations
possible on an endpoint are grouped together into
port types. Messages, operations and port-types are
all abstract definitions. Furthermore a port is defined
by being associated with a network address with a
reusable binding that is protocol and data format
specified for a particular port type. The collections of
ports define a service. Web Services are usually
deployed in a web application container that is
transformed from a container for presentation and
tightly coupled logic to an infrastructure that equally
supports asynchronous messages and flow
coordination.

3. Integration of Technologies to Double

Check Weather Condition

Weather API’s can be integration to Internet
SCADA systems to double check the weather
condition. Weather sensors of SCADA systems may
not gather correct data. This is very crucial and
integration of API’s can improve the data gathered.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 629 Issue 8, Volume 5, August 2010

Figure 5. SCADA Service Provider getting
information from API service server

 The following is the code that we use in gathering
the weather information from Google Web API.

Dim xml_document As New DOMDocument

Dim xml_node As IXMLDOMNode

Dim pic_icon As String

Private Sub Timer1_Timer()

debugXML.Text = inet.OpenURL("API
source", icString)

xml_document.loadXML debugXML.Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/forec
ast_information/city")

Form1.Caption = "Weather Report: " +
xml_node.Attributes.getNamedItem("data
").Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/forec
ast_information/forecast_date")

txtDate.Caption = Now

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/curre
nt_conditions/temp_c")

txtTempC.Caption =
xml_node.Attributes.getNamedItem("data
").Text

If Val(txtTempC.Caption) > 28 Then

Shape1.FillColor = &HFF&

Shape2.FillColor = &HFF&

Label2.Caption = "Please dont forget to
bring umbrella. Its hot outside"

ElseIf Val(txtTempC.Caption) < 15 Then

Shape1.FillColor = &HFF0000

Shape2.FillColor = &HFF0000

Label2.Caption = "Its cold outside.
Bring your coat"

Else

Shape1.FillColor = &HC0FFFF

Shape2.FillColor = &HC0FFFF

Label2.Caption = "We have a fair weather.
Just bring umbrella"

End If

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/curre
nt_conditions/temp_f")

txtTempF.Caption =
xml_node.Attributes.getNamedItem("data
").Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/curre
nt_conditions/humidity")

txtHumid.Caption =
xml_node.Attributes.getNamedItem("data
").Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/curre
nt_conditions/wind_condition")

txtWind.Caption =
xml_node.Attributes.getNamedItem("data
").Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/curre
nt_conditions/icon")

pic_icon = App.Path +
xml_node.Attributes.getNamedItem("data
").Text

picIcon.Picture = LoadPicture(pic_icon)

End Sub

Private Sub Label1_Click()

If Label1.Caption = "Show tommorow's
forecast" Then

Dim low As String

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 630 Issue 8, Volume 5, August 2010

Dim high As String

Dim flow As Integer

Dim fhigh As Integer

txtDate.Caption = DateAdd("d", 1, Now)

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/forec
ast_conditions/low")

low =
xml_node.Attributes.getNamedItem("data
").Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/forec
ast_conditions/high")

high =
xml_node.Attributes.getNamedItem("data
").Text

flow = (5 / 9) * (Val(low) - 32)

fhigh = (5 / 9) * (Val(high) - 32)

txtTempF.Caption = low + "~" + high

txtTempC.Caption = flow & "~" & fhigh

txtWind.Caption = ""

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/forec
ast_conditions/condition")

txtHumid.Caption = "Condition: " &
xml_node.Attributes.getNamedItem("data
").Text

Set xml_node =
xml_document.documentElement.selectSin
gleNode("//xml_api_reply/weather/forec
ast_conditions/icon")

pic_icon = App.Path +
xml_node.Attributes.getNamedItem("data
").Text

If Dir(pic_icon) <> "" Then

picIcon.Picture = LoadPicture(pic_icon)

Else

picIcon.Picture = LoadPicture("")

End If

Timer1.Enabled = False

Label1.Caption = "Back to current
conditions"

Else

Label1.Caption = "Show tommorow's
forecast"

Timer1.Enabled = True

End If

End Sub

Here is the source API.

<xml_api_reply version="1">

<weather module_id="0" tab_id="0"
mobile_row="0" mobile_zipped="1"
row="0" section="0">

<forecast_information>

<city data="daejeon,kr"/>

<postal_code data="daejeon,kr"/>

<latitude_e6 data=""/>

<longitude_e6 data=""/>

<forecast_date data="2009-06-09"/>

<current_date_time data="2009-06-09
02:20:00 +0000"/>

<unit_system data="US"/>

</forecast_information>

<current_conditions>

<condition data="Overcast"/>

<temp_f data="70"/>

<temp_c data="21"/>

<humidity data="Humidity: 78%"/>

<icon
data="/ig/images/weather/cloudy.gif"/>

<wind_condition data="Wind: E at 4
mph"/>

</current_conditions>

<forecast_conditions>

<day_of_week data="Tue"/>

<low data="64"/>

<high data="75"/>

<icon
data="/ig/images/weather/chance_of_rai
n.gif"/>

<condition data="Chance of Rain"/>

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 631 Issue 8, Volume 5, August 2010

</forecast_conditions>

</weather>

</xml_api_reply>

The result application of the above code can be
found in the Figure 6. This application has the
function of gathering weather information such as
temperature, Humidity, Wind direction, etc.

Figure 6. Interface of an application that we created
to gather weather information of a specific place
from an API source.

SCADA controller or SCADA master station can

get both data from the sensor (x) and the data from
the Weather API (y). Usually, the controller only
bases the commands on the sensor data. Since we
integrate the Weather API to the system, we can also
gather its data and we propose to get the average
between the Sensor data and the API’s data to get the
base data (z) in which the commands will be based.

z = (x + y) / 2 (1)

Formula (1) will be the bases of the SCADA

Controller in executing commands to the remote
terminals. In Figure 7, we can see the comparison
between the gathered Sensor data, API data and the
average data. We will notice that there’s sometimes a
difference between the Sensor data and API data.

Figure 7. Comparisons of Gathered Sensor Data,
API Data and the Average

4. Future Studies
Existing and future security issues may occur while
implementing this architechture. In our future
studies we plan to eliminate security issues is
SCADA and in Web Services such as the following:

4.2 SCADA Security Issues

Even before SCADA was connected to the
Internet, It is already surrounded by many security
Issues and now the Internet has made them more
vulnerable to attacks. Consequently, the security of
SCADA-based systems has come into question as
they are increasingly seen as extremely vulnerable to
cyberwarfare/cyberterrorism attacks. Here are the
common security issues in SCADA: [12]

• The lack of concern about security and

authentication in the design, deployment and
operation of existing SCADA networks.

• The belief that SCADA systems have the benefit
of security through obscurity through the use of
specialized protocols and proprietary interfaces.

• The belief that SCADA networks are secure
because they are purportedly physically secured.

• The belief that SCADA networks are secure
because they are supposedly disconnected from
the Internet.

• IP Performance Overhead of SCADA connected
to the Internet.

SCADA systems are used to control and monitor

physical processes, examples of which are

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 632 Issue 8, Volume 5, August 2010

transmission of electricity, transportation of gas and
oil in pipelines, water distribution, traffic lights, and
other systems used as the basis of modern society.
The security of these SCADA systems is important
because compromise or destruction of these
systems would impact multiple areas of society far
removed from the original compromise. For
example, a blackout caused by a compromised
electrical SCADA system would cause financial
losses to all the customers that received electricity
from that source. How security will affect legacy
SCADA and new deployments remains to be seen.

There are two distinct threats to a modern
SCADA system. First is the threat of unauthorized
access to the control software, whether it be human
access or changes induced intentionally or
accidentally by virus infections and other software
threats residing on the control host machine. Second
is the threat of packet access to the network
segments hosting SCADA devices. In many cases,
there is rudimentary or no security on the actual
packet control protocol, so anyone who can send
packets to the SCADA device can control it. In
many cases SCADA users assume that a VPN is
sufficient protection and are unaware that physical
access to SCADA-related network jacks and
switches provides the ability to totally bypass all
security on the control software and fully control
those SCADA networks. These kinds of physical
access attacks bypass firewall and VPN security and
are best addressed by endpoint-to-endpoint
authentication and authorization such as are
commonly provided in the non-SCADA world by
in-device SSL or other cryptographic techniques.

Many vendors of SCADA and control products
have begun to address these risks in a basic sense by
developing lines of specialized industrial firewall
and VPN solutions for TCP/IP-based SCADA
networks. Additionally, application whitelisting
solutions are being implemented because of their
ability to prevent malware and unauthorized
application changes without the performance
impacts of traditional antivirus scans.

4.2 Web Services Security Issues and Criticisms

Critics of non-RESTful Web services often
complain that they are too complex and based upon
large software vendors or integrators, rather than

typical open source implementations. There are open
source implementations like Apache Axis and
Apache CXF.

One key concern of the REST Web Service
developers is that the SOAP WS toolkits make it
easy to define new interfaces for remote interaction,
often relying on introspection to extract the WSDL,
since a minor change on the server (even an upgrade
of the SOAP stack) can result in different WSDL and
a different service interface[8]. The client-side
classes that can be generated from WSDL and XSD
descriptions of the service are often similarly tied to
a particular version of the SOAP endpoint and can
break if the endpoint changes or the client-side
SOAP stack is upgraded. Well-designed SOAP
endpoints (with handwritten XSD and WSDL) do
not suffer from this but there is still the problem that
a custom interface for every service requires a
custom client for every service.

There are also concerns about performance due to
Web services' use of XML as a message format and
SOAP/HTTP in enveloping and transport. However,
emerging XML parsing and indexing technologies,
such as VTD-XML, promise to address
XML-related performance issues.

5. Conclusion
SCADA systems are very important since they
control most infrastructures that we consider critical.
The security of these SCADA systems is important
because compromise or destruction of these systems
would impact multiple areas of society far removed
from the original compromise. The data that is
gathered by the system is very important. The system
reacts to the data it gets. Imagine what will happen if
the data is not accurate. It can damage the society. To
improve the accuracy of data and to improve the
performance of SCADA systems, we design a
double checking scheme for Weather Condition in
Internet SCADA Environment. This scheme uses
data from weather API Providers. Many API
Provider such as Google, Yahoo, etc have Weather
API’s. Weather API’s can give weather condition
and forecast about a specific place.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 633 Issue 8, Volume 5, August 2010

References

1. D. Bailey and E. Wright (2003) Practical

SCADA for Industry
2. Andrew Hildick-Smith (2005) Security for

Critical Infrastructure SCADA Systems
3. D. Wallace (2003) Control Engineering.

How to put SCADA on the Internet
http://www.controleng.com/article/CA32106
5.html Accessed: January 2009

4. Internet and Web-based SCADA
http://www.scadalink.com/technotesIP.htm
Accessed: January 2009

5. "What is API? A word definition from the
Webopedia Computer Dictionary"
http://www.webopedia.com/TERM/A/API.h
tml Accessed: April 2010

6. Benslimane, Djamal; Schahram Dustdar, and
Amit Sheth (2008). "Services Mashups: The
New Generation of Web Applications". IEEE
Internet Computing, vol. 12, no. 5. Institute
of Electrical and Electronics Engineers. pp.
13–15.

7. Niccolai, James (2008-04-23), "So What Is
an Enterprise Mashup, Anyway?", PC World

8. THOMAS JAMPEN, MANUEL GU¨
NTER, TORSTEN BRAUN, "A Java API for
Using a Native PGP Implementation", 6th
WSEAS CSCC (CSCC 2002)
MULTICONFERENCE

9. SERENA PASTORE, "Internet technologies
and the grid paradigm: designing a custom
environment for web service-based
applications", Proceedings of the 6th
WSEAS International Conference on
Simulation, Modelling and Optimization,
Lisbon, Portugal, September 22-24, 2006,
pp. 693-698

10. COSTIN CEPISCA, HORIA ANDREI,
EMIL PETRESCU, CRISTIAN PIRVU,
CAMELIA PETRESCU, "Remote Data
Acquisition System for Hydro Power Plants",
Proceedings of the 6th WSEAS International
Conference on Power Systems, Lisbon,
Portugal, September 22-24, 2006, pp. 59-64

11. RAMÓN
MARTÍNEZ-RODRÍGUEZ-OSORIO,
MIGUEL CALVO-RAMÓN, MIGUEL Á.

FERNÁNDEZ-OTERO, LUIS CUELLAR
NAVARRETE, "Smart control system for
LEDs traffic-lights based on PLC",
Proceedings of the 6th WSEAS International
Conference on Power Systems, Lisbon,
Portugal, September 22-24, 2006, pp.
256-260

12. Rosslin John Robles, MIn-kyu Choi,
Eun-suk Cho, "A Paradigm Solution to P2P
Security Issues," AST 2009,pp.3-7, The First
International e-Conference on Advanced
Science and Technology, 7-9 March 2009,
ISBN 978-0-7695-3672-9

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tai-Hoon Kim

ISSN: 1991-8763 634 Issue 8, Volume 5, August 2010

