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Abstract: - Fuzzy set theory and fuzzy logic are the convenient tools for handling uncertain, imprecise, or 

unmodeled data in intelligent decision-making systems. The utility of fuzzy logic in system controls domain is 

presented in the context of a mobile robot navigation control application. The Takagi-Sugeno controller is a 

fuzzy model capable of approximating a wide class of nonlinear systems by decomposing the input space into 

several partial fuzzy subspaces and representing the output space with a linear equation. The output control 

action is obtained from the rule-base and a set of crisp inputs. A Takagi-Sugeno type Fuzzy Logic Controller 

(FLC), to work with crisp data, intervals and fuzzy sets inputs, is proposed in connection with a mobile robot 

navigation model. The model also works with a set of t-norms, and for any t-norm an output value is obtained. 

Finally, these outputs are combined to obtain the overall output of the system.  

 

Key-Words: - Fuzzy set, Fuzzy logic control, Zero order system, Mobile robot, Repulsive angle, T-norm. 

 

1 Introduction 
Applications in the field of autonomous robots are 

generally based on navigating from a start point to 

goal point in a known or unknown environment. In 

daily life, autonomous robots are used in many 

missions like planetary exploration and space 

applications. In these applications the points that 

should be visited are unknown. But, for an 

autonomous robot, consuming less energy is very 

important and it is obvious that the more 

autonomous robot travels more energy and time is 

consumed. To fulfil these constraints, a shorter path 

is preferred rather than a longer path. Therefore an 

intelligent path planning algorithm is always 

required. Since a robot works in a real and dynamic 

environment, the path planning algorithm should 

construct the path in real time. Research on robots 

has attracted attention in the last years [1] and was 

mainly directed to the use of kinematic models of 

the mobile robots to achieve and accomplish the 

motion control [2 - 6]. Later on, the research has 

been focused on robots with additional sensory 

system to develop autonomous guidance path 

planning systems [7]. Sophisticated sensory systems 

has been used in [8], helping the software to learn 

about the operating environment and to evaluate 

path constraints for a good path planning 

programming. A virtual reality modeling of 

autonomous searching robots has been described in 

[9] and [10]. A fuzzy logic controller is a collection 

of fuzzy if-then rules that accompanied by suitable 

membership functions form the rule-base core of the 

system. A FLC is well suited for controlling a robot 

since it is capable of making inferences even under 

uncertainty [11, 12, 13]. Handling uncertain and 

imprecise data for decision-making systems was 

discussed in [14]. From the class of classical FLC 

including Mamdani, Takagi-Sugeno, Tsukamoto, 

Larsen, the Takagi-Sugeno model is an engineering 

tool for modeling and controlling complex systems. 

It is described by fuzzy IF-THEN rules which can 

give local linear representation of a nonlinear 

system by decomposing the whole input space into 

several partial fuzzy subspaces and representing 

each output space with a linear equation. Such a 

model is capable of approximating a wide class of 
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nonlinear systems. Because it uses the linear model 

in the consequent part, conventional linear system 

theory can be applied for the analysis and synthesis 

accordingly. The model proposed by Takagi and 

Sugeno is one of the most efficient fuzzy models 

that can represent nonlinear systems or functions. 

The consequent part in Takagi-Sugeno inference 

system is a linear equation or constant coefficient. 

In the case of linear equation, the system is of ”first 

order” and the constant type has  ”zero order”. In 

this paper is proposed a version of Takagi-Sugeno 

FLC with the following characteristics: 

• the linguistic terms (or values) are represented 

by triangular fuzzy numbers 

• the system accepts crisp data, intervals and 

fuzzy sets as inputs 

• a set of t-norms are used to compute the firing 

level of the rules 

• for every  t-norm, the output of the system is 

calculated using the discrete Center Of Gravity 

(COG), to aggregate the outputs of the rules 

• an Ordered Weighted Averaging (OWA) 

operator is used to aggregate the previous 

outputs in order to obtain the overall control 

action of the system. 

The proposed newly fuzzy inference mechanism is 

structured on the same set of rules and very close 

values of the membership functions as the ones used 

in [15]. 

 

 

2 Mathematical Model of the Robot 
A robot has to move on a time and collision-free 

path and navigating among obstacles while 

satisfying the kinematic and dynamic constraints. 

Therefore, the major main work for path planning 

for autonomous mobile robot is to search a collision 

free path. Many works on this topic have been 

carried out for the path planning of autonomous 

mobile robot [16]. In the next two sub-sections, the 

kinematic and dynamic constraints of an 

autonomous robot are presented. 

 

2.1  Robot Kinematics 
An autonomous mobile robot has to move on an 

optimal path (time and collision-free optimal path 

[17]) on which it must avoid various obstacles and 

satisfy the kinematic constraints. 

For this study the robot is modeled as a rigid body 

with two wheels, as shown in Fig. 1. The robot 

motion is defined on a plane surface, with the 2 

wheels making contact point with the planar ground 

surface. The rigid body coordinate system of the 

robot has the origin at the midpoint of the axle of 

the robot, the longitudinal axis rx  points toward the 

front of the robot and the transversal axis ry  points 

toward the left wheel. The robot is moving in a 

defined environment navigating among obstacles to 

reach a target. For the presented case, only one 

obstacle is considered as it is shown in Fig. 1. It is 

also considered that the designed target represents 

an attractive force and the obstacle represents a 

repulsive force. The attractive vector force Av  (due 

to the attractive target force), the repulsive vector 

force Rv  (due to the repulsive obstacle acting on the 

robot), and the robot trajectory to the target are 

depicted in Fig. 1. The robot direction is denoted by 

Dv . 

 

 
Fig. 1: The robot model 

 

For the study of the robot kinematics the 

configuration of the moving robot at each time 

instant is defined by the triple [ ]θ,, yx , where ( )yx,  

represents the global position of the robot, i.e., the 

x -coordinate  and y -coordinate of the midpoint of 

the robot axle (relative to the origin of a Cartesian 

reference frame xOy ), and θ  represents the robot 

orientation, i.e., the angle between the robot’s 

longitudinal axis (the main axis of the robot) and the 

Ox  axis. 

In order to obtain the kinematic model of the robot, 

the differential relations between the configuration 

variables and the driving inputs, has to be derived. 

For the presented kinematic model the no-slip 

condition is assumed, i.e., the robot acceleration is 
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such that the exercised forces (in the longitudinal 

and lateral directions) on the robot’s tires do not 

exceed the maximum static friction between the tires 

and the ground. Based on the no-slip model, it can 

be observed that the velocities of the center of the 

robot’s wheels do not have any lateral components, 

is parallel with the wheel planes and can be related 

to the rotational velocity of the wheels. 

The lateral no-slip condition states that the lateral 

velocity of the robot is zero at all times. The no-slip 

condition can be expressed as 

,0sincos =− θθ xy ɺɺ    

and so 

( ) ( )
( )tx
ty

t
ɺ

ɺ
arctan=θ .   

Assuming that the point ( )yx,  of the robot moves 

with a linear speed v , while the robot has an 

angular velocity u , one can write the velocity 

components of the point ( )yx,  in the inertial frame 

as 

,cosθux =ɺ θsinuy =ɺ .        (1) 

The rate of change of robot orientation can be 

expressed 

                                 ωθ =ɺ .                      (2) 

Using Eqs. (1) and (2) the kinematic equations of 

the robot motion can be written as    

,θucoxx =ɺ  

θsinuy =ɺ , 

ωθ =ɺ , 

or equivalent in a matrix form 


























=
















ω
θ
θ

θ

u
y

x

10

0sin

0cos

ɺ

ɺ

ɺ

.     (3) 

The motion of the robot can be predicted by 

specifying the driving inputs u  and ω . Assuming 

that  

( ) tlr Luu −=ω , 

 Eq. 3 can be rewritten as 
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where tL  is the distance between the wheels. 

 

2.2 Robot Dynamics 
To study the robot dynamics it was considered that 

the robot wheels can be controlled independently. 

While in motion, the robot is subjected to various 

dynamic constraints, such as wheels sliding or 

wheels torque constraint. Since the dynamics of the 

robot changes depending on whether the wheels are 

rolling or sliding, there are three different cases to 

be studied, 

• both wheels are rolling 

• both wheels are sliding 

• one wheel is rolling and another wheel is sliding 

 

The motion of the robot can be described as follows 

• the robot moves in a straight line if both wheels 

are rotating with the same angular velocity in 

the same direction 

• the robot moves on a curved trajectory if the 

wheels are rotating with different angular 

velocity in the same direction 

• the robot rotate (pivot) about its vertical axis if 

the wheels are rotating in opposite directions, 

with the same angular velocity (the same 

magnitude) 

 

As mentioned before, the robot is described by the 

position of the center of mass ( x  and y ), by its 

orientation θ , and by the angles of rotation of the 

wheels (the robot has two independently actuated 

wheels, with the inputs the torques lu  and ru ). 

Based on the no-slip model, the velocity of the 

global position P  of the robot (midpoint of the 

robot axle) with respect to the right and left wheel 

can be written as, 

ωψ
2

t

rr

L
dv += ɺ , 

ωψ
2

t
ll

L
dv += ɺ , 

where d  is the wheel radius, lψɺ  and rψɺ  are the 

rotational velocities of the left and right wheel 

respectively, ω is the rotational velocity of the body 

of the robot, and the velocity constraint equation is 

( )dL rlt ψψω −= . 

The velocity components of the midpoint of the 

robot axle can now be written as 

θωψ cos
2









+= t

rP

L
dx ɺɺ , 
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θωψ sin
2









+= t

rP

L
dy ɺɺ . 

The acceleration of the mass center G  of the robot 

can be calculated using the first derivative of the 

velocity, with robot acceleration such as that the no-

slip condition is assumed, i.e., acting forces on the 

tires not exceed the maximum static force. 

Applying the equations of the dynamics [18], the 

robot equations of motion can be written as in [19] 

( )
( ) ,sin

22

2

22

φ

ωωψωθ

shF

L

d

bsL
mmdsmsI tt
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where m  is the mass of the robot, vI  is the moment 

of inertia of the robot around the vertical axis 

through its center of mass, F  is the resultant force 

acting on the robot due to the attractive and 

repulsive forces, φ  is the angle between the robot 

longitudinal axis rx  and the resultant force, µ  is 

the friction coefficient,  g is the gravity, and s  is 

the distance between the robot center of the mass 

and the midpoint of the robot axle ( 0=s  if the 

location of the robot center of the mass and the 

midpoint of the robot axle are the same). 

The attractive and the repulsive forces are 

considered to be functions depending on of both the 

position and velocity of the robot, defined as the 

negative gradient of the attractive and repulsive 

potential respectively, as described in [20]. 

 

3 Sensor Data Processing 
The mobile robot is equipped with a sensorial 

system. The sensors installed on the robot (vision 

sensors such as CCD cameras, laser scanning 

system, or ultrasonic sensors) allow the robot to 

navigate in the environment with obstacle avoidance 

(collision free). 

Given such sensor modalities, the usual procedure 

for a fuzzy logic controller consists of first defining 

linguistic terminology for the input and output 

variables, partitioning the sensor space using 

appropriate fuzzy sets (membership functions), and 

formulating fuzzy rules that can give the desired 

response to the robot in its navigation problems 

[14]. 

 

Fig. 2: Scan area radial sectors of the robot 

 

For practical purposes, the robot's sensors area is 

divided in seven radial sectors labelled as: 

● Large Left (LL), Medium Left (LM) and Small Left  

(SL) for the left areas, 

● EZ for the straight area, and 

● Large Right (LR) Medium Right (MR) and Small 

Right  (SR) for the right area respectively. 

Each radial sector is further divided in other three 

regions like 

Small ( )S , Medium ( )M  and  Large ( )L  

as shown in Fig. 2.  It was considered that the 

sensors range 30 meters, and that the robot can 

identify an obstacle anywhere inside the 

interval [ ]oo 90,90− . 

 

All the considered radial sectors are used to 

construct the Takagi-Sugeno type FLC for robot 

navigation to a goal point (discussed in the next 

Section) and to calculate the corresponding 

repulsive angle, noted with Rθ . The controller has 

two inputs, the direction angle, noted with θ , and 

the distance d  towards to the target point (see Fig.  

3). 

 

 

Fig. 3: A Takagi-Sugeno FLC for a Mobile Robot 

Navigation 

 

4 Takagi-Sugeno FLC 

4.1 The Structure of a Fuzzy Controller 
Conventional controllers are derived from control 

theory techniques based on mathematical models of 

the open-loop process, called system, to be 
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controlled. Fuzzy control provides a formal 

methodology for representing, manipulating and 

implementing human's heuristic knowledge about 

how to control a system. Fuzzy logic control is the 

result of converting the linguistic control strategy 

based on expert knowledge into  control rules and of 

combining fuzzy logic theory with inference 

processes. This fuzzy logic control is very useful 

when the needed models are not known or when 

they are too complex for analysis with conventional 

quantitative techniques. In fuzzy logic controller the 

dynamic behavior of a fuzzy system is characterized 

by a set of linguistic description rules based on 

expert knowledge. The expert knowledge is usually 

of the form  

     IF (a set of conditions are satisfied )  

     THEN (a set of consequences can be  inferred). 

Because the antecedents and the conditions are 

associated with fuzzy concepts  such a rule is called 

fuzzy conditional statement. A fuzzy control rule is 

a fuzzy conditional statement in which the 

antecedent is a condition in its application domain 

and the consequent is a control action for the system 

under control. The task of a FLC system is to find a 

crisp control action from the fuzzy rule-base and 

from the actual crisp inputs. Because the inputs and 

the outputs of fuzzy rule-based systems are fuzzy 

sets, we have to fuzzify the crisp inputs and to 

defuzzify the fuzzy outputs. A standard FLC system 

[21] consists from four parts, as it results from the 

Fig. 4.  

 

Fuzzifier
U  in  x  crisp

U  in    setfuzzy

Engine

Inferrence

Fuzzy

Base

Rule

Fuzzy

V  in    setfuzzy

rDefuzzifie
V iny    crisp

Fig. 4: Fuzzy Logic Controller 

 

A fuzzification operator transforms crisp data into 

fuzzy sets. For instance, the crisp data 0x  is 

fuzzified into 0x  (according to Fig. 5). 

 

1

0x

0x

 
Fig. 5: Fuzzy singleton as fuzzifier 

 

The procedure used by Fuzzy Inference Engine in 

order to obtain a fuzzy output consists of the 

following steps: 

 1) find the firing level of each rule, 

 2) find the output of each rule, 

 3)aggregate the individual rules outputs, 

corresponding to an implication, in order to obtain 

the overall output of this implication, 

 4) combining the previous values to obtain the 

overall action of control system. 

 

The fuzzy control action C  inferred from the fuzzy 

control system is transformed into a crisp control 

action: 

( )Crdefuzzifiez =0  

where defuzzifier is a defuzzification operator. The 

most used defuzzification operators, for a discrete 

fuzzy set C  having the universe of discourse V  are: 

●   Center-of-Gravity: 

( )

( )∑

∑

=

=
=

N

j

jC

N

j

jCj

z

zz

z

1

1
0

µ

µ

 

● Middle-of-Maxima: the defuzzified value is 

defined as mean of all values of the universe of 

discourse, having maximal membership grades 

N

z

z

N

j

j∑
=

=
1

0  

●  Max-Criterion: this method chooses an arbitrary 

value, from the set of maximizing elements of  

( ) ( )






 =∈

∈
vzzz C

Vv
C µµ max/0  
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where where Cµ  is the membership function of  C  

and  { }NzzZ ,,1 ⋯=  is a set of elements from the 

universe V . 

The most known FLC systems are: Mamdani, 

Tsukamoto, Sugeno and Larsen which work with 

crisp data as inputs. An extension of the Mamdani 

model in order to work with interval inputs is 

presented in [22], where the fuzzy sets are 

represented by triangular fuzzy numbers and the 

firing level of the conclusion is computed as the 

product of firing levels from the antecedent. In [23] 

and [24] this model is extended in order to work 

simultaneously with crisp data, intervals and 

linguistic values as input. In this paper we extend 

the standard Takagi-Sugeno controller to work with 

the same data and inputs and propose to use this in a 

problem concerning the navigation of a mobile 

robot. 

 

4.2 The Proposed Model 
The Takagi-Sugeno FLC consists of a set of rules 

defined in the following form: 

 

( )

mm

mm

A,,A,A

xaxaaythen

AisxandandAisxandAisxIf

:R
m

+++= ⋯

⋯

⋯

110

2211

21

 

where ix  is an input, jA  is a linguistic label 

characterized by its membership function  

{ }mi
iA

,,2,1, ⋯∈µ  and y  is the output of the 

fuzzy rule. The firing level of each fuzzy rule is: 

( ) ( )mAA xx
m

µµα ∧∧= ⋯11
, 

where ∧  is, usually, the min  operator. The output 

of the fuzzy system is the weighted average of the 

outputs of all fuzzy rules. 

Usually, controllers applied in robotics use 

asymmetrical triangular and trapezoidal membership 

functions which allows a fast computation, essential 

under real-time conditions [25]. 

Membership functions represented by triangular 

fuzzy numbers have been selected for the considered 

computation. Such numbers ( )βα ,,mN =  are 

defined by  

( )
[ ]

[ ]














+>

+∈
−

−

−∈
−

−

−<

=

β

β
β

α
α

α

µ

mxfor

mmxfor
mx

mmxfor
xm

mxfor

xN

,0

,1

,,1

,0

 

Definition 1 A function [ ] [ ]1,01,0:
2 →T   is a         

t-norm iff it is commutative, associative, 

nondecreasing and ( ) [ ]1,0,11, ∈∀= xxT . 

 

T-norms are used to compute the firing levels of the 

rules. 

 

Definition 2 An OWA operator of dimension n  is a 

mapping RRF n →:  that has an associated n  

vector ( )tnwww ,,1 ⋯=  such as 

[ ] ∑
=

=≤≤∈
n

i
ii w,ni,,w

1

1110  

The aggregation operator of the values { }naa ,,1 ⋯  

( ) ∑
=

=
n

j

jjn bwaaaF

1

21 ,,, ⋯  

where jb  is the j -th largest element from 

{ }naa ,,1 ⋯ . 

 

4.3 Fuzzy inference 
The linguistic description of the robot sensorial area 

is made of some linguistic variable [26]. Indeed, a 

rule in the proposed FLC is characterized by a set of 

linguistic variables A  having as domain the interval 

[ ]AAA baI ,= (as in [24]). Each linguistic variable 

has: 

● An  linguistic values 
An

AAA ,,, 21 ⋯  for each 

linguistic variable A  

● membership  function  for  each  value iA  is 

( )x
iA

0µ ,  where { }Ani ,,2,1 ⋯∈  and AIx∈ . 

The following steps (A, B, C and D) are necessary 

to work with the system. 

A.  Compute the firing level for each linguistic value 

The firing level of the linguistic value iA  generated 

by a crisp value 0x  is computed as 

( )0
0 x
ii AA µµ = , { }Ani ,,2,1 ⋯∈ . 

If the input value for the variable ix  is an interval 

[ ]b,a  with AA bbaa ≤<≤  then the intersection 

with the linguistic value iA  is 

( ) ( ) [ ]( )( ) Ab,aAA Ix,x,xminx
ii

∈∀= µµµ 0
   (4) 

where 
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[ ]( ) [ ]


 ∈

=
otherwise

baxif
xba

0

,1
,µ  

The firing level, generated by the interval input 

[ ]ba,  corresponding to the linguistic value iA  is 

computed as the ratio, 

( )

( )
{ }Ab

a

A

b

a

A

A ni

dxx

dxx

i

i

i
,,2,1,

0

⋯∈=

∫

∫

µ

µ

µ    (5) 

which is the area defined by 
iA

µ  divided by area 

defined by  0

iA
µ . 

If the input value for the variable ix  is a fuzzy set 

F  then the firing level corresponding to the 

linguistic value is computed using the formulas 

(4)+(5), where the membership ( )xFµ  is used 

instead of  [ ]( )xba,µ . 

B. Compute the firing level of a rule 

For a rule ( )mAAAR ,,, 21 ⋯
 defined as in subsection 4.2 

the firing level α  is computed by 

( )mT ααα ,,1 ⋯=  

where T  is a t-norm and jα  is the firing level 

for { }mjA j ,,2,1, ⋯∈  generated by the 

corresponding data input. 

C.  Compute the output of a rule 

The output of a rule in a “zero order” system is a 

constant number. For a first order inference system 

the output of a system rule is computed as 

mmxaxaaz +++= ⋯110  

where jx  is obtained from the observation jj Aisx  

in the following manner: 

)i  if jA  is a crisp data then jj Ax =  

)ii  if  jA  is an interval or a linguistic value then jx  

is derived from the firing level jα . Considering ju  

and jv  as two numbers with the property 

( ) ( ) jjAjA vu
jj

αµµ ==  

then  0xx j = , where 0x  is computed as following: 

   )1ii  if               [ ]jjjj baIA ,==  

          and              
2

jj
G

ba
X

j

+
=   

then { }jj vux ,0 ∈  and has the property 

{ }
jjj GjGjG Xv,XuminXx −−=−0    (6) 

     )2ii  if  jA  is a linguistic value one consider the 

gravity center of coordinates ( )
jj GG YX ,  of the area 

between the membership functions 
iA

µ  and 
jA

µ ; 

in this case we compute 0x  using Eq. 6. 

 

Fig. 6: x0 computed using ii1) case 

 

Fig. 7: x0 computed using ii2) case 
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D.  Compute the output of the system 

The number of the fuzzy rules in the Takagi-Sugeno 

FLC are denoted by n . For any i -th rule of the 

system, ( )mAAAR ,,, 21 ⋯
 with the firing level iα  

computed with a certain t-norm, one obtain an 

output iz , { }ni ,,2,1 ⋯∈ . The output of the system 

corresponding to a t-norm  is: 

∑

∑

=

==
n

i

i

n

i

ii z

z

1

1
0

α

α

. 

The value  

∑
=

=
n

i

i
n

1

0 1
αα  

will be named the firing level of the system 

corresponding to a t-norm.  For a set of r  t-norms 

{ }rTT ,,1 ⋯ , the system gives the set of outputs  

{ }0
jz  corresponding to the firing levels { }0

jα , 

{ }rj ,,2,1 ⋯∈ . The overall output of the system is 

computed using the OWA operator with 

∑
=

=
r

i

i

j

jw

1

0

0

α

α
, { }rj ,,2,1 ⋯∈ . 

 

 

4.4 A case study 
In order to show how the proposed system works, 

we consider a system having rules with two inputs 

and one output. The input variables are distance ( )d   

and direction angle ( )θ ; the output variable is 

repulsive angle ( )Rθ . 

The values of input variable d  are defined with 

three membership functions (Fig. 4 (a)):  

Small (S),  Medium (M), Large (L), 

( )15,0,0=S , ( )15,15,15M ,  ( )0,15,30=L . 

Corresponding values for the direction angle θ , are 

represented using seven membership function 

distributions (Fig. 4 (b)): 

Large Left (LL), Medium Left (ML), Small Left (SL),  

Straight (EZ), Small Right (SR), Medium Right  

(MR), Large Right (LR), 

( )50,0,90−=LL , ( )40,40,60−=ML , 

( )40,40,30−=SL , ( )10,10,0=EZ ,  

( )40,40,30=SR , ( )40,40,60=MR , 

( )0,40,90=LR  

 
                                         (a) 

 
                                         (b) 

 

Fig. 4: Membership functions for the input 

variables, (a) distance, (b) direction angle 

 

The membership functions (having values very 

close to the ones used in [15]) of the output variable 

Rθ  are given in Fig. 5. 

 

 

Fig. 5 Membership functions for the output variable 
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The rules set of the proposed Takagi-Sugeno FLC 

are those given below 

 
 LL ML SL EZ SR MR LR 

S APP MP AGP TGN AGN MN APN 

M TPP APP MP GN MN APN TPN 

L EZ TPP APP PN APN TPN EZ 

 

 Table 1 The rules of the FLC for determining the 

repulsive angle 

 

The crisp values corresponding to the notations used 

in Table 1 are the following:  

47=APP , 83=ML , 123=AGP , 2=TPP , 

0=EZ , 133−=TGN , 120−=AGN , 80−=MN , 

43−=APN , 100−=GN , 17−=TPN , 67−=PN . 

For a particular case in which the variable distance  

has as value the interval [11, 13]  and the variable 

direction angle is given by the ML linguistic value, 

six rules are fired: 

 

( )LLSR , :  IF d   is S  and  θ   is  LL   THEN  Rθ   is  

               APP  

( )MLSR , : IF d is S  and θ  is ML  THEN Rθ  is MP  

( )SLSR , : IF d is S  and θ  is SL  THEN Rθ  is AGP  

( )LLMR , : IF d  is  M  and  θ   is   LL  THEN Rθ  is  

                TPP  

( )MLMR , : IF  d is  M  and  θ   is ML   THEN Rθ  is  

                APP  

( )SLMR , : IF d  is M  and  θ   is  SL   THEN Rθ   is  

              MP  

Consider the following t-norms denoted by  1T ,  2T ,  

3T ,  4T :  

(Product) ( ) xyyxTT P == ,1  

(Minim) ( ) ( )yxyxTT M ,min,2 ==  

(Lukasiewicz) ( ) ( )1,0max,3 −+== yxyxTT L  

(Dubois-Prade) ( )
( )5.0,,max

,4
yx

xy
yxTT DP == . 

The  following  outputs  for each of  the considered 

t-norms are:  

4.59,96.58,11.62,56 0
4

0
3

0
2

0
1 ==== zzzz  

The corresponding firing levels of the system are 

02120007600228001630 0
4

0
3

0
2

0
1 .,.,.,. ==== αααα

where 0
iα is the firing level generated by t-norm iT . 

The overall output of the system computed using the  

OWA operator with the associated vector 

( ) t.,.,.,.w 310110340240= is  

97.590 =z . 

From the considered case study it was observed an 

important difference between the four results given 

by the used t-norms. It is obviously that different t-

norms will give different results if they will be used 

separately. The proposed method offers a possibility 

to avoid this drawback because the aggregation 

operation achieves ‘mediation’ between the results 

given by various t-norms. 

 

 

4 Conclusion and Future Works 
This paper presents a fuzzy reasoning method of 

Takagi-Sugeno type controller applied in two 

wheels autonomous robot navigation. Because it can 

work not only with crisp data as input but also with 

intervals and/or linguistic terms, its area of 

applications is very large. In order to obtain more 

accurate  results  for  the proposed system different 

t-norms are used in the aggregation of results 

process. The method can be improved by using 

various matching techniques in order to compute the 

firing levels of the linguistic values from the 

premises. Further theoretical and experimental work 

is needed to validate the proposed model. 
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