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Abstract:-In order to deal with the control difficulties of the dredger’s dynamic positioning system under large 

disturbances and severe sea conditions, an adaptive dynamic surface control method is proposed to be used in 

the dredger’s dynamic positioning system. Disturbances can be estimated and compensated by adaptive 

arithmetic. The addition of low pass filters in backstepping design process allows the dynamic surface control 

technique to be implemented without differentiating any model nonlinearities, which could simplify the design 

significantly. The proposed adaptive robust controller guarantees the semi-globally asymptotical stability of the 

closed-loop system, and output asymptotic track to desired trajectory. Besides, the final tracking accuracy could 

be adjusted via certain controller parameters. This scheme is verified by the comprehensive simulation results 

in typical operation scenarios. The simulation results show that the proposed controller has desired position 

tracking transient performance and robustness to the uncertain disturbances. 

 

Key-Words:-Dynamic positioning (DP), Adaptive dynamic surface control(ADSC), Nonlinear controller 

design, Backstepping, Dredger, Disturbances compensating 

 

1 Introduction  
High efficiency and stable dredgers play a crucial 

role in port dredging industry, and large dredgers 

carry out dredging sand in deep-ocean constantly. So 

the dynamic positioning (DP) system is essentially 

necessary in improving the efficiency of the port 

dredging operation or working in harsh marine 

environment. 
As there are large disturbances caused by 

dredging operation, it is difficult to maintain the 

stability and accuracy for dredgers’ DP systems. In 

order to solve this problem, force-and-torque sensors 

are applied to measure and compensate this kind of 

the reaction caused by dredging operation in 

traditional dredgers’ DP systems. But this will  

increase the DP system’s complexity and 

unreliability. Based on such consideration, an ADSC 

technique is proposed in this paper for the dredger’s 

DP system to solve this problem without adding 

extra sensors. 

A dynamically positioned vessel maintains its 

position (fixed location or predetermined track) 

exclusively by means of active thrusters. Recently, 

DP systems have been used in many kinds of vessels 

and offshore oilfield. Offshore oilfield has moved to 

a deeper，and more severe environment for new oil 

sources. However, in a conventional chain and 

anchor mooring system, the length of lines becomes 

excessive, and maintaining the position of an 

offshore platform becomes difficult both technically 

and economically. Therefore, DP systems with 

thrusters are often used for those applications. The 

first DP system is introduced in the early 1960s [1]. 

Conventional DP systems are designed based on 

linearization of the kinematic equations of motions 

about a set of predefined constant yaw angles so that 

linear control theory can be applied. The kinematic 

equations of motion are usually linearized about 36 

different yaw angles. For each of these linearized 
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models, optimal Kalman filters and feedback control 

gains need to be computed. It is the most widely used 

in ships' DP systems currently [2][3]. Due to 

limitations of linear control techniques such as 

complexity in tuning control gains and no global 

stability results because of linearization, recently, 

several researchers applied nonlinear control theory 

to design various control systems for DP of surface 

vessels. Lyapunov technique and backstepping 

technique are used to design a DP controller system 

[4]-[8]. Tremendous strides have been made in the 

area of controller design for nonlinear systems. The 

recent book by Krstic, Kanellakopoulous, and 
Kokotovic[9] develops the backstepping approach to 

the point of a step by step design procedure. 

However, the computing expansion problem exists in 

the backstepping technique. 

Dynamic surface control technique has been in 

continuous development ever since the late 1990s 

[10]-[12].  Dynamic surface control technique is an 

improved backstepping control technique, the design 

process of which design process is executed in a 

step-by-step way. Nevertheless, a first-order low-

pass filter of the synthetic input at each step of the 

traditional backstepping is introduced, so repeated 

differentiations of the demands of the modelling 

nonlinearities are cancelled. Therefore the algorithm 

complexity caused by expansion of the differential 

terms could be avoided, and the controller design 

procedure could be simplified.  

Adaptive arithmetic can estimate the value of 

disturbances and change the feedback to guarantee 

the system stability. In this paper, ADSC is used for 

a DP system affected by the uncertainties. And then, 

comparisons are studied to verify the advantages of 

the ADSC technique over the conventional 

backstepping control technique in dredgers’ DP 

systems.  

 

 

2 Problem statement  
An xz-plane of symmetry is first defined for the 

convenience of problem statement. As shown in Fig. 

1, OEXEYE is the earth-fixed frame, OXY is the body-

fixed frame, and Oc is the centre of gravity of the 

vessel. 

Assume that the ship has an xz-plane of 

symmetry; surge is decoupled from sway and yaw, 

heave, pitch and roll modes are neglected; the body-

fixed frame coordinate origin is on the centre-line of 

the ship (is shown in Fig. 1). In this figure, the 

mathematical model of the ship used for DP in a 

horizontal plane is described as [13]: 

                           
( )

dis

J v

Mv Dv

η ψ
τ τ

 =


= − + +

ɺ

ɺ
                 (1) 

where disτ represents environmental disturbances, 

[ ]Tx yη ψ= denotes the position(x, y) and 

heading ψ  of the ship coordinated in the earth-fixed 

frame, [ ]Tv u v r=  indicates the ship’s surge, 

sway and yaw velocities coordinated in the body-

fixed frame. The other terms in (1) are defined 

below. 

The rotation matrix ( )J ψ , mass including added 

mass matrix M , and damping matrix D  are given 

by  

( )
( ) ( )
( ) ( )

cos sin 0
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 −
 

= − − 
 − − 

ɺ

ɺ ɺ

ɺ ɺ

,          

                       

0 0

0

0

u

v r

v r

X

D Y Y

N N

 
 = −  
  

                   

(2) 

where m  is the vessel mass, zI is the moment of 

inertia about the body-fixed z-axis, gx is the distance 

from the origin O  of the body-fixed frame to the 

centre of gravity of the vessel. The other symbols in 

(2) refer to hydrodynamic derivatives, see [14]. 

 

 
Fig.1, Definition of the earth-fixed frame E E EO X Y  

and the body-fixed frame OXY  

 

The control input vector 3τ ∈R  of forces and 

moment provided by the actuator system, and the 

disturbance vector disτ  of forces and moment induced 

by waves, wind and ocean currents are given by 
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( )T

dis

Gu

J b

τ
τ ψ

=
 =

                       (3) 

nu∈R is the control input, where 3n ≥  denotes the 

number of independent actuators, and 3 nG ×∈R  is a 

constant matrix describing the actuator configuration. 

Unmolded external forces and moment due to waves, 

wind, ocean currents, and ship parameters 

perturbation are lumped together into an earth-fixed 

constant vector 3b∈R .  

For a real simulation of the marine environment 

disturbance, the following mode is adopted. 

Environmental forces mode in fixed coordinate 

system is [15] 

    1

b bb T b E ω−= − +ɺ                         (4) 

where b  is a three-dimensional vector, T is a three-

dimensional time-constant diagonal matrix, bω is 

zero-mean white noise, and bE  is a three-

dimensional diagonal matrix which denotes the 

amplitude of the environmental forces. 

For system (1), we define the variables as follows 

( )
1

2

x

x J v

η
ψ

=
 =

                              (5) 

then the model can be rewritten as  

1 2

2 2 dis

x x

x Ax B Cτ τ
=


= + +

ɺ

ɺ
                    (6) 

where ( ) 1A J M Dψ −= − , ( ) 1B C J Mψ −= =  

For the DP system, we suppose the control object 

is the position tracking problem. Then the problem 

involved in this paper is to design a robust adaptive 

dynamic surface controller τ of system (1) ,which 
make the output 1xη = of the controlled system track 

asymptotically its reference 

signal ( )1d d d d dx x yη ψ= = , i.e., the tracking 

error 1 1 1dS x x= −  tend to zero asymptotically when 

t →∞ . 
The following assumption will be introduced 

about system (6). 

A1: xi, (i=1,2) are all measurable and bounded. 

A2: The position reference trajectory 1dx and its 

second-order derivative are known and bounded 

 

 

3 Controller design 
For the model of the system in equation (6), define 

the surface errors as follows. 

   1 1 1dS x x= −                              (7a) 

2 2 2  dS x x= −                           (7b) 

where 1dx is the reference trajectory, 2dx will be 

given later by the first order filter. Then the design 

procedure for the robust adaptive dynamic surface 

controller is described in detail as follows. 

 

Step1: For the model of the system in equation (6), 

according to (7a), the derivative of 1S  is 

 1 1 1 2 1d dS x x x x= − = −ɺ ɺ ɺ ɺ                 (8) 

In order to make 1 0S → ， choose the virtual 

control 2x  and filter 2x  with one order filter, then 

define 

 2 2 2 2d dx x xτ + =ɺ                         (9)  

where ( ) ( )2 20 0dx x= , 2τ  is a time constant , and 2x  

is a stabilizing function which will be designed later. 

Defining the boundary layer errors as: 

  2 2 2dy x x= −                            (10) 

the derivative of 2dx  is  

( )1 1

2 2 2 2 2 2d dx x x yτ τ− −= − = −ɺ        (11) 

By selecting the first Lyapunov function 

candidate as: 

  1 1 1 2 2

1 1

2 2

T TV S S y y= +                   (12) 

then the time derivative of 1V  along the solution of  ( 

8 ) and (12) can be obtained as 

( )
( )
( )

1 1 1 2 2

1 2 1 2 2

1 2 2 1 2 2

1 2 2 2 1 2 2

T T

T T

d

T T

d d

T T

d

V S S y y

S x x y y

S S x x y y

S S y x x y y

= +

= − +

= + − +

= + + − +

ɺɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

 

 (13) 

Let take the first stabilizing function as:                  

    2 1 1 1 2dx k S x S= − + −ɺ                    (14) 

where 1 0k >  is a designed constant, and according to 

the inequality as:     

1 1 2 2 1 2

1

4

T T TS S y y S y+ ≥                 

(15) 

the derivative of 1V  satisfies the following  inequality 

:                                                                        

           1 1 1 2 2 1 1 1 2 2

1

4

T T T TV S S y y S k S y y≤ + − +ɺ ɺ          (16) 

Now substituting (9) into (16)， results in 

 ( )1 1 1 2 2 1 1 1 2 2 2

1

4

T T T T

dV S S y y S k S y x x≤ + − + −ɺ ɺɺ   (17) 

And then substituting (11) and (14) into (17), the 

inequality becomes 
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( )
1 1 1 2 2 1 1 1

1

2 2 2 1 1 1

1

4

       

T T T

T

d

V S S y y S k S

y y k S xτ −

≤ + −

+ − + −

ɺ

ɺ ɺɺ

                (18) 

Substituting (8) into inequality (18), the 

inequality is 

( )

1 1 1 2 2 1 1 1

1

2 2 2 1 2 1 1

1

4

  

T T T

T

d d

V S S y y S k S

y y k x x xτ −

≤ + −

 + − + − − 

ɺ

ɺ ɺɺ

        (19) 

And then substituting (7b) into inequality (19), 

1Vɺ  satisfies the inequality as follows: 

( )
2

1

1 1 1 2 2 1 1 1 2 2

2 1 2 1 2 1 1 1

1

4

    

T T T T

T

d d d

V S S y y S k S y y

y k S k x k x x

τ −≤ + − −

+ + − −

ɺ

ɺ ɺɺ

    (20) 

Defining a vector as  

1 1 2 1 2 1 1 1d d dB k S k x k x x= + − −ɺ ɺɺ                    (21) 

then the inequality (20) can be rewritten as follows:  

( )
2

1 1 1 2 2 1 1 1

1

2 2 2 1 2 2 1 1

1

4

    , , ,

T T T

T T

d d d

V S S y y S k S

y y y B x S x xτ −

≤ + −

− +   

ɺ

ɺ ɺɺ

   (22) 

Assuming 2 2 1 1, , ,d d dx S x xɺ ɺɺ are bounded, defining   

( )1 2 2 1 1, , ,d d dB x S x x H≤ɺ ɺɺ                      (23) 

where 0H >  is a constant, and supposing   

1 1k r= + , 0r >                               (24) 

then the time derivative of 1V satisfies the following 

inequality as: 

1

1 1 1 2 2 2 2 2 2 1

1

4

T T T TV rS S y y y y y Bτ −≤ − + − +ɺ     (25) 

 

Step2 : According to (7b), the derivative of 2S  is  

2 2 2

2 2    =

d

dis d

S x x

Ax B C xτ τ

= −

+ + −

ɺ ɺ ɺ

ɺ
 

(26) 

If select the second Lyapunov function candidate 

as   

  1

1 2 2

1 1

2 2

T T

dis disV V S S τ ρ τ−= + + ɶ ɶ                (27) 

where { }11 22 33, ,diagρ λ λ λ= is the adaptive gain 

coefficient matrix, 0iiλ > ; ˆdisτ is the estimate of disτ , 

and ˆ
dis dis disτ τ τ= −ɶ is the estimate error between ˆdisτ  

and disτ , then from (27), the derivate of V  is  

1 2 2 2 2

1

2 2
ˆ        

T T T

dis

T T

d dis dis

V V S Ax S B S C

S x

τ τ

τ ρ τ−

= + + +

− −

ɺ ɺ

ɺɺ ɶ

                    (28) 

By substituting ˆ
dis dis disτ τ τ= −ɶ into (28), the 

equation (28) changes to 

( )1 2 2 2 2

1

2 2

ˆ

ˆ      

T T T

dis dis

T T

d dis dis

V V S Ax S B S C

S x

τ τ τ

τ ρ τ−

= + + + +

− −

ɺ ɺ ɶ

ɺɺ ɶ

 

1 2 2 2 2 2

1

2 2

ˆ  

ˆ      

T T T T

dis dis

T T

d dis dis

V S Ax S B S C S C

S x

τ τ τ

τ ρ τ−

= + + + +

− −

ɺ ɶ

ɺɺ ɶ

 (29) 

As ρ is a diagonal matrix, an equation is 

obtained as:  

              1 1ˆ ˆT T

dis dis dis disτ ρ τ τ ρ τ− −=ɺ ɺɶ ɶ                       (30) 

then Vɺ  changes to 

 
1 2 2 2

1

2

ˆ

ˆ       

T

dis d

T T T

dis dis dis

V V S Ax B C x

C S

τ τ

τ τ ρ τ−

= + + + −

−

ɺ ɺ ɺ

ɺɶ ɶ

（ ）
+（ ）

       (31) 

If  let  
1

2
ˆT T T

dis dis disC Sτ τ ρ τ−= ɺɶ ɶ                  (32) 

then the disturbances adaptive control updating law 

is obtained as 

        ( ) ( )1

2 2
ˆ

T TT

dis C S M J Sτ ρ ρ ψ−= =ɺ            (33) 

and the actual control τ  is acquired as   
1 1 1 1

2 2 2 2
ˆ

d disB x B Ax B k S B Cτ τ− − − −= − − −      (34) 

By substituting A, B and C into (34), the feedback 

control law is obtained as: 

( )1 1

2 2 2
ˆ

d disMJ x Dv B k Sτ ψ τ− −= + − −ɺ      (35) 

Then considering inequality (25), Vɺ  satisfies the 

following inequality as: 

             

1

1 1 2 2 2 2 2

2 2 2 2 1

1

4

       

T T T

T T

V rS S y y y y

S k S y B

τ −≤ − + −

− +

ɺ

         (36) 

If 2k and 2τ are selected satisfying the following 

equations as 

2 0.25k r= + ,
2

1

2

1

4 2

H
rτ

ε
− = + +           (37) 

And there is an inequality with an arbitrary 

positive constantε as follows: 

   ( )2 2 1 1
2 1

( )( )
2 2

T T
Ty y B B

y Bε
ε

  + ≥ 
 

       (38) 

So it is obvious that  

( )2 2 1 1
2 1

( )( )
2 2

T T
Ty y B B

y Bε
ε

  + ≥ 
 

         (39) 

Considering (36), (37) and (39) and assuming 

that  

( )1 2 2, , ,       0disV S S y p pτ = >ɶ ，               (40) 

then the derivative of V  satisfies the following 

inequality: 

2
2

V rV ε≤ − +ɺ                                  (41) 
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If let 
4

r
p

ε≥  and V p= , Vɺ  will satisfy the 

following inequality as: 

0V ≤ɺ                                            (42) 

So all the states of the closed loop, including 

( )iS t ， disτɶ  and 2y are uniformly bounded, and then 

the DP system is Semi-globally asymptotically 

stable. 

Theorem: Consider the nonlinear DP system 

described by (1), then for all admissible 

uncertainties, a set of surface control gain ik  (i=1,2) 

and the  time constant of filter 2τ  exist and such that 

the robust ADSC law (35) and the disturbance 

adaptive updating law (33) guarantee semi-global  

stability asymptotically of the closed-loop system, 

and the  system output can track the preset reference 

position.   

 

 

4 Simulation results 
The closed-loop DP system is verified by simulations 

using the Matlab/Simulink toolbox. One ship with 

DP system as a case is studied to illustrate the 

performance of the proposed controller.  

The main dimensions of the example ship are 

given in Table 1. 

 

Table 1, The example ship’s parameters  

 

ship 

length 
286.3m distance from 

gravity center 

to the center 

4.51m 
waterline 

length 
280.5m 

ship 

width 
46.89m draft 17.38m 

ship 

height 
24.5m displacement 205326t 

 

Based on the ship’s main parameters listed in 

table 1, the nondimensional system matrices 

describing the example ship are estimated by 

empirical formula [16]. 

1.1254 0 0

0 1.8945 0.0734

0 0.0734 0.1287

M

 
 = − 
 − 

 

  

0.0360 0 0

0 0.1182 0.0125

0 0.0043 0.0305

D

 
 = − − 
 − 

  (43) 

The adaptive dynamic surface controller 

parameters are selected as 1 1.5k = ， 2 0.75k = ，

2 0.004τ = ， { }2, 2, 2ρ = in simulations. The 

ship’s start position is set to [ ]0 5 5 20
T

η = − − , and 

the desired position is set to [ ]0 0 0
T

dη = . And 

simulation results of the traditional backstepping 

technique are shown to be compared with the ADSC 

technique. In addition, in order to demonstrate the 

robust performance of the controllers, both small and 

large disturbances conditions are dealt with, 

respectively in section 4.1 and section 4.2. Small 

disturbances simulate ordinary sea conditions; large 

disturbances simulate severe sea conditions or 

simulate the reaction force of dredging. 

 

 

4.1 Simulations under small disturbances 
Referring to environmental forces mode (4), and 

considering the ordinary sea conditions with small 

disturbances, the simulations are done under the 

disturbances where the parameters are described as 

(44).  

1000 0 0

T 0 1000 0

0 0 1000

 
 =  
  

 

5VE =                                         (44) 

The disturbances’ waveforms are shown in Fig.2 

and the corresponding maximum values are listed in 

Table 2. The simulation results of backstepping 

technique are shown in Fig.3, and the simulation 

results of ADSC technique are shown in Fig.4. 

The DP system, using either of traditional 

backstepping or ADSC, can maintain stable under 

the disturbances where the parameters are described 

as (44). However, simulation results show that the 

system’s stability and accuracy using the ADSC 

technique are much better than that using the 

traditional backstepping technique (Compared results 

are listed in Table3). And the DP system’s transient  

performance using ADSC technique is superior to 

that using traditional backstepping technique (see 

Table 4 and Table 5). 

 

Table 2, The maximum values of disturbances 

 

 
x –

axis(MN) 

y-

axis(MN) 

Yaw 

(MNm) 

maximum 

value 
75 77 40 
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Table 3, Outputs steady-state errors with 

backstepping and ADSC 

 

 x- error(m) 
y- 

error(m) 

yaw- 

error(deg) 
backstepping 0.2 0.2 0.5 

ADSC 0.06 0.02 0.005 

 

Table 4, Dynamic performance with backstepping  

 

 x- axis y- axis yaw  
settling time 10s 12s 13s 

overshoot 0.37m 0.42m 1.8deg 
 

Table 5, Dynamic performance with ADSC 

 

 x- axis y- axis yaw  
settling time 3s 4s 2s 

overshoot 0m 0. 2m 0m 

                  

0 10 20 30 40 50 60 70 80 90 100
-200

-150

-100

-50

0

50

time(s)

(M
N
)

 

 
disturbance

adptive  value

 
(a) x-axis disturbance and its adaptive value  

 

0 10 20 30 40 50 60 70 80 90 100
-200

-150

-100

-50

0

50

(M
N
)

time(s)

 

 
disturbance

adaptive value

 
(b) y-axis disturbance and its adaptive value 

 

0 10 20 30 40 50 60 70 80 90 100
-80

-60

-40

-20

0

20

40

time(s)

(M
N
m
)

 

 
disturbance

adaptive value

 
(c) yaw disturbance and its adaptive value  

Fig.2, Disturbances waveforms in both methods and 

their adaptive value waveforms in ADSC 

 

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0
0.37

1

time(s)

x
(m
)

50 55 60
-0.2

0

0.2

 
(a)x-position(m) 

 

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0
0.42

1

time(s)

y
(m
)

80 85 90
-0.4
-0.2

0

0.2
0.4

 
(b)y-position(m) 

 

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

time(s)

y
a
w
(d
e
g
)

60 65 70
-0.5

0

0.5

 
(c)yaw-angle(deg)        
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(d)xy-plot 

Fig.3, Simulation results using backstepping control 

strategy 
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(a)x-position(m)   
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(b)y-position(m) 
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(c)yaw–angle(deg)  
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y
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 (d)xy-plot 

Fig.4, Simulation results using ADSC control 

strategy 

 

 

 4.2 Simulations under large disturbances 
Referring to environmental forces mode (4), and 

considering the severe sea conditions with large 

disturbances, simulation is done under the 

disturbances where the parameters are described as 

formula (45).  

1000 0 0

T 0 1000 0

0 0 1000

 
 =  
  

 

 100VE =                                    (45) 

There are two characteristics about the 

disturbances in this section. One is the large 

magnitude which simulates severe sea conditions; the 

other is the dramatic change which simulates the 

reaction of dredging operations (see Fig.5). The 

disturbances’ waveforms are shown in Fig.5. The 

maximum values of disturbances are listed in Table 

6. 

Simulation results of the traditional backstepping 

technique are shown in Fig.6, and simulation results 

of ADSC technique are shown in Fig.7. 

The DP system using traditional backstepping 

controller can not maintain stable under this 

condition, the controller can not meet the 

requirements of the desired performances for there 

are large steady-state errors (see table5 and Fig.6). 

However, the system with ADSC controller can still 

maintain stable and has good control performance 

under the same condition (see Fig.7 and table7). In 

ADSC technique, adaptive arithmetic can estimate 

disturbances and compensate them in time (see Fig.2 

and Fig.5). The reaction of dredging operation can be 

compensated by adaptive values in ADSC controller. 

So the DP system using ADSC technique can 

maintain stable and has good performance even in 

harsh condition (See Table 7 and Table 8). 
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Table6, The maximum values of disturbances 

 

 
x –

axis(MN) 

y-

axis(MN) 

Yaw 

(MNm) 

maximum 

values 
1500 750 1500 

 
Table 7, Outputs steady-state errors of backstepping 

and ADSC 

 

 
x-

error(m) 

y- 

error(m) 

yaw 

error(deg) 

backstepping 35 25 12 
ADSC 0.2 0.1 0.1 

 

Table 8, Dynamic performance with ADSC 

 

 x- axis y- axis yaw  
settling time 3s 4s 1.5s 

overshoot 0m 0. 25m 0m 
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(a)x-axis disturbance and its adaptive value  
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(b)y-axis disturbance and its adaptive  value  
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(c)yaw disturbance and its adaptive value 

Fig.5, Disturbances waveforms in both methods and 

their adaptive value waveforms in ADSC 
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Fig.6, Simulation results using backstepping  
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(b)y-position(m) 
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Fig.7, Simulation results using ADSC  

     

 

5 Discussion 
Simulation results in section 4 show that ADSC has 

distinct advantages in DP system. 

The system with ADSC controller is more stable 

than that with traditional backstepping tcontroller, 

i.e., ADSC technique has stronger robustness.  

Furthermore, owing to the feed-forward 

compensating by adaptive arithmetic, the system 

with ADSC controller has excellent performance 

even when the ship under large disturbances or under 

harsh sea conditions. 

 

 

6 Conclusion 
A novel adaptive control strategy is presented in this 

paper based on the perturbed nonlinear mathematic 

model using dynamic surface control technique. The 

external disturbances are considered 

comprehensively in simulations, and finally the 

semi-global adaptive tracking is well achieved. 

Furthermore, the simulation results illustrate that the 

proposed control technique is practical, effective, as 

well as robust to the external disturbances.  

The controller design uses first order filters to 

avoid differentiation, thereby the controller design 

procedure could be simplified.  

Adaptive arithmetic is applied to compensate the 

external disturbances and the perturbation of the 

parameters, and guarantee the system’s stability even 

under large force reaction disturbances or under 

harsh sea condition. So dredging reaction can be 

compensated without extra sensors in dredgers.  

    

Acknowledgements 

 

This work was supported by 973 project in China 

(2005CB221505) and Control Engineering key 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Yuhua Zhang, Jianguo Jiang

ISSN: 1991-8763 331 Issue 5, Volume 5, May 2010



subject open-laboratory open-fund of Henan 

Province in China (KG2009-02). 

 

References： 

[1] J. M. Morgan, Dynamic positioning of offshore 

vessels, Tulsa: Petroleum, 1978. 

[2] J. G. Balchen, N. A. Jenssen, E. Mathisen, and 
S. Saelid, Dynamic positioning of floating 

vessels based on kalman filtering and optimal 

control, Proc.19th IEEE Conf: Decision Contr., 

Vol.9, No.1,1980, pp.852-864. 

[3] M. J. Grimble, R. J. Patton, and D. A. Wise, The 

design of dynamic positioning control systems 

using stochastic optimal control theory, Optimal 

Contr Applicat. Methods, vol.1,1980, pp. 167-

202. 

[4] T. I. Fossen and J. P. Strand, Passive nonlinear 

observer design for ships using Lyapunov 

methods: full-scale experiments with as supply 

vessel, Automatica, vol. 35, 1999, pp. 3-16. 

[5] T. I. Fossen and A. Grovlen, Nonlinear output 
feedback control of dynamically positioned 

ships using vectorial observer backstepping, 

IEEE Transactions on Control Systems 

Technology, vol. 6, no.1, 1998, pp. 121-128. 

[6] H. Khalil, Nonlinear systems, Prentice Hall, 

2002. 

[7] M. Krstic, I. Kanellakopoulos, and P. 

Kokotovic, Nonlinear and adaptive control 

design. New York: Wiley, 1995. 
[8] K. D. Do, Global rubust and adaptive output 

feedback dynamic positioning of surface ships, 

Robotics and automation, IEEE international 

conference, 2007, pp. 4271-4276. 

[9] M. Krstic, I. Kanellakopoulous, and P. 

Kokotovic, Nonlinear and Adaptive Control 

Design, NY: Wiley Interscience, 1995. 

[10] D. Swaroop, Dynamic Surface Control for Class 
of Nonlinear Systems, IEEE Tran on Auto 

Control, vol. 45, no. 10, 2000, pp. 1893-1899. 

[11] Sung Jin Yoo, Jin Bae Park, Yoon Ho Choi, 
Adaptive Dynamic Surface Control for 

Stabilization of Parametric Strict-Feedback 

Nonlinear Systems With Unknown Time 

Delays, IEEE Tran on Auto Control Vol.52, 

No.12,  2007, pp.2360-2365. 

[12] W. S. Chen, Adaptive backstepping dynamic 

surface control for systems with periodic 

disturbances using neural networks Control, 

Theory & Applications, IET, Vo.3, No.10, 2009, 

pp.1383-1394. 

[13] T. I. Fossen, Marine control systems, 

Trondheim, Norway: Marine Cybernetics, 2002. 

[14] SNAME, The society of naval architects and 

marine engineers: Nomenclature for treating 

the motion of a sub-merged body through a 

fluid, Technical and Research Bulletin, 1950, 

pp. 1-5. 

[15] M. F. Aarset, J. P. Strand, and T. I. Fossen,  
Nonlinear vectorial observer backstepping with 

integral action and wave filtering for ships, 

IFAC conference on control applications in 

marine systems, Fukuoka, Japan, 1998, pp.83-

89 

[16] T. I. Fossen, Guidance and control of Ocean 

Vehicles, New York: Wiley, 1994 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Yuhua Zhang, Jianguo Jiang

ISSN: 1991-8763 332 Issue 5, Volume 5, May 2010




