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Abstract: - This paper presents an approach for the design of fuzzy logic power system stabilizers using 

genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected 

as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic 

algorithm.  Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent 

dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in 

this paper that the system dynamic performance can be improved significantly by incorporating a genetic-

based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system 

stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-

phase fault have been carried out. Simulation results show the superiority and robustness of GA based power 

system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over 

a wide range of operating conditions. 

Key-Words: - Dynamic stability, Fuzzy logic based power system stabilizer, Genetic Algorithms, 

Genetic based power system stabilizer, Power system stabilizer. 
 

1 Introduction 

The application of power system stabilizers for 

improving dynamic stability of power systems and 

damping out the low frequency oscillations due to 

disturbances has received much attention [1-3].  The 

conventional PSS comprising a cascade connected 

lead-lag network with rotor speed deviation as input 

has made great contribution in enhancing system 

stability. However, the performance of the CPSS 

becomes sub-optimal following variations in system 

parameters and loading conditions [2]. Power 

system is a highly nonlinear system and it is 

difficult to obtain exact mathematical model of the 

system. In recent years, adaptive self tuning, 

variable structure, artificial neural network based 

PSS, fuzzy logic based PSS have been proposed to 

provide optimum damping to the system oscillations 

under wide variations in operating conditions and 

system parameters [6-8]. 

Recently, Fuzzy logic power system stabilizers 

(FLPSS) have been proposed to overcome this 

problem [9,10]. Fuzzy logic makes complex and 

non-linear problems much easier to solve by 

allowing a more natural representation of the 

situations being dealt with. Fuzzy Logic control 

appears to possess many advantages like lesser 

computational time and robustness. It has been 

shown that fuzzy logic is one of the best approaches 

for non-linear, time varying and ill-defined systems.  

Fuzzy logic based power system stabilizer has been 

applied successfully for the enhancement of 
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dynamic stability of power system [11-12]. The 

application of fuzzy logic power system stabilizer 

improves the damping of the system oscillations. 

However, optimum tuning of the parameters of 

FLPSS further required for better performance 

under wide variation of system operating conditions. 

Although, fuzzy logic controllers showed promising 

results, they are subjective and heuristic. There is no 

systematic design procedure for the tuning of the 

parameters of fuzzy logic power system stabilizer. 

The generation of membership functions and the 

selection of scaling factors have been done either, 

by trial-and-error, iteratively, or by human experts. 

Therefore, the design of fuzzy logic power system 

stabilizer (FLPSS) becomes a time consuming and 

laborious task. 

Genetic algorithms (GA) are search algorithms 

based on the mechanics of natural selection and 

survival-of-the-fittest. GAs is optimization 

procedures that were devised on population 

genetics. The recent approach is to integrate the use 

of GA and fuzzy logic systems in order to design 

power system stabilizer [13,14]. GA has been 

applied successfully to various power system 

problems [15]. The performance of FLPSS can be 

significantly enhanced by incorporating genetic-

based learning mechanism. The advantage of the 

GA technique is that it is independent of the 

complexity of the performance index [16]. 

This paper deals with the design method for the 

stability enhancement of a multimachine power 

system using FLPSSs whose parameters are tuned 

using genetic algorithm. The proposed tuning 

scheme uses a GA based search that integrates a 

classical parameter optimization criterion based on 

Integral of Squared Time Squared Error (ISTSE). 

The main objectives of the research work presented 

in this paper are: 

1. To present an algorithm for the design of 

fuzzy logic power system stabilizer using 

genetic algorithm for stability enhancement 

of multimachine power system. 

2. To study the dynamic performance of the 

system with the proposed GA based fuzzy 

logic power system stabilizer (GFLPSS) 

over a wide range of operating conditions. 

3. To compare the performance of proposed 

GFLPSS with the conventional PSS (CPSS) 

and No PSS in the system. 

To demonstrate the capability of the GFLPSS to 

enhance system damping over a wide range of 

system loading conditions under small 

perturbation and three phase fault. 
 

2 System Model 

In this study a two area, 11-bus, 4-machine system 

is considered. Each synchronous machine is 

represented by non-linear sixth-order model as in 

the [3]. It is assumed that all the 4 generators are 

equipped with static excitation systems. All the four 

generators are provided with IEEE Type ST1A 

model of excitation system and turbine governors.  

The nominal system parameters and data are 

given in Appendix. The system used in the analysis 

is a two area system .The generators 1 and 2 are 

considered to form one area and generators 3 and 4 

are considered to form second area. 

 

 

3 Design Methodology 

 
3.1 Structure of Fuzzy Logic Power System 

stabilizer 

The main elements of the FLPSS are as follows: 

(i) Fuzzification Unit. 

Fuzzification is the process of mapping from 

observed inputs to fuzzy sets in the various input 

universe of discourse. The observed data is usually 

in crisp form, and fuzzification is required to map 

the observed range of crisp inputs to corresponding 

fuzzy values for the system input variables. The 

mapped data are further converted into suitable 

linguistic terms as labels of the fuzzy sets defined 

for system input variables. 

(ii) Fuzzy Logic Reasoning Unit. 

The observed values are used to identify the rule 

used to infer an appropriate fuzzy control action. 

The point-valued Max-Min fuzzy inference method 

is used in this study. 

(iii) Knowledge base. 

The knowledge base consists of a database and a 

rule base. 

DATA BASE: The database provides the necessary 

definitions of the fuzzy parameters as fuzzy sets 

with membership functions defined on the universe 

of discourse for each variable. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Manisha Dubey, Nikos E. Mastorakis

ISSN: 1991-8763 313 Issue 5, Volume 5, May 2010



 

Rule base:  The rule base consists of fuzzy control 

rules intended to achieve the control objectives. 

(iv)  Defuzzification Unit. 

Defuzzification is the process of mapping from a 

space of inferred fuzzy control actions to a space of 

non-fuzzy (crisp) control actions. A defuzzification 

strategy is aimed at producing a non-fuzzy control 

action that best represents the possible distribution 

of the inferred fuzzy control action. 

In this study, each of the input and output are 

Gaussian membership functions and number of 

membership functions is five. The universe of 

discourse chosen is + 1 to – 1. The speed deviation 

and its derivative are chosen as inputs to the Flpss. 

The stabilizer is placed on the all four machines. 

Fig.1. Block Diagram of Fuzzy Logic Controller 

3.2 Selection of Input signals of FLPSS 

The first step in designing a fuzzy logic power 

system stabilizer (FLPSS) is to decide which state 

variables representing system dynamic performance 

must be taken as the input signal to FLPSS. 

However, selection of proper linguistic variables 

formulating the fuzzy control rules is very important 

factor in the performance of fuzzy controllers. For 

the present investigations generator speed deviation 

∆ω  and acceleration ∆
⋅

ω are chosen as input signals 

to FLPSS.  In practice, only shaft speed deviation 

∆ω is readily available. The acceleration signal can 

be derived from speed signals measured at two 

sampling instant by the following expression: 

 

T

1)T]∆ω(k(kT)[
(kT)ω∆

−−∆
=

ω
ɺ  (1) 

 

 

3.3 Membership Functions 

After choosing proper variables for input and output 

of fuzzy controllers, it is important to decide on the 

linguistic variables. The linguistic variables 

transform the numerical values of the input of the 

fuzzy controllers to fuzzy values. The number of 

these linguistic variables specifies the quality of 

control, which can be achieved using fuzzy 

controller. As the number of linguistic variables 

increases, the quality of control increases at the cost 

of increased computer memory and computational 

time. Therefore, a compromise between the quality 

of control and computational time is needed to 

choose the number of variables. For the power 

system under study, five linguistic variables for each 

of the input and output variables are used. The 

linguistic variables are labeled as shown in Table1. 

Table 1 Membership Functions 
 

Negative Big NB 

Negative small NS 

Zero ZO 

Positive small PS 

Positive Big PB 
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All the investigations are carried out considering 

Gaussian membership functions. A Gaussian 

membership is defined as: 

2

)(

2
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2

i

cx

ii

ie
cxf

σ
σ

−−

=
 

(2) 

where, ic  is the center of the Gaussian membership 

function and 
2

iσ
is the variance. where i = 1,2…n 

and n is the number of membership function. In the 

present investigations, the optimum value of σ and c 

are determined using GA. The structure of all four 

FLPSS installed on each of the machine is same. 

3.4 Rule Base 
 

The fuzzy rules play a major role in the design of 

FLPSS. The rules can be generated using knowledge 

and operating experience with the system or 

understanding of the system dynamics. The two 

inputs, speed deviation and acceleration, generate 25 

rules for each of the machine. The rules are applied 

to generate FLPSS output. Table 2 shows the results 

of 25 rules, where a positive control signal is for the 

deceleration control and a negative signal is for the 

acceleration control. 

The stabilizer output is determined by applying a 

particular rule expressed in the form of membership 

function. Different methods have been used for 

finding the output in which Minimum-Maximum 

and Maximum Product Methods are generally used. 

For present study, Min- Max method is used. 

Finally, the output membership function of the rule 

has been calculated. This is carried out for all the 

rules and for every rule an output membership 

function is obtained. In this study, Mamdani 

Inference engine is used. 

 

3.5 Defuzzification 

To obtain a deterministic control action, a 

defuzzification strategy is required. Defuzzification 

is a mapping from a space of fuzzy control actions 

defined over an output universe of discourse into a 

space of non-fuzzy (crisp) control actions. There are 

different techniques for defuzzification of fuzzy 

quantities such as Maximum Method, Height 

Method, and Centroid Method. Here, COA Method 

has been used for defuzzification.  

 

3.6 Selection of fuzzy variables for 

optimization 

The input signals are normalized using 

normalization factors to obtain a wide range to 

cover the complete universe of discourse. Similarly, 

a de-normalization factor is used to provide an 

adequate stabilizing signal. In the proposed design 

algorithm for FLPSS, the inner parameters of the 

fuzzy structure i.e., centers of membership functions 

and variance of the membership function are also 

optimized using genetic algorithm in addition to 

normalization and de-normalization factors for input 

and output signals. 
 

4 Optimization Technique 

In this design, a genetic algorithm (GA) based 

search is used for the optimization of parameters of 

FLPSS. The GA based design integrates the 

parameter optimization criterion based on Integral 

of Squared Time Squared Error (ISTSE). 

An objective function that reflects small steady state 

error, small overshoots and oscillations has been 

selected for the optimization. The performance 

index J is defined as: 

 

∫ ∆=
st

dtt
ISTSE
J

0

22)( ω
 

 

(3) 

where ∆ω(t) is speed deviation of the generator 

following 5% step increase in mechanical input 

torque i.e., ∆ Tm = 0.05 p.u. Fig. 2 shows the 

performance index J of the GA based ISTSE 

Table 2 Decision Table (Rule Base) with Five 

Membership Functions for each of the two 

input signals 

                          ∆ω 

NB NS ZO PS PB 

∆ωɺ   

NB NB NB NB NS ZO 

NS NB NS NS ZO NS 

ZO NB NS ZO PS PB 

PS NS ZO PS PS PB 

PB ZO PS PB PB PB 
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optimization method in different stages of the 

genetic search process. 

5   Genetic Algorithm Specifications 

The major variables of genetic algorithm used in the 

design are given in Table 3. 

 

6   Design Algorithms 

The sequential steps of the proposed design 

algorithm are presented by considering Gaussian 

membership functions for input and output 

variables. A universe of discourse, -1 to 1 is chosen 

and center of gravity (COG) defuzzification 

technique is used. The design algorithm consists of 

the following steps: 

6.1 Population representation and 

Initialization 
 

Genetic algorithm operates on a number of potential 

solutions, called a population, consisting of some 

encoding of the parameters set simultaneously. The 

chromosomes are represented in single-level binary 

string. In this algorithm a set of 100 individuals is 

generated randomly. The sizes of the individuals are 

dynamically reduced to the 30 individuals in the 

later stage of generation. This increases the 

convergence rate.  Also, the computational time 

reduces since, the probability of the occurrence of 

good individuals increases in the first generation. 

 

6.2 Objective function evaluation 

The parameters of the FLPSS are tuned such that the 

system damping is enhanced. An ISTSE technique 

is used be minimize an objective function having the 

constraints on the parameter of the FLPSS. The 

objective function is defined as in equation (3). 

 

6.3 Fitness functions assignment 

The fitness function is used to transform the 

objective function value into a measure of relative 

fitness. The fitness function transforms the value of 

objective function to a non-negative. The mapping  

is required whenever the objective function is to be 

minimized as the lower objective function values 

corresponds to fitter individuals. In this study, 

fitness function transformation is linear. The 

transformation offsets the objective function, which 

is susceptible to rapid convergence. 

6.4 Selection 

Selection is the process of determining the number 

of trials for a particular individual for reproduction 

and, thus, the number of offspring that an individual 

will produce. The roulette wheel selection method is 

used in this study. 

 6.5 Recombination 

This is a basic operator for producing new 

chromosomes in the genetic programming. 

Crossover, produces new individuals that have some 

parts of both parent’s genetic properties. The 

uniform single-point crossover is used in this study. 

6.6 Mutation 

In natural evolution, mutation is a process where 

one allele of a gene is replaced by another to 

produce a new genetic structure. A mutation 

probability of 0.001 is considered. 

6.7 Reinsertion 

After the operation of selection and recombination 

of individuals from the old population, the fitness of 

the individuals in the new population may be 

determined.  The new individuals are inserted to 

maintain the size of the original population. 

6.8 Termination of GA 

The GA is a stochastic search method; it is difficult 

to specify the convergence criteria. As the fitness of 

a population may remain static for a number of 

generations before a superior individual is found, 

the application of termination criteria becomes 

problematic. The termination of the GA has been 

done after prespecified number of generation is 

reached. The process iterates till the termination 

criteria has not met. Fig 1 shows the performance 

index J of the GA based ISTSE optimization method 

in different stages of the genetic search process. 

Table 3 Values of GA Parameters 

Number of Individuals 150 

Number of Variables  4x13 

Generation gap 0.8 

Maximum generation 80 
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7   Performance Analysis 

The dynamic performance of four -machine system 

has been analyzed with the proposed GA based 

fuzzy logic power system stabilizer (GFLPSS), 

conventional PSS (CPSS) and without PSS under 

various disturbances. The performance of the 

proposed GA based fuzzy logic power system 

stabilizers (GFLPSSs) have been examined under 

small perturbation and three-phase fault at different 

system loading conditions. Power system toolbox 

(PST), MATLAB has been used for the analysis. 

In order to test the robustness of GA based fuzzy 

logic power system stabilizer (GFLPSS) to enhance 

system damping over a wide range of operating  

conditions, three loading conditions were 

considered: a light load, a nominal load, a heavy 

load. 

 

7.1 Small Perturbation  

A 5% step decrease in Vref1 i.e. ∆ Vref1 = -0.05 

p.u. and 5% step increase in Vref3  = 0.05 p.u. have 

applied at different loading conditions. The dynamic 

responses of the GA based FLPSS (GFLPSS) are 

compared with the conventionally tuned CPSS and 

No PSS in the system. 

 It is clear from the results that the damping to 

the system oscillations improves with the proposed 

GFLPSS as compare to CPSS and No PSS. It is 

clear from the results that without any PSS in the 

system, the system oscillations are sustained, where 

as with GA based FLPSS oscillations are damped 

very quickly. The GFLPSS has a lower peak off-

shoot and smaller oscillations. It is clearly shown in 

Fig.3 & 4 that GFLPSS effectively and efficiently 

damp oscillations in the local as well as interarea 

mode. The dynamic responses for ∆ ω34 , ∆ ω13  

considering small perturbation of Vref1 = -0.05 p.u. 

and Vref3 = 0.05 p.u. for nominal loading 

conditions are shown in Figs 2& 3 respectively. The 

Dynamic response for ∆δ34 considering ∆Vref1= - 

0.05 p.u. and ∆Vref 3= 0.05 p.u. for nominal load is 

shown in Fig 4. The Dynamic response for ∆δ34 

considering ∆Vref1= - 0.05 p.u. and ∆Vref 3= 0.05 

p.u. for nominal load (local mode)is shown in Fig 

5.The dynamic responses for ∆ω1, ∆ω2, ∆ω3,   ∆ω4 

considering small perturbation of Vref1 = -0.05 p.u. 

and Vref3 = 0.05 p.u. for heavy loading conditions 

are shown in Fig 6. The dynamic responses for 

∆ω12, ∆ω34, ∆ω13 considering small perturbation 

of Vref1 = -0.05 p.u. and Vref3 = 0.05 p.u. for light 

loading conditions are shown in Fig 7. 

The results shown in Figs clearly reveal that the 

GA based FLPSS settles oscillations in rotor speed 

deviations and overall better damped response as 

compare to CPSS. The GFLPSS work effectively in 

damping local as well as interarea modes of 

oscillations. 
 

7.2 Large Disturbance Test 

 
To investigate the effectiveness of the GPSS under 

more severe conditions, A 3-cycle, three phase fault 

was applied at bus 7 at t = 0.5 sec for nominal, light 

and heavy system loading conditions. The fault is 

cleared by tripping the faulty line. It can be clearly 

seen from Figs.8-12 that the proposed GFLPSS 

minimize the oscillations in speed deviation and 

improve the settling time and peak offshoot 

following a three-phase fault for different operating  

load. The GFLPSS provide superior performance as 

compare to conventional power system stabilizer in 

terms of settling time. The system oscillations are 

increasing in magnitude without any PSS in the 

system. Simulation results reveal that the 

performance of the fuzzy logic power system 

stabilizers can be significantly improved by 

incorporating the genetic-based learning mechanism 

for tuning all parameters including FLPSS gains 

centers of membership functions and variance of 

Gaussian membership functions. 

 

Fig. 2 Variation of performance index J  

 

Fig. 3 Dynamic response for ∆ω12  

considering ∆Vref 1 = - 0.05 p.u. and  

∆Vref 3 = 0.05 p.u. for nominal load  

(local mode). 
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Fig. 5 Dynamic response for ∆δ34 considering 

∆Vref1= - 0.05 p.u. and ∆Vref 3= 0.05 p.u. for 

nominal load (local mode).  

 

 

 

Fig. 4 Dynamic response for ∆ δ13 considering 

∆Vref 1 = - 0.05 p.u.and ∆Vref 3 = 0.05 p.u. for 

nominal load (Interarea mode). 

 
 

 

 

Fig. 6 Dynamic response for ∆ ω1 , ∆ ω2  , ∆ ω3  

and ∆ ω4  considering Vref1 = -0.05 p.u. and Vref3 

= 0.05 p.u. for heavy loading conditions with 

GFLPSS. 

 
 

 
 

Fig. 7 Dynamic response for ∆ω12 , ∆ ω34 , ∆ ω13  

considering Vref 1 = - 0.05 p.u. and Vref 3 = 0.05 

p.u. for light load conditions with GFLPSS. 
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Fig. 10 Dynamic response for ∆ ω1 , ∆ ω2  , ∆ ω3   

and ∆ ω4 considering transitory 3-phase fault at 

light loading conditions with GFLPSS. 

 

 

 

 

 

 

 

 

 

Fig.8 Dynamic response for ∆ω12 considering 

transitory 3-phase fault at bus-7 of three cycles 

duration for nominal loading conditions with 

GFLPSS (Local mode). 

 

 

Fig. 9 Dynamic response for ∆ ω1 , ∆ ω2  , ∆ ω3  

and ∆ ω4  considering transitory 3-phase fault at 

bus-7 of three cycles duration for heavy loading 

conditions with GFLPSS. 

 

 

 

 

 

 

Fig. 11 Dynamic response for ∆ω12 , ∆ ω34 , ∆ 

ω13  considering transitory 3-phase fault at bus-7 

of three cycles duration for light loading 

conditions with GFLPSS. 
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8 Conclusions 

 
This paper presents a systematic approach for the 

design of fuzzy logic power system stabilizers in a 

multimachine power system using genetic 

algorithm. The method for tuning of fuzzy logic 

 

 

Fig. 14 Stabilizing signal under three-phase fault 

with CPSS. 

 

Fig.13 Stabilizing signal under small perturbation 

with GFLPSS. 

 

 

 

 

Fig.12 Dynamic response considering transitory 3-

phase fault at bus-7 of three cycles duration for 

heavy loading conditions with GFLPSS. 

 

 

The stabilizing signals under small perturbation for 

nominal loading condition with conventional PSS 

and GA based FLPSS are shown in Fig.13 and Fig. 

14. The results shown clearly indicate that GFLPSS 

provide effective stabilizing signal than CPSS 

under small disturbance. 

The stabilizing signal considering transitory 3-

phase fault at bus-7 of three cycles duration for 

nominal loading conditions with conventional PSS 

are shown in Fig. 15. 

 

 

 

 

 

 

 

 

Fig.15 Stabilizing signal under small perturbation 

with GFLPSS. 
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power system stabilizer using ISTSE technique has 

been presented. The design algorithm for 

simultaneous tuning of fuzzy logic power system 

stabilizers has been tested for multimachine model. 

The performance of the FLPSS can be significantly 

improved by incorporating the genetic-based 

learning mechanism for tuning of parameters of 

fuzzy logic power system stabilizer. Simulation 

results reveal that the dynamic performance of the 

system enhances with genetic based fuzzy logic 

power system stabilizer. Investigations reveal the 

performance of simultaneously tuned genetic 

algorithm based fuzzy power system stabilizers in a 

multi-machine system is quite robust under wide 

variations in loading conditions both for small and  

large disturbance for local as well as interarea mode. 
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Appendix I 

Non-linear model of Multi-machine power system: 

i
th
 machine model : 

   ρωi   =   (   Tmi − Tei ) / 2H 

   δi     =   ωo ( ωi − 1) 

 ρΕ'q i  =  [Efd i - (Ε'qi + (Xd i - X'di) Idi) / T'doi 

ρΕfd i  =   [ΚAi (Vref i − Vt i) + vs i) − Efd i] / Tai  

 Te  = E'di Idi  + E'qi Iqi – (X'qi - X'di ) Idi Iqi      

 E = Ε'qi  - ( Xd - X'd ) Idi 

 δij     =   δi - δj 

Appendix II 
 

The generation and terminal voltage of generator  

buses are as follows: 

 

The generation and terminal voltage of generator 

buses are as follows: 

 

G1: Pe=700 MW   Qe=185 MVA    Vt=1.03 ∠20.2
o
 

 

G2: Pe=700 MW   Qe=235 MVA     Vt=1.01 ∠10.5
o
 

 

G3:  Pe=719 MW   Qe=176 MVA    Vt=1.03 ∠-6.8
o
 

 

G4: Pe=700 MW    Qe=202 MVA  Vt=1.03 ∠-17.0
o
 

The loads and reactive power supplied (QC) by the 

shunt capacitors at buses 7 and 9. 

Bus 7:PL=967MW QL=100 MVAr, QC =200  

MVAr 

Bus 9: PL=1767 MW   QL=100 MVAr, QC = 350  

MVAr 

Excitation system KA=50   TR=0.01 sec. 

Turbine-governor system   Kg =25    Tg=0.5 
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