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Abstract: - For a class of discrete unmatched uncertain systems with incompletely measured states, a stable 

closed-loop sliding-mode control method based on the unmatched uncertain states observer is proposed. The 

output error feedback matrix is obtained by transformation of uncertainties state equation and solving the linear 

matrix inequalities(LMI). The stability of the states observer is proved. A reaching-law sliding-mode controller 

is presented for this discrete system by employing the results of the observer. To enhance the stability of the 

reaching-law sliding-mode controller, the stability margin is defined by using the min-max eigenvalue ration 

method. By deducing the min-max Lyapunov difference function, solving linear programming and optimizing 

the switching function, the closed-loop sliding-mode controller can get the maximum stability margin. The 

simulation results show the effectiveness of the proposed control method. 
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1 Introduction 
1
Variable structure sliding-mode control algorithms 

is a good solution to the effects of external 

perturbation on the control system, which have been 

widely used in various control system. Provided the 

controller is designed appropriately, the motion of 

the states is completely insensitive to so-called 

matched uncertainty when reached to the sliding-

mode surface. This algorithm improves the 

robustness of the controlled system. One kinds of 

the effective continuous sliding-mode controller 

need to maintain an ideal sliding motion is known as 

the equivalent control 
[1,2]
. However, the control 

signal is held constant during the sample period in 

digital system, so it is impossible to attain ideal 

sliding-mode surface unless control signal switches 

at infinite frequency. As a result, the invariance 

properties of continuous sliding-mode controller are 

lost. The ideal of discrete sliding-mode controller 

has been proposed in Reference [3-5].  

Sliding-mode controller for unmatched 

uncertainties system is more complex. Commonly, 

linear transformations and assumptions of 
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unmatched uncertainties are used to design the 

sliding-mode controller 
[6, 7]

. In practice, the 

unmatched uncertainties system often encountered 

in the following problems: on the one hand, how to 

design sliding-mode controller if some states are 

unmeasured; on the other hand, how to improve the 

stability of the closed-loop sliding-mode controller.  

Traditionally, sliding-mode controller requires 

all the system states are available to design. But it is 

not very realistic for practical engineering system. 

Reference[8,9] only using measurable outputs to 

design the sliding-mode controller, avoiding 

dependence on states. However, this method is 

complicated to derivate when system contains 

unmatched uncertainties. Reference [10-12]using 

sliding-mode observer to estimate the unmeasurable 

states, and design full-states feedback sliding-mode 

controller. However, this method may lead to states 

chattering.  

It is very important to choose switching function 

in the discrete sliding-mode controller. To improve 

the controller performance, designing fuzzy 
[13,14]

or 

adaptive 
[15,16]

methods to adjust switching function 

according to the dynamic characteristics of system. 

These approaches are generally based on the 

characteristics of the controlled system and 

debugging experience to determine the fuzzy or 
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adaptive rules, so they are not the general 

approaches. 

The theoretical foundation of parameter 

uncertainty in time domain stability of control 

system is Lyapunov stability theory. Riccati 

equation approach to such issues is an important 

tool, but there are various shortcomings. With the 

proposal of interior point methods, LMI overcomes 

the deficiencies of Riccati equation approach. In 

recently, LMI has been widely used in control 

design optimization and stability conditions 

analysis
[17,18]

. 

The paper proposes a novel discrete sliding-

mode control method for an unmatched 

uncertainties discrete system with states incomplete 

measurable. We use parts of measurable states and 

outputs to estimate the unmeasureable states and get 

all the system states. Next, we design reaching-law 

sliding-mode controller, and optimize the switching 

function. For the unmeasurable states, designing 

reduced-order states observer by linear 

transformation, and estimating unmeasured states. 

To prevent unmatched uncertainties undermine the 

stability of the observer, proposed a method to 

select output error feedback matrix L for states 

observer. Using LMI to solve matrixL , and proved 
the asymptotic stability of the observer. To improve 

the stability of the closed-loop sliding-mode 

controller, defining the closed-loop control stability 

margin by using of the min-max eigenvalue ration 

method, and obtaining optimal switching function 

by means of solving linear programming to improve 

the stability margin of the control system. Finally, 

the simulation shows the effectiveness of the 

observer and control method mentioned above.  

The structure of the paper is as follows. Section 2 

will describe the system model and give the relevant 

assumption. Section 3 will introduce the process of 

system linear transformation. In Section 4, the 

unmatched uncertainties states observer will be 

proposed, and the stability existing condition of the 

observer will be proved. Section 5 will use all the 

states to design reaching-law sliding-mode 

controller, and prove the existence and reaching of 

the sliding surface. Section 6 will analyse the 

closed-loop control stability margin and optimize 

the switching function. Section 7 will illustrate two 

examples, one shows the results of the unmatched 

uncertainties observer, the other one shows the 

effectiveness of optimal switching function sliding-

mode controller. Conclusions are presented in 

Section 8. 

 

 

2 System Model Description 

Consider the following discrete unmatched 

uncertainties system: 
( 1) ( ) ( ) [ ( ) ( )]

( ) ( )

x k A A x k B u k k

y k Cx k

ξ+ = + ∆ + +


=
        

(1) 

where 
nx R∈  is the state vector, 

ly R∈  is the 

measurable output, 
mu R∈  is control input, 

n nA R ×∈ ,
n mB R ×∈ ,

l nC R ×∈  are constant 

matrices, 
n nA R ×∆ ∈  is unmatched uncertainties 

time-varying matrix, ( ) mk Rξ ∈  is bounded 

external uncertain perturbation, it can be expressed 

as 

              1 2( ) [ ( ), ( ), ( )]Tmk k k kξ ξ ξ ξ= ⋯
. 

  The following assumptions of system (1) are 

given as: 

Assumption 1. The states of system (1) can be 

expressed as ( )1 2( ) ( ) ( )
T

x k x k x k= , 1( )
px k R∈  

is unmeasurable state, 2

n px R −∈  is measurable 

state. 

Assumption 2. A∆  is unmatched uncertainties 

item, it can be composed as ( )A D k E∆ = Σ , D  and 

E  are known constant matrices with appropriate 

dimensions, ( )kΣ  is an uncertain time-varying 

matrix, and such that ( ) 1kΣ < , where norm ⋅  is 

expressed as the maximum singular value. So ( )kΣ  

has the property of ( ) ( )T k k IΣ Σ ≤ . 

 

 

3 System linear transformation 
Select n dimensional linear transformation matrix 

[ ]i oT T T= and it’s inverse matrix 
1 i

o

T
T

T

−  
=  
 

, 

such that:  
Condition 1. 0iT B = ;  

Condition 2. elements of the first p column in 

matrix oT  are zero. 

By linear transformation x Tz= , system (1) is 

expressed as  

[ ]1 1

2 2

1 2

( 1) ( )
( ) ( )

( 1) ( )

( ) ( ) ( )i o

z k z k
A A B u k k

z k z k

y k CT z k CT z k

ξ
 +   

 = + ∆ + +    +   
 = +
                                                                                 

(2) 

where 11 i iA T AT= ;      12 i oA T AT= ;  
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21 o iA T AT= ;      22 o oA T AT= ; 

[ ]0
T

B B′= ;   oB T B′ = ; 

11 ( )i iA T D k ET∆ = Σ ; 12 ( )i oA T D k ET∆ = Σ ;

21 ( )o iA T D k ET∆ = Σ ; 22 ( )o oA T D k ET∆ = Σ .  

Linear transformation x Tz=  can be write as 

1 1

2 2

( ) ( )

( ) ( )

i

o

z k x kT

z k x kT

    
=     

    
, so 2 ( )z k  only related to 

2 ( )x k  when Condition 2 holds. So 2 ( )z k  is 

measurable state. 

 

 

4 Design of unmatched uncertainties 

states observer 
To design sliding-mode control law, it is necessary 

to obtain the estimation of unmeasurable state 

1( )z k . So we use the measurement of 2 ( )z k  and 

( )y k  to design unmatched uncertainties states 

observer. 

Deduce the following reduced-order state 

equation from system (2): 

1 11 11 1 12 12 2

1 2

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )i o

z k A A z k A A z k

y k CT z k CT z k

 + = + ∆ + + ∆


= +
             

(3) 

The states observer of 1( )z k can be designed by 

equation (3): 

1 11 1 1 12 2
ˆ ˆ( 1) ( ) ( ) ( )iz k A z k LCT z k A z k+ = + +ɶ     

                                         (4) 

where 1 1 1̂( ) ( ) ( )i i iCT z k CT z k CT z k= −ɶ  

                           2 1̂( ) ( ) ( )o iy k CT z k CT z k= − −  

L  is the output error feedback matrix. How to 

determine L  such that equation (4) is asymptotic 
stability under the influence of unmatched 

uncertainties factors is the key to the design of the 

observer. 

Theorem 1. The designed states observer (4) is 

asymptotic stability, if there exist matrices L  and 
symmetric positive definite matrix P  with 

appropriate dimensions such that the equation (5) 

holds. 

' ' ' ' ' ' ' '

' ' ' ' 0 0

' ' 0 ' '

T T T T

T T

T T

A PA P C C A PB C D

B PA B PB I

D C D D

 − +
 

− < 
  

             (5) 

where 
11

110

i

i

A LCT
A

A LCT

 
′ =  − 

,
0

i

B
T D

 
′ =  

 
, 

[ ]i iC ET ET′ = ,                     oD ET′ = . 

Proof. For the introduction of state error vector, 

equation (6) can be obtained by subtracting equation 

(4) from equation (3) : 

1 11 1 11 1 11 1
ˆ( 1) ( ) ( ) ( )z k A z k A z k A z k+ = + ∆ + ∆ɶ ɶ ɶ        

1 12 2( ) ( )iLCT z k A z k− + ∆ɶ                  

(6) 

Extended-dimensional state equation (7) can be 

derived from equation (4) and equation (6): 

1 111

1 111 11 11

ˆ ˆ( 1) ( )

( 1) ( )

i

i

z k z kA LCT

z k z kA A A LCT

+     
=     + ∆ + ∆ −    ɶ ɶ

  

12

2

12

( )
A

z k
A

 
+  

∆ 
                              (7) 

State 2 ( )z k  is considered as the control vector. 

Equation (7) can be written as a linear fractional 

model (8) when we regardless of the determined 

item 12A : 

2

( 1) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

k A k B k

q k C k D z k

k k q k

ε ε ω

ε
ω

′ ′+ = +
 ′ ′= +
 = Σ

                               (8) 

where [ ]1 1
ˆ( ) ( ) ( )

T
k z k z kε = ɶ . 

Select Lyapunov function as 

( ) ( ) ( )TV k k P kε ε= , where P  is the symmetric 

positive definite matrix. So equation (9) is the 

sufficient condition for asymptotic stability of 

equation (8): 

( ) ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( ) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( ) 0

T T

T T T

T T T

V k k P k k P k

q k q k q k q k k P k

k P k k k q k q k

ε ε ε ε

ε ε

ε ε ω ω

∆ = + + −

− + ≤ + +

− − + <

      

(9

) 

Equation (9) can be expressed as LMI: 

[ ]2( ) ( ) ( ) ( )V k k k z k Qε ω∆ ≤              

[ ]2( ) ( ) ( ) 0
T

k k z kε ω <                

(10) 

where 

' ' ' ' ' ' ' '

' ' ' ' 0

' ' 0 ' '

T T T T

T T

T T

A PA P C C A PB C D

Q B PA B PB I

D C D D

 − +
 

= − 
  

. 
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If there exist P  and L  such that Q  become a 

negative definite matrix, the asymptotic stability of 

equation (8) is guaranteed. So the asymptotic 

stability of states observer (4) is guaranteed also. 

This completes the proof.  

In accordance with the above analysis, the block 

diagram of the unmatched uncertainties states 

observer is shown in figure 1. 

( , , , )A A B C∆
( )u k

( )kξ
( )y k

T2 ( )x k 2 ( )z k

12A

oCT

iCT

11A

1̂( 1)z k +

L

Figure 1 Block diagram of the states observer 

 

 

5 Design of the variable structure 

controller 
States can be observed stably from equation (4), 

they can be considered that : 1 1̂( ) ( )z k z k= , so we 

can design reaching-law sliding-mode controller by 

means of all the states. We choose switching 

function as ( ) ( )Tk B Pz kσ = ɶ , where Pɶ  is a 

symmetric positive definite matrix. According 

discrete system reaching-law: 

( 1) ( ) sgn( ( )) ( )k k T k T kσ σ α σ β σ+ − = − ∆ − ∆ , 

where T∆  is sampling period, α  and β  are 

constant, which determine the reaching rate and 

chattering amplitude of sliding-mode controller
[3,19]

.  

By system (1) and Assumption 2 we can see the 

uncertainties and perturbation are bounded 

functions
[20]
, so they are satisfy 

1( ( )) ( ) ( ) ( ) ( ( ))T T

l ud z k B PB B P Az k k d z kξ−≤ ∆ + ≤ɶ ɶ

                                                                               

(11) 

Define mean of perturbation as  

( ( ( )) ( ( ))) / 2o u ld d z k d z k= +   

and deviation of perturbation as  

( ( ( )) ( ( ))) / 2d u ld z k d z kδ = −  

By substituting switching function and discrete 

reaching-law into system (2), the discrete sliding-

mode control law can be expressed as  

( ) ( ) ( )eq wu k u k u k= +                        

(12) 

where ( ) 1

( ) [ ( ) ( )T T T

equ k B PB B Pz k B PAz k
−

= −ɶ ɶ ɶ  

                                            (1 ) ( )]T kβ σ− − ∆      

( ) 1

( ) [ sgn( ( ))]T

wu k B PB T kα σ
−

= − ∆ɶ  

                                            0( sgn ( ))dd kδ σ− +  

Theorem 2. Under the drive of control law (12), the 

sliding surface ( ) ( )Tk B Pz kσ = ɶ  of controlled 

system (2) will be existent and reachable. 
Proof.  Equation(13) is the necessary condition for 

the existence and reaching of sliding surface in 

discrete control systems. 

[ ( 1) ( )] ( ) 0k k kσ σ σ+ − <               (13) 

Substitute system (2) into ( 1)kσ + , we get: 

( 1) ( 1)

( ) ( ) [ ( ) ( )]

T

T T

k B Pz k

B P A A z k B PB u k k

σ

ξ

+ = +

= + ∆ + +

ɶ

ɶ ɶ
      (14) 

By substituting the control law (12) into equation 

(14), ( 1)kσ +  can be expressed as: 

( 1) ( ) ( ) ( )

( ) (1 ) ( ) sgn ( )

[ sgn ( ) ( )]

T T

T

T

o d

k B P A A z k B Pz k

B PAz k T k T k

B PB d k k

σ

β σ α σ

δ σ ξ

+ = + ∆ +

− − − ∆ − ∆

+ − − +

ɶ ɶ

ɶ

ɶ

(15) 

Then we get: 

1

2

( 1) ( ) (1 ) ( ) sgn ( )

( ) [ sgn ( ) ( )]

part

T T

o d

part

k k T k T k

B P Az k B PB d k k

σ σ β σ α σ

δ σ ξ

+ − = − − ∆ − ∆

+ ∆ + − − +

�������������

ɶ ɶ
���������������������

                                                                       (16) 

Firstly, we consider the part 1 of equation (16). 

Because of too short sample time T∆ , it can be 

deduced that 
1

T
β

∆ ≪ , hence  

[ ](1 ) ( ) sgn ( ) ( ) 0T k T k kβ σ α σ σ− − ∆ − ∆ <  

Next, we consider the part 2 of equation (16). 

According to Assumption 2 and equation (11), the 

part 2 of equation (16) can be expressed as  

0 ( ) 0( )

0 ( ) 0[ sgn ( ) ( )]

T T

o d

kB P Az k B PB

kd k k

σ
σδ σ ξ

< >∆ + 

> <− − + 

ɶ ɶ
   

By calculating of the above two-step, we get 

[ ( 1) ( )] ( ) 0k k kσ σ σ+ − < , so Theorem 2 is 

proven. 
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6 Optimize the switching function 

parameters 
Although the sliding surface is existent and 

reachable, there is a certain extent blindness to 

select matrix Pɶ . If choose Pɶ  improperly, the 
control system may become unstable, especially on 

the influence of uncertain items and external 

perturbation. This section studies how to optimize 

matrix Pɶ  to improve stability margin of closed-loop 
control system. To avoid the complex derivation, 

only consider the influence of ( )wu k  and ( )kξ  on 

the system, the unmatched uncertainties are 

considered as constant 0A∆ ≡ . 
Substitute control law (12) into system (2), we 

get 

( ) 1

1 2( 1) ( ) ( ) ( )Tz k Az k B B PB k B kξ ξ
−

+ = − +ɶ ɶ ɶɶ                

(17

) 

where 

( ) 1

[ (1 )]T TA A B B PB B P I A Tβ
−

= + − − − ∆ɶ ɶ ɶ , 

1( ) sgn( ( ))k T kξ α σ= ∆ɶ , 

2 0( ) ( sgn ( )) ( )dk d k kξ δ σ ξ= + +ɶ . 

Assumption 3. ( )kξɶ  is defined as 

1 2( ) ( ) ( )k k kξ ξ ξ =  
ɶ ɶ ɶ  

there exist constants 0ρ  and 1ρ , such that 

0 1( ) ( )k z kξ ρ ρ< +ɶ [9]
, where 0ρ , 1ρ  are 

determined by the characteristic of  ( )kξɶ . 

Theorem 3. Consider Lyapunov function as 

( ) ( ) ( )TV k z k Pz k= ɶ , and the states trajectory 

remain on sliding surface under the control law (12), 

the min-max Lyapunov difference function can be 

deduced as 

1 2,
min max ( 1) ( )( ) ( )

eq

T T

u
V k z k P A PA z k

ξ ξ

 ∆ + = − −  ɶ ɶ

ɶ ɶɶ ɶ  

                      1 1

2 2

( ) ( )

( ) ( )

T

k k
Y

k k

ξ ξ
ξ ξ

   
+    
   

ɶ ɶ

ɶ ɶ
 

where 

( )( ) ( )
1

1

T
T

T

T

B B PB
Y P B B PB B

B

−
−

 
−   = −    
 

ɶ
ɶ ɶ  

Proof. Lyapunov difference function as follows: 

( 1) ( 1) ( 1) ( ) ( )T TV k z k Pz k z k Pz k∆ + = + + −ɶ ɶ                   

(18

) 

Substitute system (17) into equation (18), we get: 

( 1) ( )( ) ( )T TV k z k A PA P z k∆ + = −ɶ ɶɶ ɶ  

         ( ) 1

1 2( ) [ ( ) ( )]T T Tz k A P B B PB k B kξ ξ
−

+ − +ɶ ɶ ɶɶ ɶ  

( )( )11 2[ ( ) ( ) ] ( )
T

T T T Tk B B PB k B PAz kξ ξ
−

+ − +ɶ ɶ ɶɶ ɶ

        ( )( )11 2[ ( ) ( ) ]
T

T T T Tk B B PB k Bξ ξ
−

+ − +ɶ ɶɶ  

( ) 1

1 2[ ( ) ( )]TB B PB k B kξ ξ
−

⋅ − +ɶ ɶɶ  

   

(19) 

For the nominal linear system when ( ) 0wu k ≡ , 

0A∆ ≡ , ( ) 0kξ ≡ , an ideal sliding motion is 

obtained. Hence, while states trajectory of system 
(17) reaches to sliding surface, the switching 

function is considered as zero: 

( 1) ( 1)Tk B Pz kσ + = +ɶ         

( ) 1

( )

( ) [ ( )

( ) (1 ) ( )]

( ) 0

T

eq

T T T T

T

T

B P Az k Bu

B PAz k B PB B PB B Pz k

B PAz k T k

B PAz k

β σ

−

 = + 

= + −

− − ∆

= =

ɶ

ɶ ɶ ɶ ɶ

ɶ

ɶɶ

    

(20) 

Substituting equation (20) into (19),  the following 

items can be deduced to: 

( ) 1

1 2( ) [ ( ) ( )] 0T T Tz k A P B B PB k B kξ ξ
−

− + =ɶ ɶ ɶɶ ɶ  

( )( )11 2[ ( ) ( ) ] ( ) 0
T

T T T Tk B B PB k B PAz kξ ξ
−

− + =ɶ ɶ ɶɶ ɶ  

So equation (19) can be wrote as: 

( 1) ( )( ) ( )T TV k z k A PA P z k∆ + = −ɶ ɶɶ ɶ  

( )( )11 2[ ( ) ( ) ]
T

T T T Tk B B PB k Bξ ξ
−

+ − +ɶ ɶɶ  

( ) 1

1 2[ ( ) ( )]TB B PB k B kξ ξ
−

⋅ − +ɶ ɶɶ  

Making some simple matrix operations, we can 

proof theorem 3. 

Theorem 4.
[21,22]

 If 
TP A PA− ɶ ɶɶ ɶ , Y are positive 

definite matrices, variable µ  can be defined as 

min

max

( )1

( )

TP A PA

Y

λ
µ λ

−
=

ɶ ɶɶ ɶ
. System(17) can be 

guaranteed closed-loop control asymptotically stable 
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with perturbation ( )kξɶ  when inequality  

1
1ρ µ<  holds.  

1
µ  can be considered as the closed-loop 

stability margin of system(17) which is driven by 

control law(12). Where min ( )λ i  and max ( )λ i  

indicate the minimum or maximum eigenvalues of 

corresponding matrices. 

In section 4, Pɶ  is defined as a symmetric 
positive definite matrix; to ensure the stability of the 

closed-loop system, 
TP A PA− ɶ ɶɶ ɶ  is requested a 

positive definite matrix, so they are satisfy the 

prerequisite of Theorem 4. With Theorem 3 and 

Theorem 4, optimize matrix Pɶ  by solving the 
following linear programming: 

     minfind P µɶ  

. .s t          ( )i TP A PA I− >ɶ ɶɶ ɶ  

( )ii Y Iµ<                               (21) 

( )iii 0P >ɶ      

By means of Theorem 4, we can determine 

whether the closed-loop control system is stability. 

System (2) can obtain the maximum stability margin 

by substituting optimization matrix Pɶ  into sliding-
mode control law (12). 

Based on the above analysis, this paper discusses 

the sliding mode controller design approach 

involves the following steps: linear transformation, 

LMI solution, optimize matrix Pɶ , calculation of 
sliding mode switching function and control law. 

The relationship between the various steps is shown 

in Figure 2. 

solution of optimal matrix Pɶ

sliding mode 

switching function

( ) ( )Tk B Pz kσ = ɶ

 ( )
eq

u k

( )
w

u k

sliding mode controller

controlled object

( , , , )A A B C∆

( )u k

( )kξ

unmatched uncertainties

       state observer

2
( )x k ( )y k

{ }1 2
ˆ( ) ( ) ( )z k z k z k=

      Linear

transformation

  LMI 

solution

Figure 2 Block diagram  
of the sliding-mode controller 

 

 

7 Examples 
In this section, two numerical examples will be 

considered. The unmatched uncertainties third-order 

system as follows: 

( 1) ( ) ( ) [ ( ) ( )]

( ) ( )

x k A A x k B u k k

y k Cx k

ξ+ = + ∆ + +


=
 

where 

5 1 1.35

1.1 0.5 0.45

2.4 1.5 1.65

A

− − − 
 = − 
 − − 

, 

0

1

1.2

B

 
 =  
  

, 

1 0.6 0.7

0.2 0.5 0.4
C

− 
=  − 

, 

             

0 0.03sin(100 )

0.015cos(50 ) 0

0.01cos(50 ) 0

k

A k

k


∆ = 


 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Shen Yu, Ma Bo-Yuan, Du Jin-Xin, Duan Xue-Chao

ISSN: 1991-8763 296 Issue 5, Volume 5, May 2010



                                         
0

0

0.05 ( 500 )

0

n
k nδ

∞

=



Σ −



 

The system states 1 2 3[ , , ]Tx x x x= , only 3x  is 

measurable. 

The linear transformation matrix is chosen as 

1 0 0

0 1 1

0 0 1.2

T

 
 =  
  

 

The unmatched uncertainties can be composed as 

( )A D k E∆ = Σ , where  

0.1 0 0

0 0.1 0.15

0 0 0.1

D

 
 =  
  

， 

0 0.3 0

0 0 0.5

0.1 0 0

E

 
 =  
  

， 

0

sin(100 ) 0 0

( ) 0 ( 500 ) 0

0 0 cos(50 )

n

k

k k N

k

δ
∞

=

 
 
 Σ = Σ −
 
  

 

 

7.1 States estimation 

To verify the effectiveness of the unmatched 

uncertainties observer design method, compared to 

this method with the traditional states observer 

design method of zero-pole placement. Given two 

output error feedback matrices:  

1

0.2674 0

0 0.2674
L

 
=  
 

， 

2

0.5 2

0.2 0.8
L

− − 
=  − 

. 

1L  is calculated using Matlab LMI toolbox and 

satisfied inequality (10); 2L  is designed by 

traditional states observer design method, and the 

matrix 11 2 iA L CT−  pole is assigned in 

[ ]4.3560 1.7640− − , but traditional states 

observer design method not consider 11A∆  and 

12A∆ , and not satisfied inequality (10). 

In the numerical simulation, sampling period 

10T ms∆ = , simulation time is 40s . Using 1L  and 

2L  to observe states 1 2[ ]Tz z  respectively, and get 

the state estimation 1_ 1 2_ 1
ˆ ˆ[ ]TL Lz z  and 

1_ 2 2_ 2
ˆ ˆ[ ]TL Lz z . Two numerical simulations are 

shown in this section. 

In simulation one, the input control signal u  is 
set as a ramp with slope of 0.2. Fig.3 shows the 

u and the theoretical response curve of 1z ; Fig.4 

shows the actual response curve of 1_ 1
ˆ

Lz  and 

1_ 2
ˆ

Lz ; Fig.5 shows the estimation error of 1_ 1Lzɶ  

and 1_ 2Lzɶ . 
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input control signal u(k)

theoretical response curve of Z1(k)

 
Fig.3 The input control signal and 

the system’s theoretical response of 1z  
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 Fig.4 The estimation of observer 1L and 2L  

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Shen Yu, Ma Bo-Yuan, Du Jin-Xin, Duan Xue-Chao

ISSN: 1991-8763 297 Issue 5, Volume 5, May 2010



0 5 10 15 20 25 30 35 40

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

t/s

 

 

state Z1(k)-L1 estimation error
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Fig.5 The estimation error of observer 1L and 2L  

 

In simulation two, the input control signal u  is 
set as a sinusoid. Fig.6 shows the u and the 

theoretical response curve of 1z ; Fig.7 shows the 

actual response curve of 1_ 1
ˆ

Lz  and 1_ 2
ˆ

Lz ; Fig.8 

shows the estimation error of 1_ 1Lzɶ  and 1_ 2Lzɶ . 

0 5 10 15 20 25 30 35 40
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input control signal u(k)
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Fig.6 The input control signal and 

the system’s theoretical response of 1z  
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Fig.7 The estimation of observer 1L and 2L  
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Fig.8 The estimation error of observer 1L and 2L  

 

It can be analysed from Fig.3-8 that 1_ 1
ˆ

Lz  

approaches to 1z  quickly and 1_ 1Lzɶ  fluctuate around 

zero values less than 1_ 2Lzɶ ; 1_ 2Lzɶ  shows the 

tendency to deviate from 1z  and gradual diverges. It 

is indicate that the traditional states observer design 

method is vulnerable to the influence of unmatched 

uncertainties, the states observer becomes instability 

caused by the pole location changing; unmatched 

uncertainties observer proposed in this paper 

considers the unmatched uncertainties factors, so it 

performances better. 

 

 

7.2 Optimize sliding-mode controller 

To demonstrate the effectiveness of the sliding-

mode closed-loop controller optimization method, 

analysis two kinds of switching functions. Given the 

following numerical simulation dates: external 

perturbation
2

( ) 0.17 0.25 ( )k z kξ < + , sampling 

period 10T ms∆ = , simulation time is5s , 0.5α =
， 10β = . Design different switching parameters 

1σ  and 2σ , where  

1 1 [-0.5086 2.2114 4.5919]TB Pσ = =ɶ , 

2 2 [-0.3698 1.5897 1.5896]TB Pσ = =ɶ .  

1σ  is obtained from the result of linear 

programming (21), and its stability margin 

1 0.9333µ = ; 2σ  is designed using traditional 

reaching-law sliding-mode control method, it 

satisfies 2 0Bσ ≠  but not satisfies equation(21), and 

its stability margin 1 0.3273µ = . Control law 
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1( )u k  and 2 ( )u k  are deduced from 1σ  and 2σ  

respectively. Under the control of 1( )u k  and 2 ( )u k , 

the closed-loop switching functions and state 

responses of system (2) are showed in Fig.9-12. 

From Fig.9-10 we can see that the chattering 

amplitude of switching function 1 ( )z kσ  

significantly smaller than 2 ( )z kσ  under the same 

condition of ( )kξ , T∆ ,α  and β . Fig.11-12 show 
the fluctuation of the states responses ( )z k  driven 

by 1( )u k  is smaller than it driven by 2 ( )u k . 

Although 1σ  and 2σ  can guarantee the stability of 

sliding mode controller, system (2) can better 

suppress the impact of external perturbation ( )kξɶ  

when the switching parameter is chosen as 1σ  , 

because of higher stability margin. 
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Fig.9 The trajectory of switching function 1 ( )z kσ  
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Fig.10 The trajectory of switching function 2 ( )z kσ  
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Fig.11 The state responses 

under the control of 1( )u k  
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Fig.12 The state responses 

under the control of 2 ( )u k  

 

 

8 Conclusions 
For an unmatched uncertainties discrete system with 

states incomplete measurable, proposed a stable 

closed-loop sliding-mode control method based on 

an unmatched uncertainties states observer. This 

control method through the following three steps to 

achieve: firstly, the states are augmented with the 

error vector states, and the output error feedback 

matrix is obtained by solving the LMI; secondly, 

design reaching-law sliding-mode controller 

employing the results of the observer; thirdly, by 

deducing the min-max Lyapunov difference 

function and optimization sliding-mode switching 

function ( )TB Px kɶ , the closed-loop sliding-mode 

controller can get the maximum stability margin.. In 

the simulation two groups of parameter are 

compared, and the results show the effectiveness of 

the proposed control method. 
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