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Abstract: - In industrial electronic systems, power converters with power components are used. Each controlled 
component has its own control circuit. In this paper, the author proposes an original control circuit for each 
function in order to replace the different existing circuits. The proposed circuit is the representation of an 
elliptical trigonometric function as “Elliptic Mar” and “Elliptic Jes-x” that are particular cases of the elliptical 
trigonometry. Thus, with one function, by varying the values of its parameters, the output waveform will 
change and can describe more than 12 different waveforms. Finally for each function, a block diagram, a model 
of the circuit and a programming part are treated using Matlab/Simulink. The results of the studied circuit are 
presented and discussed. 
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1 Introduction 
In motor drives, robotics, or other industrial 
electronic applications, the use of power converters 
is essential to improve the control and, therefore, the 
efficiency of the studied system [17],[18]. Power 
converters and power electronics circuits are 
generally composed of power components with 
different characteristics [17]. These components are 
divided in two categories: the controlled 
components and the uncontrolled components [17], 
[19],[20]. The controlled components that are based 
on semi-conductors like thyristors, Triac and 
transistors need controlled signals with specified 
waveforms in order to be applied on their controlled 
terminals (base or gate) [17],[19]. Thus, each 
component has its own control source. This paper 
underlines the importance of the elliptical 
trigonometric functions in generating different 
waveforms by varying some parameters of a single 
function. In a particular case, the Elliptic Mar and 
the Elliptic Jes-x functions are chosen to be treated. 
In fact, the elliptical trigonometry is an original 
study introduced with new concepts [1],[2]. The 
existed trigonometry (Circular trigonometry) is a 
particular case of the elliptical trigonometry [6],[7]. 
The traditional trigonometry has an enormous 
variety of applications in all scientific domains 
[6],[7],[8],[9]. It can be considered as the basis and 

foundation of many domains as electronics, signal 
theory, astronomy, navigation, propagation of 
signals and many others… [10],[11],[12],[13]. 
Particularly, the mathematical topics of Fourier 
series and Fourier transforms rely heavily on 
knowledge of trigonometric functions [10],[11] and 
find application in a number of areas, including 
statistics [12],[13].  
In this paper, the new concept of the elliptical 
trigonometry is introduced and few examples are 
shown and discussed briefly. Figures and results are 
drawn and simulated using Matlab/Simulink and 
AutoCAD. A survey on the applications of this 
trigonometry in the power electronics domains 
presented in section 2. In the third section, the 
angular functions are defined, these functions have 
enormous applications in all domains, and it can be 
considered as the basis of this trigonometry [1],[2]. 
The definition of the Elliptical trigonometry is 
presented and discussed briefly in section 4. In the 
fifth section, a survey on the Elliptical 
Trigonometric functions is discussed and two 
principal functions are presented. In the sections 6 
and 7, two functions are studied and discussed 
briefly with simulation on Simulink/Matlab, their 
block diagrams are presented, their programming 
parts and so their modeling circuits. Finally, a 
conclusion about the elliptical trigonometry is 
presented in the section 8.  
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 2 A survey on the application of the 
elliptical trigonometry in engineering 
domain 
The used controlled circuits for power transistors 
(MOSFET, IGBT, etc) differ from those used for 
Thyristors (GTO, Triac, etc). Designing and 
modeling circuits for all these controlled 
components taking into account their different 
characteristics, take time, and realizing them 
practically, take time and money. In this paper, for 
each elliptical trigonometric function, one electronic 
circuit is proposed to be used in simulation 
(Labview, Matlab, Simulink etc). For a particular 
case, in order to control the different existed power 
components for the function Elliptic Mar (figure 1), 
two parameters ′푏′  and ′푖′  are used as variable 
inputs. The output will be the studied elliptical 
trigonometry function.  
Thus, the main goal of the Elliptical Trigonometry is 
to produce a huge number of multi form signals 
using a single function and by varying some 
parameters of this function. For a particular case, 
more than 12 different output signals can be 
obtained by varying two parameters of the Elliptic 
Mar function. 

 
Fig. 1: Electronic circuit of the function 퐸푚푎푟 , (푥) 

with its inputs and output. 
 
 
3 The angular functions 
In order to make a review on the elliptical 
trigonometry, it is necessary to introduce the 
definition of the angular functions. In fact, angular 
functions are new mathematical functions that 
produce a rectangular signal, in which period is 
function of angles. Similar to trigonometric 
functions, the angular functions have the same 
properties as the precedent, but the difference is that 
a rectangular signal is obtained instead of a 
sinusoidal signal [14],[15],[16] and moreover, one 
can change the width of each positive and negative 
alternate in the same period. This is not the case of 
any other trigonometric function. In other hand, one 
can change the frequency, the amplitude and the 
width of any period of the signal by using the 
general form of the angular function. 

In this section three types of angular functions are 
presented, they are used in this trigonometry; of 
course there are more than three types, but in this 
paper the study is limited to three functions. 
 
 
3.1 Angular function 풂풏품풙(풙) 
The expression of the angular function related to the 
(ox) axis is defined, for 퐾 ∈  ℤ, as: 
푎푛푔 (훽(푥 + 훾)) =

+1  푓표푟  (4퐾 − 1) − 훾 ≤ 푥 ≤ (4퐾 + 1) − 훾 

−1   푓표푟 (4퐾 + 1) − 훾 < 푥 < (4퐾 + 3) − 훾
 (1) 

 
Fig. 2: The 푎푛푔 (훽(푥 + 훾)) waveform. 

 
For 훽 =  1  and 훾 =  0 , the expression of the 
angular function becomes: 

푎푛푔 (푥) =
+1  푓표푟  cos (푥) ≥ 0 
−1  푓표푟 cos(푥) < 0   

 
 
3.2 Angular function 풂풏품풚(풙) 
The expression of the angular function related to the 
(oy) axis is defined, for 퐾 ∈  ℤ, as: 
푎푛푔 (훽(푥 + 훾)) =

+1  푓표푟  2퐾휋/훽 − 훾 ≤ 푥 ≤ (2퐾 + 1)휋/훽 − 훾          
−1   푓표푟  (2퐾 + 1)휋/훽 − 훾 < 푥 < (2퐾 + 2)휋/훽 − 훾

      (2) 

 
Fig. 3: The 푎푛푔 (훽(푥 + 훾)) waveform. 

 
For 훽 =  1  and 훾 =  0 , the expression of the 
angular function becomes: 

푎푛푔 (푥) =
+1  푓표푟  sin(푥) ≥ 0 
−1  푓표푟 sin(푥) < 0   

 
 
3.3 Angular function 풂풏품휶(풙) 
α (called firing angle) represents the angle width of 
the positive part of the function in a period. In this 
case, we can vary the width of the positive and the 
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negative part by varying only α. The firing angle 
must be positive. 
푎푛푔 훽(푥 + 훾) =  

⎩
⎪
⎨

⎪
⎧

+1  푓표푟                                                                              
(2퐾휋 − 훼)/훽 − 훾 ≤ 푥 ≤ (2퐾휋 + 훼)/훽 − 훾            

 
−1   푓표푟                                                                             
(2퐾휋 + 훼)/훽 − 훾 < 푥 < (2(퐾 + 1)휋 − 훼)/훽 − 훾

 

(3) 

 
Fig. 4: The 푎푛푔 (훽(푥 + 훾)) waveform. 

 
 
4 Definition of the Elliptical 
Trigonometry 
In order to study the proposed circuits, their block 
diagrams and their simulations, it is necessary to 
introduce the mathematical definition of the 
elliptical trigonometry and its functions. 
 
 
4.1 The Elliptical Trigonometry unit 
The Elliptical Trigonometry unit is an ellipse with a 
center O (x = 0, y = 0) and has the equation form: 
(푥/푎)  + (푦/푏) = 1      (4) 
With: 
‘a’ is the radius of the ellipse on the (x’ox) axis, 
‘b’ is the radius of the ellipse on the (y’oy) axis. 

 
Fig. 5: The elliptical trigonometry unit. 

 
It is essential to note that ‘푎 ’ and ‘푏 ’ must be 
positive. In this paper, ‘푎 ’ is fixed to 1. One is 
interested to vary only a single parameter which is 
‘푏’. 

4.2 Intersections and projections of different 
elements of the Elliptical Trigonometry on 
the relative axes 
From the intersections of the ellipse with the 
positive parts of the axes (표푥)  and (표푦) , define 
respectively two circles of radii [표푎]  and [표푏] . 
These radii can be variable or constant according to 
the form of the ellipse. 
The points of the intersection of the half-line [표푑) 
(figure 5) with the internal and external circles and 
with the ellipse and their projections on the axes 
(표푥) and (표푦) can be described by many functions 
that have an extremely importance in creating plenty 
of signals and forms that are very difficult to be 
created in the traditional trigonometry. 
 
Definition of the letters in the Figure 5: 
푎: Is the intersection of the ellipse with the positive 
part of the axe (표푥) that gives the relative circle of 
radius "푎". It can be variable. 
푏: Is the intersection of the ellipse with the positive 
part of the axe (표푦) that gives the relative circle of 
radius "푏".  It can be variable. 
푐: Is the intersection of the half-line [표푑) with the 
circle of radius 푏. 
푑: Is the intersection of the half-line [표푑) with the 
ellipse. 
푒: Is the intersection of the half-line [표푑) with the 
circle of radius 푎. 
푐 : Is the projection of the point 푐 on the 표푥 axis. 
푑 : Is the projection of the point 푑 on the 표푥 axis.  
푒 : Is the projection of the point 푒 on the 표푥 axis. 
푐 : Is the projection of the point 푐 on the 표푦 axis. 
푑 : Is the projection of the point 푑 on the 표푦 axis.  
푒 : Is the projection of the point 푒 on the 표푦 axis. 
훼: Is the angle between the (표푥) axis and the half-
line [표푑). 
표: Is the center (0, 0). 
 
 
4.3 Definition of the Elliptical Trigonometric 
functions 푬풇풖풏(휶) 
The traditional trigonometry contains only 6 
principal functions: Cosine, Sine, Tangent, Cosec, 
Sec, Cotan. [15],[16]. But in the Elliptical 
Trigonometry, there are 32 principal functions and 
each function has its own characteristics. These 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Claude Bayeh

ISSN: 1991-8763 861 Issue 11, Volume 5, November 2010



 

functions give a new vision of the world and will be 
used in all scientific domains and make a new 
challenge in the reconstruction of the science 
especially when working on the economical side of 
the power of electrical circuits, the electrical 
transmission, the signal theory and many other 
domains [15],[17]. 
 
The functions 퐶푗푒푠(훼),퐶푚푎푟(훼),퐶푡푒푟(훼)  and 
퐶푗푒푠 (훼) , which are respectively equivalent to 
cosine, sine, tangent and cotangent. These functions 
are particular cases of the “Circular Trigonometry”. 
The names of the cosine, sine, tangent and cotangent 
are replaced respectively by Circular Jes, Circular 
Mar, Circular Ter and Circular Jes-y. 
퐶푗푒푠(훼) ⇔ 푐표푠(훼); 퐶푚푎푟(훼) ⇔ 푠푖푛(훼) 
퐶푡푒푟(훼) ⇔ 푡푎푛(훼); 퐶푗푒푠 (훼) ⇔ 푐표푡푎푛(훼). 
 
The Elliptical Trigonometric functions are denoted 
using the following abbreviation “퐸푓푢푛(훼)”: 
-the first letter “E” is related to the Elliptical 
trigonometry. 
-the word “푓푢푛(훼)” represents the specific function 
name that is defined hereafter: (refer to Figure 5). 
 
• Elliptical Jes functions: 
El. Jes: 퐸푗푒푠(훼) = =    (5) 

El. Jes-x: 퐸푗푒푠 (훼) = = ( )
( )  (6) 

El. Jes-y: 퐸푗푒푠 (훼) = = ( )
( )  (7) 

• Elliptical Mar functions: 

El. Mar:  퐸푚푎푟(훼) = =   (8) 

El. Mar-x: 퐸푚푎푟 (훼) = = ( )
( )   (9) 

El. Mar-y: 퐸푚푎푟 (훼) = = ( )
( )              (10) 

• Elliptical Ter functions: 
El. Ter:  퐸푡푒푟(훼) = ( )

( )                          (11) 

El. Ter-x:   

퐸푡푒푟 (훼) = ( )
( ) = 퐸푡푒푟(훼) ∙ 퐶푡푒푟(훼)       (12) 

El. Ter-y: 퐸푡푒푟 (훼) =
( )

( ) = ( )
( )          (13) 

• Elliptical Rit functions: 
El. Rit: 퐸푟푖푡(훼) = = = ( )

( )              (14) 

El. Rit-y: 퐸푟푖푡 (훼) = = ( )
( )             (15) 

• Elliptical Raf functions: 

El. Raf: 퐸푟푎푓(훼) = = 퐶푡푒푟(훼).퐸푗푒푠(훼)    (16) 

El. Raf-x: 퐸푟푎푓 (훼) = = ( )
( )                  (17) 

• Elliptical Ber functions: 
El. Ber: 퐸푏푒푟(훼) = ( )

( )                           (18) 

El. Ber-x: 

퐸푏푒푟 (훼) = ( )
( ) = 퐸푏푒푟(훼) ∙ 퐶푡푒푟(훼)       (19) 

El. Ber-y: 퐸푏푒푟 (훼) =
( )
( ) = ( )

( )          (20) 

 
 
4.4 The reciprocal of the Elliptical 
Trigonometric function 
퐸푓푢푛 (훼) is defined as the inverse function of 

퐸푓푢푛(훼) . (퐸푓푢푛−1(훼) = 1/퐸푓푢푛(훼)) . In this 
way the reduced number of functions is equal to 32 
principal functions.  

E.g.: 퐸푗푒푠 (훼) = 1
(훼)

 

 
 
4.5 Definition of the Absolute Elliptical 
Trigonometric functions 푬풇풖풏(휶) 
The Absolute Elliptical Trigonometry is introduced 
to create the absolute value of a function by varying 
only one parameter without using the absolute value 
“| |”. The advantage is that one can change and 
control the sign of an Elliptical Trigonometric 
function without using the absolute value in an 
expression. Some functions are treated to get an idea 
about the importance of this new definition. To 
obtain the Absolute Elliptical Trigonometry for a 
specified function (e.g.: 퐸푗푒푠(훼) ) we must multiply 
it by the corresponding Angular Function (e.g.: 

푎푛푔 (훼)  with 푖 ∈ ℕ ) in a way to obtain the 
original function if 푖  is even, and to obtain the 
absolute value of the function if 푖  is odd (e.g.: 
|퐸푗푒푠(훼)|). 
If the function doesn’t have a negative part (not 
alternative) it will be multiplied by 푎푛푔 (훽(훼 −

훾))  to obtain an alternating signal which form 
depends on the value of the frequency “훽” and the 
translation value “ 훾 ”. By varying the last 
parameters, one can get a multi form signals.  
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• 퐸푗푒푠 (훼) = 푎푛푔 (훼) ∙ 퐸푗푒푠(훼)              (21) 

=
푎푛푔 (훼) ∙ 퐸푗푒푠(훼) = |퐸푗푒푠(훼)|    푖푓 푖 = 1

푎푛푔 (훼) ∙ 퐸푗푒푠(훼) = 퐸푗푒푠(훼)      푖푓 푖 = 2
  

• 퐸푗푒푠 , (훼) = 푎푛푔 (훼 − 훾) ∙ 퐸푗푒푠 (훼)        (22) 

= 푎푛푔 (훼 − 훾) ∙ 퐸푗푒푠 (훼)   푖푓 푖 = 1
퐸푗푒푠 (훼)                              푖푓 푖 = 2   

• 퐸푗푒푠 , (훼) = 푎푛푔 (2훼) ∙ 퐸푗푒푠 (훼)            (23) 

=
푎푛푔 (2훼) ∙ 퐸푗푒푠 (훼) = |퐸푗푒푠 (훼)|   푖푓 푖 = 1
퐸푗푒푠 (훼)                                                   푖푓 푖 = 2   

• 퐸푚푎푟 (훼) = 푎푛푔 (훼) ∙ 퐸푚푎푟(훼)              (24) 

• 퐸푚푎푟 , (훼) = 푎푛푔 (2훼) ∙ 퐸푚푎푟 (훼)        (25) 

• 퐸푚푎푟 , (훼) = 푎푛푔 (훼 − 훾) ∙ 퐸푚푎푟 (훼)    (26) 

• 퐸푟푖푡 (훼) = 푎푛푔 (훼) ∙ 퐸푟푖푡(훼)                    (27) 
And so on… 
 
 
5 A survey on the Elliptical 
Trigonometric functions 
As previous sections, a brief study on the Elliptical 
Trigonometry is given. Two functions of 32 are 
treated; the others functions can be easily interpreted 
using formulae from (5) to (20).  
Elliptic cosine and Elliptic sine that appear in the 
previous articles [1] and [2], are particular cases of 
the Elliptic Jes and Elliptic Mar respectively. 
 
For this study the following conditions are taken: 
- 푎 = 1 
- 푏 > 0 the radius of the ellipse on the 푦′표푦 axis. 
- 푖 ∈ ℕ 
 
 
5.1 Determination of the Elliptic Jes function 
The Elliptical form in the figure 5 is written as the 
equation (4). Thus, given (5), the Elliptic Jes 
function can be determined using the following 
method. In fact: 
퐶푡푒푟(훼) = = , it is significant to replace the 

equation 푦 = 퐶푡푒푟(훼). 푥 in that defined in (4). 

+ 퐶푡푒푟(훼) = 1 + 퐶푡푒푟(훼) = 1 ⇒  

퐸푗푒푠 (훼) = ±

 ( )
  

Therefore: 
•퐸푗푒푠 (훼) =

 ( )
 for − ≤ 푥 ≤ ;  ≥ 0 

•퐸푗푒푠 (훼) =
 ( )

 for < 푥 < ;  < 0  

Thus, the expression of the Elliptic Jes can be 
unified by using the angular function expression (1), 
therefore the expression becomes: 
퐸푗푒푠 (훼) = ( )

 ( )
⇒  

퐸푗푒푠 (푥) = ( )

 ( )
               (28) 

 
• Expression of the Absolute Elliptic Jes: 

퐸푗푒푠 , (푥) = ( )

 ( )
∙ 푎푛푔 (푥)           (29) 

The Absolute Elliptic Jes is a powerful function that 
can produce more than 12 different signals by 
varying only two parameters 푖 and 푏. Similar to the 
cosine function in the traditional trigonometry, the 
Absolute Elliptic Jes is more general than the 
precedent. 
 
 
5.2 Determination of the Elliptic Mar 
function 
The elliptical form in the figure 5 is written as the 
equation (4). Thus, given (8), the Elliptic Mar 
function can be determined using the following 
method. In fact: 
퐶푡푒푟(훼) = = ⇒ 푥 = ( ) , it is significant 

to replace the equation 푥 = ( ) in that defined in 

(4). Thus, (
∙ ( ))  + (푦/푏) = 1 ⇒ 

퐸푚푎푟 (훼) = =
±  ( )

 ( )
                          

⇒ 퐸푚푎푟푏(푥) = 푦
푏 =

±푎
푏Cter (푥)

1+ 푎
푏Cter (푥)

2                         

Therefore: 

• 퐸푚푎푟 (푥) =
 ( )

 ( )
 for 0 ≤ 푥 <  

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Claude Bayeh

ISSN: 1991-8763 863 Issue 11, Volume 5, November 2010



 

• 퐸푚푎푟 (푥) =
 ( )

 ( )
 for < 푥 ≤ 휋 

• 퐸푚푎푟 (푥) =
 ( )

 ( )
 for 휋 ≤ 푥 < 3  

• 퐸푚푎푟 (푥) =
 ( )

 ( )
 for 3 ≤ 푥 ≤ 2휋 

Thus, the expression of the elliptic Mar can be 
unified by using the angular function expression (1), 
therefore the expression becomes: 
퐸푚푎푟 (푥) =  ( ) ( )

 ( )
               (30) 

• Expression of the Absolute Elliptic Mar: 

퐸푚푎푟 , (푥) = 퐸푚푎푟 (푥) ∙ 푎푛푔 (푥)               (31) 

The Absolute Elliptic Mar is a powerful function 
that can produce more than 12 different signals by 
varying only two parameters 푖 and 푏. Similar to the 
sine function in the traditional trigonometry, the 
Absolute Elliptic Mar is more general than the 
precedent. 
 
 
5.3 Original formulae of the Elliptical 
Trigonometry 
In this sub-section, a brief review on some 
remarkable formulae formed using the elliptical 
trigonometric functions. 

• 퐸푗푒푠 (푥) + 퐸푚푎푟 (푥) = 1                    (32) 

In fact: 퐸푗푒푠 (푥) + 퐸푚푎푟 (푥) =  

( )

 ( )
+  ( ) ( )

 ( )
=  

 ( )
+  ( )

 ( )
 =  

 ( )

 ( )
 =

 ( )

 ( )
= 1  

 

• 
( ) ( )

+
( ) ( )

= 1 (33) 

In fact: 

퐸푗푒푠 (푥) + 퐸푚푎푟 (푥) = ( )
( ) + ( )

( )   

=
( )

⇒ ( ) ( ) = 퐶푗푒푠(푥)   

  And 

퐸푗푒푠 (푥) + 퐸푚푎푟 (푥) = ( )
( ) + ( )

( )   

=
( )

⇒ 1
퐸푗푒푠푦

2(푥)+퐸푚푎푟푦2(푥)
= 퐶푚푎푟(푥)   

Therefore: ( ) ( ) + ( ) ( ) =  

퐶푗푒푠 (푥) + 퐶푚푎푟 (푥) = cos (푥) + sin (푥) = 1  
 
 
6 Studying the function 푬풎풂풓풊,풃(풙) 
In this section, the Absolute Elliptic Mar, which is 
defined in equation (31), is chosen to be treated. The 
main goal of this study is to model and simulate the 
function using Matlab and Simulink. 
 
 
6.1 The block diagram of 푬풎풂풓풊,풃(풙) 
The block diagram of the function 퐸푚푎푟 , (푥) is 
illustrated in figure 6. There are three inputs 
connected to this diagram, two variable parameters 
"푏" and "푖", and one sinusoidal waveform (Circular 
Mar or “sine”). "푎" is chosen to be a constant with 
푎 = 1, so it can’t be considered as an input.  

 
Fig. 6: Block diagram of the function 퐸푚푎푟 , (푥) 
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6.2 Modeling and simulating the function 
푬풎풂풓풊,풃(풙) using Matlab-Simulink 
Consider 푎 = 1 , "푏"  and "푖"  are the controlled 
inputs, The Absolute Elliptic Mar function is 
obtained as an output. With three inputs, one can 
obtain a single output, which can produce more than 
12 different signals. 

 
Fig. 7: the circuit model of the function  퐸푚푎푟 , (푥) 
 
 
6.2.1 First case (풃 ≪ ퟏ) 
From equation (30), two configurations are studied: 
1. Consider 푥 ≠ 푘휋 and 푏 ≪ 푎 ∙ 퐶푡푒푟(푥). 
In this case, 퐶푡푒푟(푥) ≠ 0 . As "푏"  is too small 
number but non zero, therefore: 

퐶푡푒푟(푥) ≫ 1. Thus the equation (30) becomes: 

 퐸푚푎푟 (푥) =  ( ) ( )

 ( )
≈  ( ) ( )

 ( )
 

≈ ±  ( ) ( )
 ( )

≈ ±푎푛푔 (푥) = ±1    

Therefore: 퐸푚푎푟 (푥) = 
+1 푓표푟            2푘휋 < 푥 < (2푘 + 1)휋 
−1 푓표푟 (2푘 + 1)휋 < 푥 < (2푘 + 2)휋  

 
2. Consider 푥 = 푘휋 and 푏 ≫ 푎 ∙ 퐶푡푒푟(푥). 
In this case, 퐶푡푒푟(푥) = 0 . As "푏"  is too small 
number but non zero, therefore: 

퐶푡푒푟(푥) = 0. Thus the equation (30) becomes: 

 퐸푚푎푟 (푥) =  ( ) ( )

 ( )
= 0 

Consequently: 퐸푚푎푟 (푥) = 

0 푓표푟                               푥 = 푘휋                              
+1 푓표푟              2푘휋 < 푥 < (2푘 + 1)휋; 푥 ≠ 푘휋
−1 푓표푟  (2푘 + 1)휋 < 푥 < (2푘 + 2)휋; 푥 ≠ 푘휋

 

Thus, a rectangular signal is obtained. 
 
Figures 8.a and 8.b represent the waveforms of the 
function 퐸푚푎푟 , (푥)  for 푏 = 0.001 ≪ 1 , 
(rectangular waveform for 푖 = 2  and continuous 
signal for 푖 = 1). 

  
a)  푖 = 2; 푏 = 0.001   b)  푖 = 1; 푏 = 0.001 

Fig. 8: the waveforms of the function 퐸푚푎푟 , (푥) 
for 푏 = 0.001 ≪ 1 

 
 
6.2.2 Second case (풃 < 1) 
In this case, an elliptic swollen form is obtained for 
푖 = 2  (figure 9.a), and a rectified elliptic swollen 
form is obtained for 푖 = 1  (figure 9.b). The 
importance of this signal is by obtaining an average 
value greater than that of an absolute value of the 
sinusoidal signal. Hence, the average of the signal 
can be increased by varying only the value of one 
parameter "푏". 

  
a)  푖 = 2; 푏 = 0.4   b)  푖 = 1; 푏 = 0.4 

Fig. 9: the waveforms of the function 퐸푚푎푟 , (푥) 
for 푏 = 0.4 < 1 

 
 
6.2.3 Third case (풃 = ퟏ) 
When 푎 = 푏 = 1, the ellipse equation defined in (4) 
becomes: 
(푥) + (푦) = 1                (34) 
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This is the equation of a circle of radius 푟 = 1. 
 
• The Elliptic Mar function defined in (8) becomes: 

퐸푚푎푟(훼) = = = 퐶푚푎푟(훼) = sin(훼)  
• The Elliptic Jes function defined in (5) becomes: 
퐸푗푒푠(훼) = = = 퐶푗푒푠(훼) = cos(훼)  

Therefore, 퐸푚푎푟 , (푥) = sin(푥) ∙ 푎푛푔 (푥)   (35) 

 
Figures 10.a and 10.b represent the waveforms of 
the function 퐸푚푎푟 , (푥)  for 푏 = 1 , (sinusoidal 
signal for 푖 = 2 and rectified sinusoidal signal for 
푖 = 1). 

  
a)  푖 = 2; 푏 = 1   b)  푖 = 1; 푏 = 1 

Fig. 10: the waveforms of the function 퐸푚푎푟 , (푥) 
for 푏 = 1 

 
 
6.2.4 Fourth case (풃 > 1) 
In this case, an elliptic deflated form is obtained for 
푖 = 2 (figure 11.a), and a rectified elliptic deflated 
form is obtained for 푖 = 1  (figure 11.b). The 
importance of this signal is by obtaining an average 
value smaller than that of an absolute value of the 
sinusoidal signal. Hence, the average of the signal 
can be decreased by varying only the value of one 
parameter "푏". 

  
a)  푖 = 2; 푏 = 6   b)  푖 = 1; 푏 = 6 

Fig. 11: the waveforms of the function 퐸푚푎푟 , (푥) 
for 푏 = 6 > 1 

 

6.2.5 Fifth case (풃 ≫ ퟏ) 
From equation (30), two configurations are studied: 
1. Consider 푥 ≠ ( )휋 and 푏 ≫ 푎 ∙ 퐶푡푒푟(푥). 
In this case, 퐶푡푒푟(푥) ≠ ±∞ . As "푏"  is too large 
number but non infinite, therefore: 

퐶푡푒푟(푥) = 휀 ≪ 1. It is much smaller than the 

unit. Thus the equation (30) becomes: 

 퐸푚푎푟 (푥) =  ( ) ( )

 ( )
≈ √ ∙ ( )

√
, by 

using Taylor development for the first degree 

퐸푚푎푟 (푥) = √휀 ∙ 푎푛푔 (푥) 1 − ≈ √휀 ∙ 푎푛푔 (푥)   

Therefore: 

퐸푚푎푟 (푥) = 0  푓표푟            2푘휋 < 푥 < (2푘 + 1)휋 
0  푓표푟 (2푘 + 1)휋 < 푥 < (2푘 + 2)휋  

2. Consider 푥 = ( )휋  and 푏 ≪ 푎 ∙ 퐶푡푒푟(푥). 
In this case, 퐶푡푒푟(푥) = ±∞ . As "푏"  is too large 
number but non infinite, therefore: 

퐶푡푒푟(푥) ≫ 1. Thus the equation (30) becomes: 

 퐸푚푎푟 (푥) =  ( ) ( )

 ( )
≈  ( ) ( )

 ( )
 

≈ ±  ( ) ( )
 ( )

≈ ±푎푛푔 (푥) = ±1  

Consequently: 퐸푚푎푟 (푥) = 

⎩
⎪⎪
⎨

⎪⎪
⎧0  푓표푟             2푘휋 < 푥 < (2푘 + 1)휋; 푥 ≠ ( )   

0  푓표푟  (2푘 + 1)휋 < 푥 < (2푘 + 2)휋; 푥 ≠ ( )  

+1 푓표푟              2푘휋 < 푥 < (2푘 + 1)휋; 푥 = ( )

−1 푓표푟  (2푘 + 1)휋 < 푥 < (2푘 + 2)휋; 푥 = ( )

  

 Thus, an impulse signal is obtained. 
Figures 12.a and 12.b represent the waveforms of 
the function 퐸푚푎푟 , (푥) for 푏 = 100 ≫ 1, (impulse 
train with positive and negative part for 푖 = 2 and 
impulse train with positive part only for 푖 = 1). 

  
a)  푖 = 2; 푏 = 100   b)  푖 = 1; 푏 = 100 

Fig. 12: the waveforms of the function 퐸푚푎푟 , (푥) 
for 푏 = 100 ≫ 1 
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6.2.6 Determining the value of "풃" for a quasi-
triangular signal 
The main objective of this part is to obtain a signal 
closed to a triangular one. Therefore, the following 
method is proposed in order to calculate the value of 
"푏" for which the error between the desired signal 
and the obtained one is minimal. This study is 
limited to the interval 0; . 

1. consider the equation of a straight line: 
푦 = 푐푥 + 푑                 (36) 
This line is supposed to contain the following two 
points (푥 = 0;  푦 = 0) and (푥 = ;푦 = 1). 

Therefore, the expression (36) becomes: 푦 = 푥, it 
is represented in the red color in the figure 13.  
2. For the same interval 0; , the angular function 

푎푛푔 (푥) is equal to one, therefore the function (30) 

becomes: 퐸푚푎푟 (푥) =  ( )

 ( )
, it is 

represented in the blue color in the figure 13.  

 
Fig. 13: represents the function 퐸푚푎푟 (푥) (in blue 
color) and the straight line 푦 (in red color) in the 

considered interval. 
 

 
Fig. 14: represents the expression |퐸푚푎푟 (푥) − 푦|  

and two maximal errors to determine. 

 
To obtain the minimal error, the difference between 
the two functions must be smaller than a certain 
value "휀 ", thus 퐸푚푎푟 (푥) − 푦 = 휀 ≤ 휀 . 

It is considered that for 푥 =  (the center of the 
studied interval) the error ε is equal to zero. Thus, 
for 푥 = , the error 휀 = 0, 

 ⇒ 퐸푚푎푟 − ∙  = 0 

⇒
 ( )

 ( )
− = 0 ⇒ 푏 = 3푎 ⇒ 푏 = √3  

To calculate errors 휀  and 휀  presented in the figure 
14, the derivative of 휀 must be equal to zero, 

휀 = 퐸푚푎푟 (푥) − 푦 = 0  

⇒ 휀 = 1.784%   푓표푟  푥 = 0.45085
휀 = 7.375%  푓표푟  푥 = 1.31307   

And the average error 휀 = 2.5062%  
 
• The average error can be reduced by using another 
method, for example for 푏 = √3 + 0.24782 , the 
average error is reduced as the following:  
휀 = 5.55%   푓표푟  푥 = 0.6241
휀 = 5.55%  푓표푟  푥 = 1.381 ;⇒ 휀 = 2.157% 

 
Figures 15.a and 15.b represent the waveforms of 
the function 퐸푚푎푟 , (푥)  for 푏 = √3 , (quasi-
triangular signal for 푖 = 2 and saw signal for 푖 = 1). 

  
a)  푖 = 2; 푏 = √3   b)  푖 = 1; 푏 = √3 

Fig. 15: the waveforms of the function 퐸푚푎푟 , (푥) 
for 푏 = √3 

 
Practically, the value of the average error 휀 =
2.5% is insignificant in some applications, therefore 
the obtained signal can be considered as a pure 
triangular signal for 푖 = 2 and a pure saw signal for 
푖 = 1.  
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Tables 1 and 2 represent a summary of different 
waveforms obtained using the Elliptic functions 
퐸푚푎푟 , (푥) and 퐸푗푒푠 , (푥).  

 
풃 

Absolute Elliptic Mar " 푬풎풂풓풊,풃(풙)" 
풊 = ퟐ 풊 = ퟏ 

b<<1 Rectangle signal Continuous signal 
b<1 Elliptical swollen 

signal 
Rectified elliptical 

swollen signal 
b=1 Sinusoidal signal (sine 

wave form) 
Rectified sinusoidal 

signal 
b=√3 Quasi-triangluar signal Saw signal 
b>1 Elliptical deflated 

signal 
Rectified elliptical 

deflated signal 
b>>1 Impulse train with 

positive and negative 
pulses 

Impulse train with 
positive part only 

Table 1: summary of multi form signals obtained 
using the Absolute Elliptic Mar function. 

 
 
풃 

Absolute Elliptic Jes " 푬풋풆풔풊,풃(풙)" 
풊 = ퟐ 풊 = ퟏ 

b<<1 Impulse train with 
positive part only 

Impulse train with 
positive and 

negative pulses 
b<1 Elliptical deflated 

signal 
Rectified elliptical 

deflated signal 
b=√3/3 Quasi-triangluar 

signal 
Saw signal 

b=1 Sinusoidal signal 
(cosine wave form) 

Rectified sinusoidal 
signal 

b>1 Elliptical swollen 
signal 

Rectified elliptical 
swollen signal 

b>>1 Rectangle signal Continuous signal 
Table 2: summary of multi form signals obtained 

using the Absolute Elliptic Jes function. 
 
These types of signals are widely used in power 
electronics, electrical generators and in transmission 
of analog signals [17]. 
 
 
6.3 First conclusion 
As presented previously, the Elliptic Mar function 
takes different waveforms by varying the parameter 
"푏" . The same analysis can be treated using the 
parameter "푎". Therefore, the same waveforms can 
be obtained. Practically, instead of varying the value 
of "푏"  from 0 to +∞  in a goal to obtain all 
waveforms, by introducing "푎", one can change the 
values of "푏" or "푎" form 0 to 1 in a way to obtain 
the desired waveform. E.g.: = = .   
 

6.4 programming the Elliptic Mar function in 
Matlab 
As presented and analyzed in the previous section, 
the Elliptic Mar function can be also programmed 
and written in the Matlab software. Thus, the 
elliptical trigonometry functions can be used in any 
industrial applications. 
The following program represents the detailed steps 
in writing the Elliptic Mar function in Matlab.  
%------------------------------------------------------------------- 
%Programming the Elliptic Mar function in Matlab 
%Introduced by Claude Ziad Bayeh  
a=1; x=-15:0.0001:15; clc 
fprintf('Absolute Elliptic Mar “AEmar”\n'); 
repeat='y'; 
while repeat=='y' 
    b=input('determine the form of the Elliptic 

trigonometry: b='); 
    fprintf('b is a variable can be changed to obtain 

different signals \n'); %b is the intersection of the 
Ellipse and the axe y'oy in the positive part. 

    if b<0, 
       b 
       error('ATTENTION: ERROR b must be greater than 

Zero'); 
    end; 
    fprintf('AEmar=Emar*(angy(x))^i\n'); 
    i=input('for Absolute Elliptic Mar put 1, for Elliptic 

Mary put 2: i='); 
    if i<0, 
       i 
       error('ATTENTION: ERROR i must be greater or 

equal to Zero'); 
    end; 
    Ejes=(1./(sqrt(1.+((a/b).*tan(x)).^2))).*angx(x); 

Emar=(1./(sqrt(1.+((a/b).*tan(x)).^2))).*angx(x).*tan(x
).*a/b; % the Elliptic Mar "Emar" 

    AEmar=Emar.*(angy(x)).^i; % Absolute Elliptic Mar 
    plot(x,AEmar); axis([0 4*pi -1.5 1.5]); grid on;  
    fprintf('Do you want to repeat ?\nPress y for ''Yes'' or 

any key for ''No''\n'); 
    repeat=input('Y/N=','s'); %string input 
    clc; close all 
end; %End while 
%------------------------------------------------------------------- 
 
 
7 Studying the function 푬풋풆풔풙풃풊 (풙) 
In this section, a brief study on the Absolute Elliptic 
Jes-x. The main goal of this study is to model and 
simulate the function using Matlab and Simulink. 
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7.1 The Elliptic Jes-x function 
The elliptical form in the figure 5 is written as the 
equation (4). Thus, given (6), the Elliptical Jes-x 
function can be determined. In fact: 

퐸푗푒푠 (푥) = ( )
( ) = ( )

( )∙  ( )
    (37) 

 
• Expression of the Absolute Elliptic Jes-x 

퐸푗푒푠 (푥) = 퐸푗푒푠 (푥) ∙ 푎푛푔 (푥 − 훾)          (38) 

 
 
7.2 The block diagram of 푬풋풆풔풙풃풊 (풙) 
The block diagram of the function 퐸푗푒푠 (푥) is 
illustrated in figure 16. There are four inputs 
connected to this diagram, three variable 
parameters "푏" , "푖"  and "훾" , and one sinusoidal 
waveform (Circular Mar or “sine”). "푎" is chosen to 
be a constant with 푎 = 1, so it can’t be considered 
as an input. 

Fig. 16: the block diagram of the function 
퐸푗푒푠 (푥) 

 
 

7.3 Modeling and simulating the function 
푬풋풆풔풙풃풊 (풙) using Matlab-Simulink 
Consider 푎 = 1 , "푏" , "푖"  and "훾"are the controlled 
inputs, The Absolute Elliptic Jes-x function is 
obtained as an output. With four inputs, one can 
obtain a single output, which can produce more than 
12 different signals. 

 
Fig. 17: the circuit model of the function 퐸푗푒푠 (푥) 

 
• Multi form signals made by 퐸푗푒푠 (푥): 

Taking 훾 = 0 for this example, figures 18 and 19 
represent multi form signals obtained by varying 
two parameters (푖  and 푏). For the figures 18.a to 
18.e the value of 푖 = 2, for the figures 19.a to 19.f 
the value of 푖 = 1. 

    
a)  푖 = 2; 푏 = 0.01   b)  푖 = 2; 푏 = 0.5   

   
c)  푖 = 2; 푏 = 1   d)  푖 = 2; 푏 = 1.5   
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e)  푖 = 2; 푏 = 2.9   

Fig. 18: multi form signals of the function 
퐸푗푒푠 (푥) for 푖 = 2 and for different values 

of 푏 > 0. 
 

  
a)  푖 = 1; 푏 = 0.01   b)  푖 = 1; 푏 = 0.5   

  
c)  푖 = 1; 푏 = 1   d)  푖 = 1; 푏 = 1.5   

  
e)  푖 = 2; 푏 = 2.9 f)  푖 = 2; 푏 = 2.9;  훾 = 휋/2   
Fig.19: multi form signals of the function 퐸푗푒푠 (푥) 

for 푖 = 1 and for different values of 푏 > 0. 
 
Important signals obtained using this function: 
Impulse train with positive part only, sea waves, 
continuous signal, amplified sea waves, impulse 
train with positive and negative part, square 
waveform, saw signal … 

7.4 programming the Elliptic Jes-x function 
in Matlab 
As presented and analyzed in the previous section, 
the Elliptic Jes-x function can be also programmed 
and written in the Matlab software. Thus, the 
elliptical trigonometry functions can be used in any 
industrial applications. 
The following program represents the detailed steps 
in writing the Elliptic Jes-x function in Matlab.  
%------------------------------------------------------------------- 
%Programming the Absolute Elliptic Jes-x 
%Introduced by Claude Ziad Bayeh 
clc; close all; a=1; x=-15:0.004:15; 
fprintf('---The Absolute Elliptic Jes-x---\n'); 
repeat='y'; 
while repeat=='y' 
    b=input('determine the form of the Elliptic 

trigonometry: b='); 
    fprintf('b is a variable can be changed to obtain 

different signals \n'); 
    %b is the intersection of the Ellipse and the axe y'oy in 

the positive part. 
    if b<0, 
       b 
       error('ATTENTION: ERROR b must be greater than 

Zero'); 
    end; 
    fprintf('AEjesx=Ejesx*(angx(x-T))^i\n'); 
    i=input('for Absolute Elliptic Jes-x put 1, for Elliptic 

Jes-x put 2: i='); 
    T=input('put the translation of the period for angx(x-

T), T='); 
    if i<0, 
       i 
       error('ATTENTION: ERROR i must be greater or 

equal to Zero'); 
    end; 
    Ejes=(1./(sqrt(1.+((a/b).*tan(x)).^2))).*angx(x); 

Emar=(1./(sqrt(1.+((a/b).*tan(x)).^2))).*angx(x).*tan(x
).*a/b;  

    % the Absolute Elliptic Jes-x "AEjesx" 
    AEjesx=Ejes./cos(x).*(angx(x-T)).^i;  
    plot(x,AEjesx); axis([-2 8 -3 3]); grid on; 
    fprintf('Do you want to repeat ?\nPress y for ''Yes'' or 

any key for ''No''\n'); 
    repeat=input('Y/N=','s'); %string input 
    close all 
end; %End while 
%------------------------------------------------------------------- 
 
 
8  Conclusion 
In this paper, an original study in trigonometry is 
introduced. The elliptical unit and its trigonometric 
functions are presented and analyzed. In fact the 
proposed Elliptical Trigonometry is a new form of 
trigonometry that permits to produce multiple forms 
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of signals by varying some parameters; it can be 
used in numerous scientific domains and 
particularly in mathematics and in engineering. For 
the case treated in this paper, 32 elliptical 
trigonometric functions are defined; only two 
functions are analyzed and simulated using software 
as Matlab-Simulink. In general, a connection cable 
with specific transmission data protocol connects 
any industrial system to the computer. One can use 
the studied functions in order to generate control 
signals in need for power components of the 
industrial system. 
The elliptical trigonometry functions will be widely 
used in electronic domain especially in power 
electronics. Thus, several studied will be improved 
and developed after introducing the new functions 
of the elliptic trigonometry. Some mathematical 
expressions and electronic circuits will be replaced 
by simplified expressions and reduced circuits. 
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