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Abstract: - In this literature, a new nonlinear digital controller is proposed for analyses and designs of sampled-
data feedback control systems. The controller is derived from the converging characteristic of a specified 
numerical series. The ratios of neighbourhoods of the series are formulated as a function of the output of the 
plant and the reference input command, and will be converged to be unities after the output has tracked the 
reference input command. Limitation of the series can be applied to get better performance. Two kinds of servo 
system, a time-delay system, one very high order system and a 2x2 multivariable aircraft gas turbine engine are 
used to illustrate effectiveness of the proposed nonlinear digital controller. Comparisons with other 
conventional methods are also made.  
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1 Introduction 
For unit feedback discrete-time control systems, the 
control sequences are usually functions of the 
difference between the sampled reference input and 
output of the plant [1-5]. The discrete-time control 
sequence can be generated by Finite Impulse 
Response (FIR) filter or Infinite Impulse Response 
(IIR) filter. The input of FIR or IIR filter is the 
difference between the sampled reference input and 
output of the plant. The output of FIR or IIR will be 
the input of the plant. In general, they are linear 
controllers.  

In this literature, a nonlinear discrete-time 
control sequence described by periodic numerical 
series )( SjTG  with ratios of the reference input and 
plant output is first proposed for analyses and 
designs of sampled-data feedback control systems. 

ST  represents the sampling interval. The ratios of 
))1(( STkG +  to )( SkTG  of the series are formulated 

as a function of the reference input command and 
the output of the plant. The value of )( SkTG  is the 
control input of the plant at time intervals between 

STk )1( −  and SkT . Thus, the considered system is 
closed as a feedback control system with )( SjTG . It 
will be seen that the output of the plant tracks the 
reference input command exactly after ratios 

))1(( STkG + / )( SkTG  of the series being converged to 
unities. It implies that )( SkTG  will be converged to a 
steady-state value for a constant reference input 

applied. The stability of the closed-loop system is 
guaranteed by selecting the proper function of ratios 

))1(( STkG + / )( SkTG . This function can be called 
as ”Regulation Function”. It will be proven that the 
considered system with )( SkTG  becomes a negative 
feedback control system for a stable plant[4]. 

Note that it needs not integration to get zero 
tracking error, and performance of controlled 
systems are dependent on selected functions of 

))1(( STkG + / )( SkTG . In this paper, a first-order 
polynomial and a piecewise-linear input versus 
output are used for illustrating operating concepts of 
the proposed nonlinear control system. Naturally, 
more complicated function(i.e., shape) can be 
applied to considered systems. The shaping of 
regulation function around the equilibrium point is 
corresponding to the loop transfer function shaping 
at the medium frequency band in the conventional 
control techniques [4].  

Furthermore, an adaptive limitation for )( SkTG  
can be applied also to minimize the control effort 
and get better  performance.  Controlled results will 
be compared with  conventional famous PI and PID 
controllers[6-15]. 

In following sections, basic concepts of the 
proposed nonlinear discrete-time control sequence is 
discussed first, and then two kinds of servo system, 
a time-delay system, a very high order system, and a 
2x2 multivariable aircraft gas turbine examples are 
used to illustrate their tracking behaviour and 
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performance. Simulating results will show that the 
proposed nonlinear digital controller gives another 
possible way for analyses and designs of sampled-
data feedback control systems. Design results of 
fifth example give the proposed method can also be 
applied to multivariable feedback control systems. 
 
 
2  The Basic Approach 
2.1 Automatic regulation time series 
A numerical series with time interval ST [1-5] can be 
written as in the form of 

,...1,,...,3,2,1),( += nnjjTG S ,    (1) 

where )( SjTG  represents a constant value between 
time interval from STj )1( −  and j ST . For simplicity, 
the representation of )( SjTG  will be replaced by 

)( jG  in following evaluations. The ratios )1( +jG / 
)( jG  of the series are defined as in the form of 

,...1,,...,3,2,1),(/)1()( +=+= nnjjGjGjF .   (2) 

Eq.(2) gives the value of )1( +nG  approaches to be a 
constant value when the value of )(nF approaches to 
be unity. Now, the problem for closing the 
considered system is to find the formula of )( jF  
which is the function of the reference input 
command R and the output of the plant Y. )1( +nG  is 
used as the input of the considered system. 
Considering a series given bellows: 

( ) )()(/)()1(
0

nGnYnRanG i
S

m

i
i ⎥

⎦

⎤
⎢
⎣

⎡=+ ∑
=

        (3) 

where )(nR  represents the reference input command 
and )(nYS  represents the non-zero sampled output of 
the plant at the sampling interval n ST . Note that this 
non-zero constraint will be removed later by level 
shifting. Eq.(3) is a possible way to close the 
considered system as a sampled-data feedback 
control system. Assume the reference input 
command has been tracked by applying control 
effort )( jG , Eq. (3) becomes 

)()1(
0

nGanG
m

i
i∑

=

=+                                   (4) 

For steady-state condition, )1( +nG approaches to be 
a constant value, it gives 

1
0

=∑
=

m

i
ia                                               (5) 

Rearranging Eq.(3) and taking the derivative of it 
with respect to )(/)( nRnYS , one has 

∑
=
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The sufficient but not necessary condition for Eq.(7) 
less than zero is 0>ia  for 1)(/)( ≅nRnYS  and Eq. 
(6) can be rewritten as in the form of  

i
S

m

i
i nR

nY
anF

−

=
∑= )(

)(
)(

0

                                  (8) 

0>ia  will be used in following evaluations. 
Negative value of Eq.(7) represents the closed-loop 
system with Eq.(3) activated as a negative feedback 
system around the equilibrium condition; i.e., 

)()( nRnYS = . This statement will be illustrating and 
discussed by a graph in the next paragraph. The first 
order polynomial described in Eq.(3) can be written 
as in the form of 

)(
)(
)()1()1( nG

nY
nRnG

S
⎥
⎦

⎤
⎢
⎣

⎡
+−=+ ββ ;                (9) 

where β satisfies constrains stated above and 
becomes an adjustable parameter. Thus, the ratios 

)(nF  becomes 

( ) β
nY
nRβF(n)

S

+−=
)(
)(1                                  (10) 

)(nF  can be called as “Regulation Function” also. 
Similarly, the third order representation of )(nF  is 
in the form of  

γαγα −−+⎟⎟
⎠

⎞
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⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−−

1
)(
)(

)(
)()(

13
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nR
nYnF SS    (11) 

where α<0  and γ<0 .  
Taking the derivative of Eq.(10) with respect to 

)()( nRnYS = , one has 
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2
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For negative value of Eq.(12), the value of β must 
be less than one. This implies the range of β  is 

10 << β . The suitability of the proposed nonlinear 
adaptive digital controller is based on this negative 
regulation characteristic. Fig.1 shows ratios )(nF  
versus )(/)( nYnR S  represented by Eq.(9) for β = 0.9, 
0.7, 0.5,0.3 and 0.1; respectively. 

 
Fig.1. G(n+1)/G(n) Versus SYR /  for β =0.9,  

0.7, 0.5,0.3 and 0.1. 

Fig. 1 shows that the value of )(nF  is less than one 
for that of )(nYS  greater than that of )(nR , then the 
value of )1( +nG  will be decreased; and the value of 

)(nF  is greater than one for that of )(nYS  less than 
that of )(nR , the value of )1( +nG  will be increased. 
This implies that the controlled system connected 
with Eq.(9) will be regulated to the equilibrium 
point ( 1)(/)( =nRnYS ) and gives a negative feedback 
control system for deviation from the equilibrium 
point. From Fig.1, it can be seen that one can adjust 
β to get desired regulating slope; i.e., regulating 
characteristic. Certainly, other tracking functions 
can be formulated and proposed also for the 
considered system, if its derivative with respect to 

)(/)( nRnYS  is negative. Similar to the derivation of 
Eq.(12), Eq.(11) gives 
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The constraint of non-zero )(nYS  can be removed by 
)(/)( nYnR S  of Eq.(9) replaced by ))(/())(( OSO YnYYnR ++ .  

OY  is a positive value and represents the negative 
maximal control swing, The modified equation of 
Eq.(9) becomes 

)(}
)(
)(

)1{()1( nG
YnY
YnR

nG
oS

o ββ +
+
+

−=+ .          (14) 

Eq.(14) implies ratios )1( +nG / )(nG  are in the form 
of 

]
)(
)(

)1[()( ββ +
+
+

−=
oS

o

YnY
YnR

nF ,  n=1,2,3,., j,j+1,..  (15) 

Control inputs of the plant are in the form of 

)0(/)1()1( PYnGnu o−+=+                             (16) 

for the negative swing control with positive values 
of β, )(nG  and )(nF . Eq.(14) gives negative 
regulation characteristics also for )()( nYnR S=  is 
corresponding to OSO YnYYnR +=+ )()( . Similar to 
the evaluation of the Eq.(12), the derivative of 
Eq.(15) becomes 

2
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Fig.2 shows the connected system configuration 
using Eqs.(14) an (16) in which U is the sampled 
with hold output of the controller. The values of 

)(nG  and )(nF  will be all positive for the 
summation of )(nYS  and oY (or R and oY ) is greater 
than zero with specified values of oY . All positive 
values will give the better continuity and regulating 
characteristic of the time series. Naturally, absolute 
value of ))(/())(( OSO YnYYnR ++  can be used in Eq.(14) 
to guarantee positive of )(nG  and )(nF  for negative 
of  )(nR . 

 

Fig.2. A Nonlinear Digital Controller with 
Automatic Regulation Time Series. 
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2.2 Control effort limitation 
 An adaptive value of oY  can be selected at | )(nR | 
for the system is well controlled. Then Eqs.(14) and 
(16) can be rewritten as 

 )(
|)(|)(
|)(|)()1()1( nG

nRnY
nRnRnG

S ⎭
⎬
⎫

⎩
⎨
⎧

+
+
+

−=+ ββ      (18) 

and 

)0(/|)(|)1()1( PnRnGnu −+=+              (19) 

respectively. The maximal value of  )(nG can be 
limited by an adaptive constraint ||)(|)(| nRnR +  to 
minimize the control effort. The control input U of 
the plant is now described by Eq.(19).  

Note that the singularity of Eq.(18) must be 
avoided when 0|)(|)( =+ nRnYS . It is easy to replace 

0|)(|)( =+ nRnYS  by a small value. A small value of 
)(nG  is selected also to avoid null the time series.  
Fig.3 shows an equivalent block diagram of 

Fig.2 with constraint of )(nG  and singularity 
avoidance of 0|)(|)( =+ nRnYS . The constrain of 

)(nG  cannot only for minimizing the control effort 
but also for improving system performance. A 
conventional digital filter )(zC  in Fig.3 can be 
applied for filtering )(nG , if it is necessary. In 
general, phase-lead is used for speeding up the time 
response.  

The proposed control scheme will be applied to 
four numerical examples in next section.  

 
    Fig.3. Equivalent Block Diagram of Fig.2 with  

)(nG  limitations and singularity avoidance of 
Eq.(18). 

 
3 Numerical Examples 
Example 1: The first example [6] is shown in Fig.3, 
in which )(sP  is in the form of 

3010
30)( 21 ++

=
ss

sP              (20) 

DC gain of )(1 sP  is unity. The sampling period ST  
is selected to be equal to 0.1 second for illustrating 
variations of )(nG and )(nF . Time responses of the 
overall system with the nonlinear digital controller 
for 5.0=β , oY =| )(nR | and 1)( =zC are shown in 
Fig.4. Magnitudes of reference inputs between 0 and 
5 seconds are equal to 1; between 5 and 10 seconds 
are equal to -0.7, between 10 and 14 seconds are 
equal to 0.5, and between 14 and 17 seconds are 
equal to -0.3, in which gives reference input )(nR  
(dash-line), output Y(solid-line), Time series 

)(nG (dot-line), and ratios )(nF (dash-dot-line) of 
)(nG . Fig.4 shows that all values of )(nG  and )(nF  

are positive while the value of output Y tracking the 
negative value of the reference input )(nR . The 
value of )(nR  can be positive or negative. 

 
Fig.4. Time Responses of Example 1 for β =0.50 

and Ts=0.1sec. 

Fig.4 shows also that ratios )(nF  are converged to 
be unities quickly; i.e., the controlled output tracks 
the reference input quickly. The proposed method 
gives a good performance and zero steady-state 
error without integration. Note that maximal values 
of )(nG  are set to be ||)(|)(| nRnR +  for better 
performance and minimal the control effort. Eq.(14) 
gives )(nF  will be  converged to 0.5 for zero 
input( 0)( =nR ) and 5.0=β . Eq.(14) and Fig.1 give 
that the less value of β , the larger regulation slope 
will be. 5.0=β  is the optimal  value for the 
considered system. 

Fig.5 shows time responses for 50.0=β and 
sampling frequency equal to 100, 40, 20, 10 and 
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5Hz, respectively. It shows that 40Hz (i.e., 
ST =25ms) is fast enough for the considered system. 

Fig.6 shows comparisons with a phase-lead C(z) is 
included in the control loop. The phase-lead C(z) is 
in the form of 

1
12103185.0

115923.0)(
+
−

=+
+

=

z
z

T
s

S

s
szC                     (21) 

It can speed up the time responses while keeping 
system performance.  

Another way to speed up the transient responses 
is to use piecewise-linear regulation function )(nF . 
Enlarging the slope of )(nF at the conditions away 
from the equilibrium point(i.e., )()( nRnYS =  ) to 
speed up transient responses, and keeping the 
original slope to maintain system performance(e.g., 
peak overshoot  and settling time, etc.). 

 

 
Fig.5. Time Responses of Example 1 for β =0.50  
and Sampling Frequency Equaling to 100, 40, 20, 

10 and 5Hz, respectively. 
 
Fig.7 shows a comparison between a new 

regulation function )(nF  and the original )(nF . A 
piecewise linear function is used. The new function 
is in the form of 

RDY
RDY
RDY

RDY
RDY

RDY
nF

<
<<
<<

⎪
⎩

⎪
⎨

⎧

+−
+−
−+

=
25.1

25.18.0
8.00

)25.1125.0(10
;)1(

)2.72.0(10
)(

β
ββ

β
     (22) 

where  

))(/())(( OSO YnYYnRRDY ++=               (23) 

and 50.0=β  and .25msTS =  Eqs.(22) gives large 

regulation slopes than original )(nF  described by 
Eq.(14). Fig.7 shows that the rise time can be 
reduced with this new regulation function described 
by Eq.(22). 

 
Fig.6. Time responses of Example 1 with/without 

C(z) for β=0.5; .25msTS =  

 
Fig.7. Time Responses Comparison between a 

New )(nF and the original )(nF . 

Example 2: Consider a stable plant has the 
transfer function[7,8]: 

22 )1(
)(

+
=

−

s
esP

s

                                   (24) 

Parameters of the nonlinear controller are 5.0=β  
and .25msTS =  Fig.8 shows time response of the 
controlled system, in which gives reference input 
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)(nR  (dash-line), output Y(solid-line), Time series 
)(nG (dot-line), and ratios )(nF (dash-dot-line) of 
)(nG .  The phase-lead filter C(z) is in the form of 

1
12102.0

14.0)(
+
−

=+
+

=
z
z

T
s

S

s
szC                               (25) 

Fig.8 shows the proposed method give good 
performance and zero steady-state error. Simulation 
results of the proposed method and four other 
methods are presented for comparisons. They are 
Ziegler-Nichols method[9-12] for finding PI and 
PID compensators, Tan et al[13,14] for finding PID 
compensator and Majhi[7,8] for finding PI 
compensator. The controller is in the form of  

∫ ++= )()()()( te
dt
dKdtteKteKtu dip ;    (26) 

 
Fig.8. Time responses of Example 2 with C(z) 

for β=0.5; .25msTS =  

Parameters of four found compensators are given 
below:  

(1)ZN(PI)   : 240.1=pK  and 251.0=iK . 
(2)ZN(PID)  : 5972.0   4187.0,6367.1 === dip KandKK . 
(3)Tan’s(PID): 1705.0    5636.0,620.0 === dip KandKK . 
(4)Majhi’s(PI): 3653.0   864.0 == ip KandK . 

Integral of the Square Error(ISE), and Integral of the 
Absolute Error (IAE) are given in Table 1. Time 
responses are shown in Fig.9. From Table 1 and 
Fig.9, one can see that the proposed method gives 
faster and better performance than those of other 
methods presented. 
 

Table 1. IAE and ISE Errors of Example 2 with 
Different Control Methods. 
Methods Proposed ZN(PI) ZN(PID) Tan’s Majhi’s 

IAE 1.5977 2.2675 1.7694 2.2471 2.4654 

ISE 2.1471 4.0107 2.8757 3.0725 4.0659 
 

 
Fig.9. Time Responses of Example 2 with 

Different Control Methods. 

Example 3: Consider the very high order plant[7,8]: 

203 )1(
1)(
+

=
s

sP                                 (27) 

Parameters of the nonlinear controller are 5.0=β  
and .25msTS =  Fig.10 shows time response of the 
controlled system, in which gives reference input 

)(nR  (dash-line), output Y(solid-line), Time series 
)(nG (dot-line), and ratios )(nF (dash-dot-line) of 
)(nG .  It gives good performance and zero steady-

state errors. The phase-lead filter C(z) is in the form 
of 

1
12102.0

18.0)(
+
−

=+
+

=

z
z

T
s

S

s
szC                        (28) 

Fig.10 shows the considered plant is a large time-lag 
system. The high order system model is usually 
used to describe the industry process for replacing 
pure time-delay(e.g. sTde− ). Such that conventional 
analysis and design techniques can be applied[7,8]. 
Fig.10 shows the proposed method can be applied to 
a large time-delayed system. 
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Fig.10. Time responses of Example 3 with C(z) 

for β=0.5; .25msTS =  
Final results and four other methods are presented 
for comparison and show the merit of the proposed 
method. They are Ziegler-Nichols method[9-12] for 
finding PI and PID compensators, Zhuang et al. [15] 
for finding PI compensator and Majhi[7,8] for 
finding PI compensator. Parameters of four found 
compensators are given below:  

(1)ZN(PI)   : 0305.0   585.0 == ip KandK . 
(2)ZN(PID): 9135.4    05088.0 ,77256.0 === dip KandKK . 
(3)Majhi’s(PI) : .0443.0   5097.0 == ip KandK  
(4)Zhuang’s(PI): 058.0   473.0 == ip KandK . 

Time responses are shown in Fig.11. Table 2 gives 
integration of absolute error(IAE) and integration of 
square error(ISE) of them. From Table 2 and Fig.11, 
one can see that the proposed method gives better 
performance than those of other methods.  

 
Fig.11. Time Responses of Example 3 with 

Different Control Methods. 

 
Table 2. IAE and ISE Errors of Example 3 with 

Different Control Methods. 

Methods Proposed ZN(PI) ZN(PID) Majji’s Zhuang’s 

IAE 16.0101 21.2271 16.2160 20.1908 21.8142 

ISE 18.3378 32.7084 22.9707 26.8295 32.9125 
 
 
Example 4: Now, consider an electro-hydraulic 
velocity servo system [16, 17] shown in Fig. 12 with 
system parameters given below: 

sK = 2.3×10 7−
LVS PXsignP )(− sm /2 ; vK = 0.5 m/v 

PS= 1.4×10 7 2/ mNt ; oβ = 3.5×10 7 2/ mNt ;  

tV = 3.3 × 10 5−  radm /2 ; tpC = 2.3 × 10 11−
tNsm //5 ; 

mD =1.6×10 5− radm /3 ;  J=5.8 × 10 3−  Kg-m-s 2 ; 

mB =0.864 radsmKg /⋅⋅ ; 

 
Fig.12. Mathematical Model of Example 4. 

The objective of the control is to keep the velocity 
cω  of the hydraulic system following the desired 

reference input. The relation between the valve 
displacement VX  and the load flow rate LQ  is 
governed by the well-known orifice law [18] 

LVSJVL PXsignPKXQ )(−=  = VX sK ; (27) 

where jK  is a constant for specific hydraulic motor; 

SP  is the supply pressure; LP  is the load pressure 
and; sK  is the valve flow gain which varies at 
different operating points. The following continuity 
property of the servo valve and motor chamber 
yields 

LotLtpCmL PVPCDQ
•

−++= )4( βω ;   (28) 

where mD  is the volumetric displacement; tpC  is 

the total leakage coefficient; tV  is the total volume 
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of the oil; oβ  is the bulk modulus of the oil; and cω  
is the velocity of the motor shaft. The torque 
balance equation for the motor is in the form of 

LCmL TBJPmD C ++=
••
ωω ;        (29) 

where mB  is the viscous damping coefficient and LT  
is the external load disturbance which is assumed to 
be dependent upon the velocity of the shaft or 
slowly time varying as described by the following 
equation: 

LT  =20| cω |.                          (30) 

Step responses of the Example 4 for 7.0=β , 
msTS 20= , and values of reference inputs )(nR  

between 0 and 0.3 seconds are equal to 1; between 
0.3 and 0.6 seconds are equal to 0.4, between 0.6 
and 0.9 seconds are equal to 0.8, and between 0.9 
and 1.2 seconds are equal to 0.2, are shown in Fig. 
10, in which gives the output Y(solid-line), the time 
series )(nG  (dot-line) and regulation function )(nF  
(dash-dot-line) of the series. Fig.13 shows that 

)(nF are converged to be unities quickly, and the 
control method gives good performance and zero 
steady-state error.  

The regulation function )(nF  used in this 
example is in the form of  

)(/)(25.1
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8.0)(/)(0
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S
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S

S

S

S
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⎪
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⎪
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−+

=
β

ββ
β

(31) 

 
Fig.13. Time Responses of Example 4 for β =0.7 

and msTS 20= . 

Fig.14 shows a comparison with the PID control and 
the proposed method. Parameters of the PID control 
law are  

  23 101588.2    3125.10 ,10025.3 −− ×==×= dip KandKK  

They are found by the optimizations method toolbox 
of MATLAB for minimized the integration of 
absolute errors(IAE). Note that the comparison of 
two methods is based on the same amount of control 
efforts (U). It is defined as  

S

n

j

TnunE ∑
=

=
1

2))(()(                    (32) 

Fig.14 shows performance of the proposed method 
is compatible( or slightly better than) with that of 
the PID control with optimized parameters. This 
implies that the proposed method is compatible to 
the optimized PID Controller. But it is much simpler 
to select parameters of the controller. 

 
Fig.14. Time Responses Comparison between the 
Proposed Method and the Optimized PID Control. 

Example 5: Consider a gas turbine engine with 
plant transfer function matrix[19-21].  
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where 432 22.1133.13577.35022525)( sssss ++++=Δ . 
It is a 22×  multivariable plant. The steady-state 
gain of open loop )(5 sP  is in the form of 

⎥
⎦

⎤
⎢
⎣

⎡
=

3485.100085893.4
2265.71500316.1

)0(5P                (34) 

A pre-compensating matrix )0(1
5
−P  is first applied to 

decouple the plant in low-frequency band. Then, 
two digital filters are used in the diagonal to filter 
outputs of two time series for speeding up trasient 
responses. They are in the form of   

1z
1z

T
2s

1

s

1s0.15
1s0.75(z)C

+
−

=+
+

=                     (35) 

and  

1z
1z

T
2s

2

s

1s0.25
1s0.60(z)C

+
−

=+
+

=                     (36) 

where msTs 25=  is the sampling period. Fig.15 
shows time responses of this controlled system for 
β =0.5. It shows that the proposed control scheme 
can be applied to the multivariable feedback control 
system also.  

 
Fig.15. Time Responses of Example 5 for β =0.5 

and msTS 25= . 
 
 
4 Conclusions 
In this literature, a new nonlinear digital controller 
has been proposed for analyses and designs of 
sampled-data feedback control systems. It was 
applied to five simple and complicated numerical 
examples to get good performance and zero steady-

state errors. No integrations of tracking errors are 
needed to get zero steady-state errors. From 
simulation and comparison results with other 
famous control methods, it can be seen that the 
proposed method provides another possible control 
scheme for sampled-data feedback control systems, 
and it is worthwhile to find other regulation )(nF  to 
get better performance. 
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