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Abstract: - The purpose of this paper is to analyze the flight stability of an Unmanned Aerial Vehicles 
(UAV) formation by using 3 degrees of freedom (3 DOF) models. The problem of flight formation 
will be approached in a simple manner, by using 3 DOF nonlinear models, as well as using a linear 
one. This theoretical development allows us to build stability matrix, command matrix and control 
matrix and finally to analyze the stability of autonomous flight of the UAV formation.  The work will 
present and analyze the calculus results for developed solution. The novelty of the paper consists in 
algorithms that allow evaluating the stability of the UAV formation. The results will focus on flight 
stability of a UAV formation and its answer to regular perturbations. 
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NOMENCLATURE: 

 
χ  - Air -path track angle; 
γ  - Climb angle; 
µ  - Aerodynamic bank angle; 
ρ  - Air density;  

VΩ  Angular velocity in quasi velocity frame; 
∗∗∗ ωωω nml ,, - Rotation velocity components along 

the axes of the quasi-velocity frame; 
A  - Stability matrix; 
B  - Command matrix; 
K  - Controller matrix; 
 
Force components in the aerodynamic frame:  
L  - Lift force; D  - Drag force;  
M  - Mach number; 

DC  -Drag force coefficient; 

LC  -Lift force coefficient; 
G - Gravitational force; 
g  - Gravitational acceleration; 

χγ
uu

V
u kkk ,, -Trajectory control coefficients; 

hz
u

hy
u

hx
u kkk ,,  -Position control coefficients; 

Iz
u

Iy
u

Ix
u kkk ,,  -Integrative position control 

coefficients; 
m  – UAV mass;   
n  - Load factor; 
S  - Reference area – cross body area; 
T - Thrust;  
V  - Velocity; 

0z  - Altitude. 
 
1 Introduction 
The major impact of Unmanned Aerial Vehicles 
(UAV) consists in its role in the actual aero-
space scenarios, where the UAV accomplish the 
recognition or the rescue missions in hostile 
environments. 

It is well known that a UAV formation using 
sample observation instrument, but at the same 
time using the data-fusion, is more efficiently  
then a sophisticate singular UAV or piloted 
airplane. 
The purpose of this paper is to describe the 
flight stability of a UAV formation. The 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Teodor-Viorel Chelaru, Valentin Pana

ISSN: 1991-8763 26 Issue 1, Volume 5, January 2010



problems associated with formation flight will 
be approached in a simple manner, by using 3 
DOF models, unlike paper [2] and [3] where we 
used the complex equations that describe the 
movement for each UAV. However, in this 
paper we develop a linear model of the 
movement equation that allows us to analyze 
flight stability of UAV formation.  

The paper will analyze UAV formation 
structures in a unitary manner using a control 
system with an adequate architecture. The 
approach proposed for controlling aircraft 
formations is inspired by reference [1]. All the 
simulations will be made in a linear workspace, 
using simplifying hypothesis described in item 
6.  

The control solution adopted can be used 
also in other domain where we have a body 
group, which must have a synchronous 
movement. 
 
2 Formation modeling 
In order to represent each UAV from the 
formation a 3 DOF model was adopted. This 
model involves only the slow states that 
correspond to a problem of the trajectory 
tracking and the relative position maintaining 
by using an autopilot. For this reason, we use 
the following two reference frames.  

 
Fig. 1 Quasi velocity frame and rotation angles 

 
A local inertial frame 0Γ , with the origin in 

the mass centre of the aircraft, with the z  axis 
orientated vertically up. We are assuming that 
the inertial frame 0Γ  has the axes parallel to the 
ones of the Earth frame bound to the ground. 

The second is the quasi-velocity frame aΓ , 
connected to the velocity vector, also with the 
origin in the mass centre of the aircraft, 
obtained by two successive rotations; by the air-
path track angleχ , and the climb angle γ . As 
usually, the axis ∗

ax  of the quasi-velocity frame 

aΓ  is orientated along the velocity vector V , 
and the ∗

ay  axis is orientated in the horizontal 
plane. The transformation between the inertial 
frame 0Γ  and the quasi - velocity frame aΓ  is 
given by the matrix: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γ−χγ−χγ
χ−χ−

γχγ−χγ
=

cossinsincossin
0cossin

sinsincoscoscos

0aA .   (1) 

 
3 Nonlinear equations of motion  
If we accept the evolution without sideslip 
angle 0=β  then, the lateral force is also 
void 0=N . At the same time if we are 
assuming the thrust orientated along the 
velocity vector, and the aerodynamic force 
components obtained by a rotation with 
aerodynamic bank angleµ  from the velocity 
frame, the dynamic equations of movement for 
the UAV named “i” in the quasi-velocity frame 
are: 
 

i
i

ii
i g

m
DTV γ−

−
= sin& ; 

i
i

i
ii

i
i V

g
Vm

L
γ−µ=γ coscos& ;

i

i

ii

i
i Vm

L
γ
µ

=χ
cos
sin

& .(2) 

 
Writing the load factor:  

gmLn iii = ,      (3) 
 

The equations (2) become: 
 

 i
i

ii
i g

m
DTV γ−

−
= sin& ; ( )iii

i
i n

V
g

γ−µ=γ coscos& ; 

i

i

i

i
i V

gn
γ
µ

=χ
cos
sin

& ,              (4) 

 
where we have denoted:  
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iD  drag force, iL  lift force, iT  thrust, im  mass 
for  aircraft “i”. 

If we use the aircraft polar coordinate, the 
drag coefficient is:  

 
2

0 LiiiDDi CkCC +=      (5) 
 

moreover, the drag becomes:  
 

( ) iiiiiDii FgmnkCFD 0
2

00 +=      (6) 
 

where the reference aerodynamical force is: 
 

iii SVF 2
0 2

1
ρ=      (7) 

 
where ρ  is the air density at a given altitude 
and iS  is the reference surface.  

Defining the state vector: 
[ ]Tiiii V χγ=x  

and the input vector:  
[ ]iiii nT µ=u , 

the equations (4) can be put under standard 
form: 

 
 ),( iiii f uxx =&       (8) 

  
4 Kinematics 
One of the main goal regarding the control 
system of the formation is that every UAV must 
maintain a certain position iD  related to a 
reference point denoted in figure 2 as G . This 
point may coincide with the formation leader 
(real or virtual), or the neighbour UAV 
(wingman), or a geometrical central point inside 
the formation. 
For establishing a suitable mathematical model, 
similar to [1] we are assuming that ir  and rr are 
the vectors of the UAV position iA , and of the 
reference point  G  regarding the origin O  of 
the inertial frame. id  is the current relative 
distance between G  and the UAV position iA . 

The vector for the desired position of 
airplane iD  is denoted as idr . Also, we are 
assuming that an orthogonal frame arΓ , similar 

to the quasi - velocity frame, is attached to the 
G  point, whose orientation is defined by the 
angles rr χγ , . 

 
Fig. 2 The defining scheme for the UAV 

formation 
At the same time, we are defining the 

velocity vector rV  as the velocity of the G  
point. From figure 2 results: 
 

iir rdr =+ ,        (9) 
 
and 
 

ididr rdr =+ ,      (10) 
 
from where we obtain: 

 
 idiidii rrddh −=−=    (11) 

 
where we denoted ih  the guidance parameter. 

Deriving the relation (11), related to time in 
the quasi-velocity frame aiΓ  and assuming that 
the desired velocity is that of the reference 
point rV , we obtain:    

   
iriVii VVhΩh −=×+ &&  (12) 

 
where ViΩ  is the angular velocity of the quasi-
velocity frame aiΓ , related to the inertial 

O

iD  

G

dir  

ir

rr  

did  

id

iA  

ih  
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frame 0Γ . In order to evaluate the vectored 
relation (12) we can project it along the axes of 
the quasi-velocity frame of each UAV: 
 

[ ] [ ] [ ] [ ]aiiiaiiairaii hAVVh ω−−=&    (13) 
 

where the angular velocity vector has its 
components along the quasi-velocity frame axes 
given by: 
 

 [ ] [ ]TaiV nimili

∗∗∗ ωωω=Ω .     (14) 
 

In addition, the anti symmetric matrix 
associated to the angular velocity vector is 
given by: 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ωω−
ω−ω
ωω−

=
∗∗

∗∗

∗∗

ω

0
0

0

limi

lini

mini

iA .     (15) 

 
The connection between the orientation 

angles derivates and the angular velocity vector 
components is:  

 

,
0

cos0sin
010

sin0cos

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

χ
γ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγ

γ−γ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

∗

∗

∗

i

i

iii

ii

ni

mi

li

&

&     (16) 

 
from where we can obtain the scalar relations:  
 

,cos;;sin iiniimiiili γχ=ωγ=ωγχ−=ω ∗∗∗ &&&   (17) 
 

Note: In the paper [1] the problem is treated 
in a similar way, but the rotation matrix (1) is 
constructed by using three successive rotations, 
which represent the passing to the velocity 
frame, operation that makes difficult defining 
the relations (16) because it does not clearly 
point out the method of obtaining the derivate 
for the rolling angle: µ& . We are assuming that 
the orientation of the ”i” UAV coincides with 
that of the arΓ  frame. In this case we define the 
rotation matrixes:  

 
 ),(00 iiaai χγ= AA        (18) 

 

and 
),(00 rraar χγ= AA        (19) 

where 0aA  is obtained from equation (1). 
Starting from the defined matrixes we can 
write:  
 

   [ ] [ ]00 raiair VAV =    (20) 
 

[ ] [ ]00 rararr VAV =         (21) 
 
By using (20) and (21) we find the desired 

velocity in the reference frame aiΓ : 
 

[ ] [ ]arr
T
ar0aiair VAAV 0=      (22) 

 
with the following denotation: 
 

[ ] [ ]Trarr V 00=V            (23) 
 
By introducing the relation (22) into (13) we 

obtain: 
 
[ ] [ ] [ ] [ ]aiiiaiiarr

T
ar0aiai hAVVAAhi ω−−= 0

& (24) 
 
where the guidance parameter has the 
components along reference frame aiΓ : 
 

 [ ]Tiziyixi hhh=h      (25) 
 
If we introduce the reference vector: 
 

 [ ]rrrr V χγ= ,,x ,      (26) 
 
and the position of the UAV regarding the 
reference point between the states of the UAV 
then the equation can also be written in the 
compact form like this: 
 

 ),,,( iirii g uhxxh =&         (27) 
 

Supplementary, for control command we 
need integral terms, which can be defined by 
differential equation: 

 
ii hI =&         (28) 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Teodor-Viorel Chelaru, Valentin Pana

ISSN: 1991-8763 29 Issue 1, Volume 5, January 2010



5 Controlling the formation with 
pseudo-commands 
This section of the paper will sketch the control 
system design. We assume the existence of a 
reaction loop with the standard autopilot, which 
will maintain the UAV in formation. Our 
intention is to define a formation control law, 
capable of simultaneously managing the 
trajectory tracing and maintaining the formation 
position. As shown in [1] we can start from the 
pseudo-command signals along the three axes 
of the quasi-velocity frame: 
 

ix
Ix
uix

hx
ui

V
uVi IkhkVku ++= ~

( ) iiz
Iz
uzi

hz
uiu

i
i Ikhkk

g
Vu γ+−−γ= γ

γ cos~  

( ) iyi
Iy
uyi

hy
uiu

i
i Ikhkk

g
Vu γ++χ= χ

χ cos~         (29) 

 
where we denoted: 
 

iri VVV −=
~ ; iri γ−γ=γ~ ; iri χ−χ=χ~ .    (30) 

 
The trajectory control coefficients and the 

position control coefficients can be obtained by 
using a synthesis procedure described in item 8.  
With the help of these three functions 
previously defined the pseudo-commands 
regarding each aircraft are formed. In this 
manner, we obtain thrust from the relation: 
 

  Vii GuT = ,       (31) 
 
and the square sum of the last two functions 
(29) gives the necessary load factor: 
 

 22
iii uun χγ += .     (32) 

 
In the end, the velocity-rolling angle is given 
by:  
  

 ( )iii uu γχ=µ arctan .            (33)  
 
6 Balance movement 
The study of formation fly stability will be 
made accordingly to Liapunov theory, 
considering the system of movement equations 

perturbed around the balanced movement. This 
involves a disturbance shortly applied on the 
balance movement, which will produce 
deviation of the state variables. Developing in 
series the perturbed movement  equations in 
relation to status variables and taking into 
account the first order terms of the detention, 
we will get linear equations which can be use to 
analyze the stability in the first approximation, 
as we proceed in most dynamic non linear 
problems. 

In order to obtain linear form of the 
movement equations, we consider a balance 
movement in vertical plane, without manoeuvre 
in lateral plane. Without loosing the generality, 
we can considerate the air -path track angle null 
 

0=χ . 
  

In addition, we consider the state vector of 
each UAV is identical with reference values. 
That means: 
 

ri VV = ; ri γ=γ ; ri χ=χ ,     (34) 
 

and for balance movement we denote these 
parameters χγ,,V . 

In this situation, the guidance parameter and 
its integrative also, will have all components 
null: 
 

 [ ]T000=h   [ ]T000=I ;     (35) 
 

In this case pseudo-command functions 
indicated by relation (29) are: 
 

;0=Vu  γ=γ cosu ; 0=χu  ,  (36) 
 

and the command parameters for the balance 
movement became: 
 

0TT = ; γ= cosn ; 0=µ .     (37) 
 

Starting from these parameters of the base 
movement in the next item, we will obtain 
linear form of movement equations, guidance 
parameter and command law.   
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7 Linear movement equations  
 Starting from relations (4) we obtain: 

i
i

i

i
D

i

nnFkmg
m
Tg

V
m

CFnkmg
V
FV

∆−
∆

+γ∆γ

−∆⎟
⎠
⎞

⎜
⎝
⎛ −=∆

−

−

2
0

2

03
0

220

2cos

22&

 

iii n
V
g

V
g

∆+γ∆γ=γ∆ sin& ; ii V
g

µ∆=χ∆ &  (38) 

 
Next, starting from relation (26) we will 

obtain the linear form of the guidance parameter 
equation. Starting from equation (26), taking 
into account the balance movement, we can 
write: 
 
[ ] [ ]( ) [ ] [ ]aiiiaiiarr

T
araiai hAVVAAhi ∆−∆−∆=∆ ω00

&

 
or: 

 
[ ] [ ] [ ]aiiiaiiauvai hAxAhi ∆−∆=∆ ω
&   (39) 

where the matrix auvA  is: 
 

[ ]
[ ]

0
0

0

0
0

0
0
1

=χ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
χ∂

∂
γ∂

∂
−

=
a

T
a

a
T
aaoao

auv VA
VAAAA  

 
If we take into consideration that: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγ

γγ−
=

γ∂
∂

=χ sin0cos
000

cos0sin

0

0aA ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γ−
−

γ−
=

χ∂
∂

=χ 0sin0
001
0cos0

0

0aA ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γ−γ
−

γγ
=

=χ

cos0sin
010

sin0cos

00aA  

(40) 
 
the matrix auvA  becomes: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
γ−

−
=

00
cos00
001

V
VauvA     (41) 

 

Finally, we can put relation (39) in scalar form: 
 

ziixi hVh ∆γ+∆−=∆ &&  iyi Vh χ∆γ−=∆ cos&  

xizi hVh ∆γ−γ∆=∆ &&               (42) 
 

In order to add up the equation system we 
attach linear form of the integral equation (28):   

ii hI ∆=∆&  .   (43) 
 

Next, it is necessary to obtain the linear form 
of the command relations. Starting from (31), 
(32) and (33) and taken into consideration (37) 
we obtain: 
 

Vii uGT ∆=∆ ; ii un γ∆=∆ ; γ∆=µ∆ χ cos/ii u ;   
(44) 

 
Developing equations (44) results: 

r
V
uix

Ix
uix

hx
ui

V
ui VGkIGkhGkVGkT +∆+∆+∆−=∆  

ruiiz
Iz
u

zi
hz
uiui

k
g
VIk

g
V

hk
g
Vk

g
Vn

γ∆+∆−

+∆−γ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ+−=∆

γ

γ sin
 

ru

yi
Iy
uyi

hy
uiui

k
g
V

Ik
g
Vhk

g
Vk

g
V

χ∆+

+∆+∆+χ∆−=µ∆

χ

χ

 

         (45) 
 
If we consider the extended state vector: 
 

[ ]Tiiii Ihxx ∆∆∆=~     (46) 
 
with the command: 

[ ]Tiiii nT µ∆∆∆=u     (47) 
 
we can concatenate equations (38), (42) and 
(45) in a linear extended equation system 
heaving a regular form: 

 
iii BuxAx += ~~& ; ii xKu ~−= ,      (48) 

where A  elements are: 
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⎟
⎠
⎞

⎜
⎝
⎛ −γ= −

m
CFkmg

V
Fa D03

0
220

1,1 cos22 ; 

γ−= cos2,1 ga ; γ= sin2,2 V
ga ; 11,4 −=a ; γ= &6,4a ; 

γ−= cos3,5 Va ; Va =2,6 ; γ−= &4,6a ; 
14,7 =a ; 15,8 =a ; 16,9 =a ;     (49) 

B elements are: 

;1
1,1 m

b = γ−= − cos2 2
0

2
2,1 Fkmgb ; 

Vgb =2,2 ;  Vgb =3,3 ;   (50) 
K  elements are: 

V
uGkk =1,1 ; hx

uGkk −=4,1 ; Ix
uGkk −=7,1 ; 

γ+= γ sin/2,2 gVkk u ; gVkk hz
u /6,2 = ; 

gVkk Iz
u /9,2 = ; gVkk u /3,3

χ= ; gVkk hy
u /5,3 −= ; 

gVkk Iy
u /8,3 −= .   (51) 

 
8 Guidance law synthesis using state 
control 
In order to obtain command law coefficients we 
suppose a horizontal evolution with 0=γ ; 0=γ&  
and neglect terms that contains negative power 
of 0F . In these hypothesis, derivating twice 
linear equations (38) we obtain. 
 

m
TgVaV i

ii
V
Vi

&&
&&&&&&& ∆
+γ∆−∆≅∆  

ii n
V
g

&&&&& ∆≅γ∆  

ii V
g

µ∆=χ∆ &&&&         (52) 

 
where: 

m
SVCa DV

V
0ρ

−=       (53) 

 
In the other hand, starting from pseudo-
command equations (45), if we insert guidance 
parameter relations (42) and taking into account 
the integral relations (43), and derivate twice 
relations (45) , we will obtain: 
 
 r

V
ui

Ix
ui

hx
ui

V
ui VGkVGkVGkVGkT &&&&&&& +∆+∆−∆−=∆  

ru

i
Iz
ui

hz
uiui

k
g
V

k
g

Vk
g

Vk
g
Vn

γ∆+

+γ∆−γ∆−γ∆−=∆

γ

γ

&&

&&&&&
22

ru

i
Iy
ui

hy
uiui

k
g
V

k
g

Vk
g

Vk
g
V

χ∆+

+χ∆−χ∆−χ∆−=µ∆

χ

χ

&&

&&&&&
22

 

(54) 
Inserting pseudo-commands (54) in linear 
equations (52), we obtain:  
 

( )
ir

V
u

i
Ix
ui

hx
ui

V
V

V
ui

gVgk

VgkVgkVagkV

γ∆−∆=

=∆+∆+∆−+∆

&&&&

&&&&&&

rui
Iz
ui

hz
uiui kVkVkk γ∆=γ∆+γ∆+γ∆+γ∆ γγ &&&&&&&&  

rui
Iy
ui

hy
uiui kVkVkk χ∆=χ∆+χ∆+χ∆+χ∆ χχ &&&&&&&&   (55) 

 
We can observe that for the hypothesis 

related to horizontal flight the last two 
equations are symmetrical, so we can expect to 
have the same coefficients in the command law. 
For the first equations (55) in order to simplify 
the problem we can neglect the second input 
and we will obtain a relation with a single input 
and a single output (SISO). In this case, after 
Laplace transformation, the system (55) 
becomes: 
 

Ix
u

hx
u

V
V

V
u

V
u

V gksgksagks
sgksH

++−+
= 23

2

)(
)(  

Iz
u

hz
uu

u

VksVksks
sksH

+++
= γ

γ

γ 23

2

)(  

Iy
u

hy
uu

u

VksVksks
sksH

+++
= χ

χ

χ 23

2

)(   (56) 

 
We consider an optimal allocation for poles 

of this kind of function indicate in [4]: 
 

3
0

2
0

2
0

3 7.67.6)( Ω+Ω+Ω+= ssssP  ,   (57) 
where the pulsation is given by:  
 

rt5.10 =Ω ,       (58) 
and rt  is settling time.  

In this case, identifying between (56) and 
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(57) we obtain: 
 

( ) gak V
V

V
u /7.6 0 +Ω= ; gk o

hx
u /7.6 2Ω= ; 

gk o
Ix
u /3Ω= ; 07.6 Ω== γγ

uu kk ; 
Vkk o

hy
u

hz
u /7.6 2Ω== ; Vkk o

Iy
u

Iz
u /3Ω==  

(59) 
9 Optimal control 
If we suppose to have access to extended state 
vector ix~ , we can obtain directly the controller  K  
for optimal command: 
 

Kxu −=   (60) 
in order to satisfy the linear quadratic performance 
index (cost function): 
 

tJ TT d)(min
0

RuuQxx += ∫
∞

,   (61) 

where the pair ( )BA,  is controllable and the 
state weighting matrix Q  is symmetric and 
quasi positive: 
 

;0≥Q TQQ = . (62) 
 
while the control weighting matrix R  is 
symmetric and positive: 
 

;0>R TRR = ; (63) 
 
In this case, the following relation gives the optimal 
controller: 
 

PBRK 1 T−=    (64) 
 
where the matrix P  is the solution of the 
algebraic Riccati equation:  
 

0QPBPBRPAPA T1T =+−+ −    (65) 
 
 
 
10 Input data and results 
 
10.1 Input data for the model  
 
10.1.1 Geometrical and mechanical data 
In figure 3 are shown the main geometrical data 
of the UAV. All data are in meters. 

Reference area for the model – cross body area 
is:   202925.0 mS =  
Initial mass for the model is: kgmi 11= ; 
 

 
Fig. 3 Geometrical data  

 
10.1.2 Aerodynamic data 
If we use the coefficients  in aerodynamic frame 
like in equations (3), (4), (5), the polar relation 
between drag coefficient and lift coefficient is 
given by (6) where: 44.10 =DC , 000121.0=k . 
The reference area is the cross area of the body. 
 
10.1.3 Guidance data 
If we choose settling time for all parameters 

str 3= ,  the pulsation from relation (58) is 
1

0 5.0 −=Ω s . The velocity is smV /20=  the 
gains from the relations (59) became: 
 

33.0=V
uk ; 17.0=hx

uk ; 013.0=Ix
uk  

35.3== χγ
uu kk ; 

084.0== hz
u

hy
u kk ; 0063.0== Iz

u
Iy
u kk , 

 
and the state controller using relations (51) 
becomes: 

 
Table 1 State controller 
  35.928   0.   0.  -18.425   0.   0.  -1.375   0.   0. 
  0.   6.83   0.   0.   0.   0.17   0.   0.   0.0127 
  0.   0.   6.83   0.  -0.17   0.   0.  -0.0127   0. 

 
If we use optimal control (64), the controller 
matrix becomes directly: 
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Table 2 Optimal controller  
6.775 -0.346  0. -2.84 0.  3.2096 -0.538 0. 0.843 

-2.24 11.91  0.  2.237 0.  0.6379 0.843 0. 0.537 

0. 0. 10.904  0. -1.45  0. 0. -1. 0. 

 
10. 2 Results 
Test case for which we obtained the results is 
described by the following parameters: 
 

smV /20= ; mz 4000 = ; 0=γ ; 0=γ& . 
 

In table 1 there are presented eigenvalues for 
the stability matrix. It can be observe that the 
real parts of the eigenvalues for the close loop 
system are negatives, which prove the good 
stability of it.   
 
  Table 3 Eigenvalues for the stability matrix 

A BKA −  
State 

control 

BKA −  
Optimal 
control 

Re Im Re Im Re Im 
-0.084 0 -2.76 0 -2.3 2.38 

0 81069.0 −×  -0.5 0 -2.3 -2.38 
0 81069.0 −×−  -0.09 0 -0.26 0.31 
0 0 -2.76 0 -0.26 -0.31 
0 0 -0.5 0 -0.58 0 
0 0 -0.09 0 -0.85 0 
0 0 -2.76 0 -2.17 2.26 
0 0 -0.5 0 -2.17 2.26 
0 0 -0.09 0 -0.99 0 

 
Figures 4, 6 and 8 present the system answer 

using a state controller in different perturbation 
cases. 
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Fig. 4 UAV formation answer for velocity 

perturbation, state controller 

Figures 5, 7 and 9 also present the formation 
answer, but in these cases using an optimal 
controller. 
 

Figures 4 and 5 present the formation answer 
for velocity perturbation.  It can see that the 
answer is similar in the two control cases.  
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Fig. 5 UAV formation answer for velocity 

perturbation, optimal controller 
 
 
 

Figures 6 and 7 show the formation answer for 
climb angle perturbation in both control cases. The 
answers are also similar. 
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Fig. 6 UAV formation answer for climb angle 

perturbation, state controller 
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Fig. 7 UAV formation answer for climb angle 

perturbation, optimal controller 
 
 

Finally, figures 8 and 9 show the formation answer 
for air-path angle perturbation. The answer using 
optimal control is better, having a shorter settling 
time.  
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Fig. 8 UAV formation answer for air-path angle 

perturbation, state controller 

 

0 25 50 75
t [s]

-2

0

2

4

6

8

hi
[d

eg
],

hy
[m

] hi [deg]
hy [m]

 
Fig. 9 UAV formation answer for air-path angle 

perturbation, optimal controller 
 
11 Conclusions 
To approach the UAV’s formation stability 
problem we developed a linear model with 3 
degrees of freedom starting from paper [1], [2] 
and [3]. Analyzing the stability matrix, we 
obtained the eigenvalues with real parts 
negative, which prove the stability of the close 
loop system. Further, the guidance law adopted 
allows the system to have a correct answer for 
the common perturbation, as we can see in 
figures 4, 6, and 8. Figures 5,7 and 9 show that 
the optimal control used provide good answers 
for common perturbations, especially for lateral 
evolution when the answer is better than that 
obtained by state controller. This preliminary 
results show that it can be possible to control 
UAV formation, which can be stable at the 
same time. In addition, the approach adopted in 
work [1], [2] and [3] characterized by a model 
of a generic “i” UAV from the formation, can 
finally solve the problem of the entire 
formation.    

In the next work, we will try to build a 
complex linear model in order to analyze the 
stability of the complex system as we have 
described in paper [3]  
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