
Using the black-box approach with machine learning methods in
order to improve job scheduling in GRID environments

DANIEL VLADUŠIČ
XLAB d.o.o.

Pot za Brdom 100, SI-1000 Ljubljana
SLOVENIA

daniel.vladusic@xlab.si

Abstract: This article focuses on mapping jobs to resources with use of off-the-shelf machine learning methods.
The machine learning methods are used in the black-box manner, having a wide variety of parameters for internal
cross validation. In the article we focus on two sets of experiments, both constructed with a goal of congesting
the system. In the first part, the machine learning methods are used as assistants for the base resource selection
algorithms, while in the second part, they are used to directly select the resource for job execution. We set up
two experiments with different objectives. In the first experiment, the objective was to maximize the number of
jobs finished within the deadline, while in the second experiment, the objective was to minimize the job tardiness.
Finally, in the first part we were changing resource selections of simple job dispatching algorithms, while in the
second part, we were employing the optimization scheme of the ALEA algorithm [15]. The results show that even
with a such black-box approach of the off-the-shelf machine learning methods, we can achieve improvements or
at least get comparable results.

Key–Words: scheduling, distributed systems, GRID, dispatching jobs in GRIDs, machine learning

1 Introduction

The problem description

The definition of the GRID scheduling problem, usu-
ally found in literature consists of the definition of a
set of resources (e.g., machines, computational nodes,
storage, network capacity, etc.) and a set of jobs (e.g.,
computational, storage tasks) and some optimality cri-
terion used for quantitative measurements of the qual-
ity of the scheduling. In addition to this basic de-
scription, the definition of such problem usually also
consists of some specifications about the actual GRID
system and of other specific constraints.

Given this definition, we can conclude that GRID
systems are typical examples of dynamic environ-
ment, where the complexity of the scheduling prob-
lem is strongly dependent on the system itself, the
constraints on job execution and properties of the job
itself. Namely, the resources in the GRID system
may be non-uniform (e.g., machines with different
speeds and number of CPUs). The same also holds for
jobs, which have different computational complexities
(i.e., lengths), may require different machine architec-
tures or a specific number of processors. Furthermore,
jobs may have interdependencies in terms of the order
of execution, deadlines, priorities and so forth. Fi-
nally, jobs can also be migrated during their execu-

tion, which introduces another possibility for schedul-
ing. In addition to these parameters, GRID systems
can also have varying network topology and bandwith
requirements. We can thus conclude that the prob-
lem space of scheduling on GRID systems is large and
non-heterogenous, while the general goal of schedul-
ing is usually to meet the users and system adminis-
trators demands. This general goal can be explicitely
defined as maximization of the CPU utilization, mini-
mization of job tardiness, etc.

Motivation

Our motive in performing these experiments was
to test how the off-the-shelf machine learning ap-
proaches can be used in already existing GRID frame-
works. To this end, we used implementations of
machine learning algorithms available in the WEKA
package [14]. Using this approach we also minimize
the efforts needed for their implementation in the real
frameworks. Our focus was in minimization of tardi-
ness of jobs, in other words to maximize the number
of jobs finished within the deadline. These two cri-
teria are not, however, completely interchangeable, as
minimization of tardiness may also result in a higher
number of jobs that are not finished within the dead-
line. The success of the machine learning methods in

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 259 Issue 6, Volume 4, June 2009

satisfying these criteria were tested in two separate ex-
periments and using two different sets of comparison
methods.

Related work

In the area of GRID systems, the artificial intelligence
algorithms and more precisely, machine learning al-
gorithms, are used in various ways, ranging from the
applications in packet routing, failure diagnosis and
scheduling. In the packet routing field, the suggested
automatic learning of routing tables is usually under-
taken with the Q-Learning approach [1, 2, 3, 4]. The
most commonly used solution is the Q-Learning ap-
proach [1] where response (positive or negative) from
different routing decisions is used to learn good rout-
ing strategy through time. These machine-learning-
supported systems are adaptable, both in the sense of
incorporating different criteria for estimating success
in the sense of adapting to the underlying (physical)
networks. Q-Learning is also used for the negotiation
strategies for the Service Level Agreements [17]. In
the area of failure diagnosis, one of the approaches is
a use of decision trees [5]. The idea behind the ap-
proach is to use the application level logs in order to
predict which type of requests combined with specific
nodes cause the system to fail.

In the field of GRID scheduling, machine learn-
ing is used in particular for the prediction of job com-
plexity (i.e., the job runtime length) [12, 18]. Use of
genetic algorithms is present in the field of the offline
scheduling [6, 7, 8, 9], while in the past, there were
also attempts to use simulated annealing [10]. Cur-
rent interesting approaches towards scheduling with
genetic algorithms are described in [19]. An inter-
esting approach is also a combination of planning
and scheduling, described in [11]. The advantage
of such hybrid approach is in its two-level scope:
the long-term planning and short-term scheduling.
The approach shows interesting results on example of
production planning. Finally, the approach towards
GRID scheduling with use of ant colony optimisation
algorithms is described in [20, 21].

Following the descriptions of the problem, our
motivation and related work, we proceed with the de-
scription of the experiments.

2 The experiments
Our experiments comprise of two sets, where the first
set deals with simple job dispatching algorithms and
the second set is using the framework ALEA [15] as
the foundation and benchmark. In both sets of experi-
ments we used the same machine learning algorithms

and procedures, described in section 2.1. The simple
job dispatching algorithms, which are the focus of the
first set of experiments are Random, Round Robin and
First Available. While the first two do not need any
additional explanations, we provide the description of
the First Available algorithm in the section 2.2. The
objective function in these experiments was the num-
ber of jobs executed within the deadline. The second
set of experiments is presented in section 2.3. While
our machine learning methods have not changed sig-
nificantly, the ALEA framework offers a better bench-
mark to our methods, thus we are testing our methods
against advanced scheduling solution. The objective
function in these experiments has changed to mini-
mization of the overall job tardiness.

2.1 The machine learning extensions
In this section we describe the setup of the machine
learning algorithms used in our experiments. We used
the algorithms implemented in the machine learning
framework WEKA [14]. We first describe the learning
procedure and then list the used algorithms and their
parameters.

In order to prevent the problem of overfitting,
we used 4-fold cross-validation on the learning data,
where the measure for prediction performance was
the Area under Receiver Operating Characteristic
(AROC). The reasoning behind using this measure
instead of classification accuracy (CA) was that we
should use a measure which should perform well in
imbalanced datasets.

The positive examples (where the job was exe-
cuted within the deadline) were also given weights.
In order to determine how much weight these exam-
ples should have, we also included additional evalu-
ation of a set of weights for positive examples. The
algorithm is presented as Algorithm 1. We can see
that we have two loops, where the inner loop per-
forms cross-validation using different cross-validation
parameters, while the outer loop is responsible for dif-
ferent weights of the positive examples.

The selected algorithms for use in the experi-
ments were: Locally Weighted Learning (LWL for
short), Naive Bayes (NB for short) and decision
trees (J48 for short), all implemented in WEKA. The
weights we used for weighting the positive examples
were: 1, 2, 5 and 10. The cross-validation parameter
for LWL was the number of neighboring nodes taken
into account: all, 1, 10, 50 and 100, while for J48,
we used the confidence threshold for pruning with the
values: 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5.

The number of tests we perform in the process of
learning the machine learning model is quite large, as
we aim for a plug-in to the existing framework which

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 260 Issue 6, Volume 4, June 2009

Algorithm 1
INPUT: machine learning algorithm (mlAlg) and job
execution history data (eData).
OUTPUT: machine learning induced scheduler
(mlSched),

1: weights← MLSetup.getWeights()
2: cvPars← MLSetup.getCVPar(mlAlg)
3: evaluations← {}
4: for all weight : weights do
5: for all cvPar : cvPars do
6: wEData← ML.reWeight(eData, weight)
7: aroc← ML.eval(mlAlg ,wEData, cvPar)
8: evaluations.add([aroc, weight, cvPar])
9: end for

10: end for
11: [aroc, weight, cvPar] ←

evaluations.getBestAroc()
12: mlSched← ML.build(mlAlg,weight, cvPar)
13: return mlSched

has minimal number of tuning parameters and there-
fore needs to use a wide array of possible parameters
internally1.

2.2 Simple dispatching rules experiments
These experiments were performed withing the Peer-
Sim simulation environment [13]. The reason for
not using a typical GRID simulation framework (e.g.
ALEA) is the legacy code, which is using these exten-
sions. The PeerSim framework was extended primar-
ily in nodes which were used as the CPU resources.
The following paragraph explains the setup from the
architectural point of view.

2.2.1 The architecture
The architecture of our experiment is shown in Fig. 1.
The GridBroker, is responsible for dispatching the
jobs that arrive into the system. These jobs are
executed on computational resources, marked with
CPU1 to CPUn, where each of these resources has
its own queue, marked with q1 to qn respectively.
When a new job enters the system, the GridBroker
decides which computational resource should handle
the execution. When this decision has been made,
the job is placed into the queue of the selected node
and when the job completes, the feedback is sent
back to the GridBroker, with job completion status.

1It should alse be noted that we performed tests with automatic
attribute selection. Preliminary results of using such set up have
shown significantly worse performance when compared to any of
the benchmarks thus we did not pursue this possibility anymore.

Figure 1: The architecture overview of our experi-
mental setup.

In our case, this status is only finished in time or
not finished in time. The job results are sent to the
Results Access Point where the users collect them.

Fig. 2 shows a more in-depth schematic view of
the GridBroker module. It consists of the three sub-
modules, used to map the job to the computational re-
source:

• The base resource selector: By base node selec-
tor algorithm we refer to one of the algorithms,
usually found in this place: Random, Round-
Robin, etc.

• The machine learning resource selector: The
machine learning node selector algorithm is, in
our case, a suitable off-the-shelf machine learn-
ing algorithm - e.g.: Naive Bayes, Locally
Weighted Learning, etc.

• The database: The database serves as storage
for the data about history of dispatched jobs and
their status when they were finished and is thus
used as the learning data for the machine learning
node selector algorithms.

Algorithm 2 shows the data flow in the GridBro-
ker module. First, the base resource selector selects
the resource on which the job should be executed (i.e.,
default node of execution). This information is, along
with the job description, passed to the machine learn-
ing resource selector, which tries to find a resource,
which is possibly more suitable for execution of this
job. The basic property of this algorithm is the afore-
mentioned use of machine learning predictions only
when there is a chance, based on historical data, that
the machine learning selected resource of execution

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 261 Issue 6, Volume 4, June 2009

Figure 2: The architecture overview of the GridBroker
module.

will perform better than the default resource of ex-
ecution. Let us now briefly describe the algorithm.
First, the base resource selector selects the resource
of execution (i.e., the default resource of execution).
The next step is to evaluate all resources with ma-
chine learning scheduling model. The data for this
evaluation is job description, the resource which is
being evaluated and the current system state. If the
machine learning resource selector predicts the eval-
uated node is suitable for execution (i.e., it predicts
that the job will be executed within the deadline), it is
stored into the list of suitable resources. In the next
step, we evaluate the probability of successful job ex-
ecution of the best machine learning predicted and the
default resource. Only if the chance of success with
the machine learning predicted resource of execution
is higher than the one of the default resource, we se-
lect the predicted resource. Otherwise, the resource of
execution remains the same as selected by the default
resource selector.

An important note regarding this algorithm is that
it needs to go over all nodes in the system. While
this is not a problem in a simulation environment, the
real GRID systems may consist of thousands of re-
sources. Still, the modern GRID systems schedule
jobs only after the phase of resource discovery, which
usually implements some sort of system policy or re-
source suitability step, hence the length of the list of
available resources may not be very long. Still, we
acknowledge that the algorithm must be improved for
use in real systems. we must however, accept that use
of off-the-shelf machine learning algorithms, without
any domain tuning or use of system specific attribute,
may not result in accurate predictions. Furthermore,
as the learning data for these simple machine learn-
ing algorithms is obtained from the so-called base al-
gorithm for scheduling, the algorithm which is built
into the GRID framework, the predictions may be
skewed towards the original resource selections. Fi-
nally, the machine learning algorithm, when it cannot
predict the resource for job execution with sufficient
certainty, relies to the base algorithm and these data
is then used for updating the models of the machine

Algorithm 2
INPUT: job description (jDesc), last known system
state (sState) and job execution history data (eData).
OUTPUT: resource of execution (rExec),

1: defResOfExec← BaseSelector.getResource()
2: evaluations← {}
3: for all resource : resources do
4: eval← ML.eval(jDesc, resource, sState)
5: if eval.getSuccess == true then
6: evaluations.add(eval)
7: end if
8: end for
9: bestEval← evaluations.getBest()

10: defEval← evaluations.getEval(defResOfExec)
11: if bestEval.successProb >

defEval.successProb then
12: rExec← bestEval.getResource()
13: else
14: rExec← defResOfExec;
15: end if
16: return rExec

learning algorithms and used for further predictions.
We can thus conclude, that despite the aforementioned
problems, the machine learning algorithms produce a
model which takes into account past performance and
more importantly, mistakes, of the scheduling algo-
rithm.

2.2.2 Experiments and results with simple dis-
patching rules

We performed two sets of experiments. Each of them
consisted of running five batches of jobs, where each
batch consisted of 1000 jobs thus giving 5000 jobs
per experiment. Descriptions of jobs consisted of the
following attributes: an estimate of the time to run
needed for execution of the job, the deadline for the
job execution, the queue length of the node at time
of job submission, the node on which the job was
submitted and finally, the success of the job execu-
tion, described only with values finished in time or
not finished in time, corresponding to finished until
the deadline or not.

In section 2.1 we described the machine learning
algorithms that were used in our experiments, hence
here we describe only the base scheduling algorithms
which were used: Random, Round Robin and First
Available. While the first two are commonly used, we
need to explain the last one. The algorithm randomly
picks a node and checks its state. The attributes it col-
lects are whether the node is idle and the number of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 262 Issue 6, Volume 4, June 2009

jobs waiting in the queue. If the node is not idle, it
proceeds in round robing fashion and assigns a job to
the first idle node. If there are no idle nodes, the algo-
rithm assigns the job to the node with shortest queue.
We pick the first node randomly in order to prevent
skewing of the job assignments towards the start of the
node list. Please note, that Random and First Avail-
able are stochastic, hence the results, when combined
with our selected machine learning algorithms are not
directly comparable.

The job descriptions were created randomly
and scheduled to start within the first third of
the simulation time. The estimate for the re-
quired execution time was also set randomly, along
with the due time to finish the job (i.e., dead-
line), which was set according the following for-
mula: timeToStartJob + requiredCPUTime +
1
3random(requiredCPUTime). We can see that the
test was indeed synthetic and that we explicitly intro-
duced a large amount of randomness in the learning
data. The reasoning for this was two-fold: first, the
simulated system should reach the congestion point
and second, the machine learning algorithms need to
use the learning data which results from running such
sets of jobs. The latter is especially important, as ab-
sence of strong patterns in data poses a problem for
machine learning algorithms. The underlying system
consisted of 10 heterogeneous nodes, differing in the
CPU speed.

In order to provide the machine learning algo-
rithms with a starting set of data which is used for
building the initial model, we performed a test run
with the learning batch of jobs. This batch of jobs
consisted of 1000 jobs, which were created in a way
that which prevented congestions of the system and
hence produce useful and meaningful results (with
strong patterns showing some of the systems’ prop-
erties). These learning jobs were also created ran-
domly, but distributed more uniformly over the sim-
ulation time than the test jobs batches. During the test
experiments, the system performed an update of the
machine learning scheduling model on every 100 fin-
ished jobs.

The first set of experiments consisted of running
the five batches of jobs on the network of computers,
with the resource CPU performance shown in Table 1.
The speed marked with 1 means the normal speed
(the job will execute normally), while speeds above
one denote slower (the execution of the job will take
longer) and speeds below one faster nodes (the execu-
tion of the job will be faster), respectively.

Results of running the first set of experiments are
shown in Table 2. The table consists of three parts,
where the first part shows the results, obtained with

p1 p2 p3 p4 p5

1.32 1.26 0.8 1.33 0.81
p6 p7 p8 p9 p10

0.91 1.06 1.35 0.97 1.52

Table 1: The relative resource CPU performance for
the first set of experiments.

using the First Available base algorithm and following
two show the use of Random and Round Robin algo-
rithms, respectively. The rows in each part present the
results for each of the machine learning algorithms,
while columns show the results for each of the five
batches. The meaning of the numbers is as follows:
as we performed each experiment twice, once with as-
sistance of the machine learning algorithm and once
without it, we present the comparison of performance
as division between the percent of jobs finished within
the deadline with machine learning assistance and the
percent of jobs finished within the deadline without
machine learning assistance. In other words, the val-
ues higher than 1 show the advantage of machine-
learning-assisted algorithms and vice-versa. The re-

First Available
J48 1.12 0.95 0.99 1.16 0.65

LWL 1.11 1.17 0.86 1.08 0.96
NB 0.95 1.02 0.94 1.28 1.05

Random
J48 1.08 1.08 1.03 1.19 0.89

LWL 1.2 0.98 1.18 0.74 1.14
NB 0.97 0.89 1.1 0.82 0.75

Round Robin
J48 0.98 0.99 1.39 1.03 1.04

LWL 1.16 1.05 0.92 1.01 1.04
NB 0.92 0.89 0.93 0.97 0.84

Table 2: The comparison between machine-learning-
assisted and no machine learning assistance algo-
rithms for the first set of experiments.

sults of the first experiment show that the assistance
of the Naive Bayes algorithm results in underperform-
ing system - in majority of cases, the Naive Bayes
assisted algorithm performs worse than the algorithm
without the assistance. The Locally Weighted Learn-
ing and J48 algorithm perform better, but clearly, the
LWL algorithm performs best. It must be noted, that
not all results are comparable between the different
machine-learning-assisted algorithms, as Random and
First Available are not deterministic, hence we can
comment only on the Round Robin algorithm. It
shows that the use of machine-learning-assisted al-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 263 Issue 6, Volume 4, June 2009

Round Robin-J48
0.09 0.07 0.09 0.08 0.1
0.14 0.1 0.09 0.15 0.09

Round Robin-LWL
0.05 0.06 0.18 0.07 0.15
0.17 0.08 0.03 0.17 0.04

Round Robin-NB
0.11 0.12 0.06 0.11 0.1
0.11 0.12 0.12 0.04 0.11

Table 3: The percent of job assignments over nodes in
the first experiment. The ordering of the values corre-
sponds to the node CPU speeds in Table 1.

gorithms can improve the percent of successfully fin-
ished jobs (LWL) and also that machine learning algo-
rithms, especially J48, are brittle (i.e., small changes
in the learning data can produce big changes in the
model and predictions) and thus not to be used with-
out caution.

In order to assess the differences between ma-
chine learning algorithms, we need to focus on the
Round Robin algorithm, as the assistance value can
be directly compared. Table 3 shows the percentage
of job assignments to resources. Its structure is the
same as of the Table 1. The bold values correspond
to the fastest resources. This comparison shows that
only the LWL algorithm adapts to the performance of
the nodes and uses faster nodes consistently more than
the slower ones. The two remaining algorithms do not
adapt to the performance of the nodes to such a de-
gree.

The second set of experiments consisted of two
experiments: we used a new set of the five job batches
and executed them as in the first experiment. We then
run another experiment, using the same set of jobs, but
with an important difference: after the second batch
of jobs was executed, we completely changed the
properties of the nodes thus testing the performance
of the machine learning algorithms under completely
changed conditions. Furthermore, we did not allow
for the learning set of jobs to be used nor discarding
of the old results from the first two batches, thus test-
ing the adaptability of the machine-learning-assisted
algorithms. The CPU performance of the nodes be-
fore and after the change are shown in Table 4, where
the node speeds marked with Normal were used in the
first experiment and in the first two batches of the sec-
ond experiment and the nodes marked with Changed
were used after the second batch of the second exper-
iment.

The results of the experiment described above is
shown in Table 5 and divided into three parts, ac-

Normal

p1 p2 p3 p4 p5

1.45 1.54 1.22 0.96 1.52
p6 p7 p8 p9 p10

1.53 1.34 1.47 1.45 1.17

Changed

p1 p2 p3 p4 p5

1.46 1.58 1.23 1.1 0.97
p6 p7 p8 p9 p10

0.81 1.1 1.14 1.4 0.91

Table 4: The resource relative CPU speeds for the sec-
ond set of experiments.

cording to the base scheduling algorithm. Each of
these parts is then subdivided according to the ma-
chine learning algorithm used and whether the node
properties have been changed. Review of the second
set of experiments shows that some trends are simi-
lar to the ones observed in the first set of experiments.
The J48 algorithm performs in some cases very well
and in others rather poorly thus showing its brittle-
ness. The LWL and the Naive Bayes algorithm per-
form well in almost all cases. The performance of the
latter is in stark contrast with the first set of experi-
ments, where it performed rather poorly. Given this
limited set of tests, we can thus conclude that only the
LWL algorithm can be considered as stable enough to
be used in real systems. Let us turn our attention to the
performance before and after the change of the nodes:
in majority of cases the machine-learning-assisted al-
gorithms underperform immediately after the change
(the third set of jobs) when compared to the base al-
gorithm. In the fourth and fifth set of jobs their perfor-
mance usually improves and overcomes the base algo-
rithm. This leads to the conclusion that the algorithms
can adapt to the changed circumstances, despite the
fact that they also learn from the data originating from
the entirely different set of nodes.

In the following section we describe our second
set of experiments with dispatching of jobs using ma-
chine learning assitance.

2.3 ALEA Experiments
For these experiments we used a GRID simulation
framework ALEA [15]. This simulation framework
enabled us to test our machine learning extensions, de-
scribed in section 2.1, against the advanced schedul-
ing algorithm. ALEA provides two benchmark algo-
rithms: Earliest Deadline First (EDD for short), Ear-
liest Release Date First (ERD for short), both com-
bined with the Tabu search algorithm. The ERD and
EDD algorithms are used only when new job enters
the system. Further optimizations of the schedule are
made with the Tabu search algorithm. The EDD algo-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 264 Issue 6, Volume 4, June 2009

First Available

J48 1.73 0.88
2.11 1.76 1.58 no change
0.66 1.24 0.89 change

LWL 1.47 0.94
1.17 0.90 1.13 no change
0.81 1.26 1.01 change

NB 1.42 0.70
1.48 2.81 2.61 no change
0.97 0.95 0.94 change
Random

J48 1.09 1.36
0.66 1.35 1.85 no change
0.73 1.48 1.07 change

LWL 1.74 0.97
1.14 0.85 1.17 no change
0.81 1.39 1.01 change

NB 1.03 0.99
0.97 1.33 0.67 no change
1.25 1.10 1.20 change

Round Robin

J48 0.84 1.24
1.08 0.5 1.16 no change
0.98 1.11 1.08 change

LWL 1.16 1.45
0.75 1.15 1.01 no change
0.80 1.13 1.08 change

NB 1.03 0.85
1.13 0.95 1.03 no change
1.11 1.03 1.08 change

Table 5: Relative improvements of jobs being finished
within the deadline for the second set of experiments.

rithm iterates over all of the computational resources
and inserts the job into the schedule according to the
job’s deadline, i.e. the insertion is between the jobs
where the predecessor is due to be finished before the
current and the ancestor is due to be finished after the
current job. The resource on which the increase of
tardiness is the smallest, is selected to execute the job.
The same principle is used in the ERD2 insertion strat-
egy, the only difference being the insertion according
to the time of arrival of the job into the system (i.e.,
the release date).

The policy for new jobs is to add newly arrived
job into the existing schedule (either via EDD or ERD
strategy), therefore it is reusing the existing schedul-
ing soulution (e.g., the incremental approach). Given
that the schedules, derived from focusing on the newly
arrived job, for each machine now exist, the Tabu
search optimization is performed. This optimization is
performed periodically (after a pre-determined num-
ber of new jobs has arrived into the system) and fo-
cuses on repairing the schedules of all resources in the
system. In a sense, it takes the global view on the sys-
tem and concentrates on all jobs that are currently in
queues for execution. The jobs that are currently run-
ning are not taken into account, therefore no migration

2Earliest Release Date is equivalent to the First Come First
Serve algorithm.

is being undertaken, despite of possibly evident tardi-
ness of the running job.

In the first step, the Tabu search optimization
finds the resource with maximum tardiness. Then, it
finds the job on this resource with maximum tardi-
ness. This job is the candidate for moving to other
resources. Alternatively, if no jobs can be moved (i.e.,
they are already in the tabu list), the resource is also
added to the tabu list. The job is moved in the fol-
lowing way: first, a resource with minimum tardiness
is found and the job is inserted into its list according
to its due date. Next, this move is evaluated against
overall tardiness and if the move reduces it, the job
is left in the schedule of the selected resources and
added to the job tabu list (i.e., it will not be moved
again). Otherwise, the schedules are reverted back to
their original states and the resource is added to the
tabu list of candidate resources. Note that in the Tabu
search phase the jobs are always inserted according to
their deadline and that the gaps (i.e., the time the CPU
is idle) in schedules are not considered.

The above paragraphs present an outline of the
algorithm in the ALEA simulator, which is necessary
for understanding of our additions to the ALEA simu-
lator. A more in-depth understanding of the simulator
can be obtained through [15] and [16].

For our experiments we let simulator use its de-
fault settings:

• When job enters the system, it is added to the
schedule of the machine with the objective to
minimally increase the overall tardiness. The
tests were performed with both insertion strate-
gies - EDD and ERD, respectively.

• The optimizations of the schedules was per-
formed periodically with Tabu search, therefore,
after every 10 jobs arriving into the system, the
schedules of the machines were optimized. Tabu
search was set to perform 10 steps of optimiza-
tion.

2.3.1 Machine Learning Additions Setup
The machine learning algorithms were added on two
levels: firstly, when a new job enters the system and
secondly after 10 jobs have entered the system. We
hence take the same approach as with the use of Tabu
search in ALEA. However, an important difference
between the approaches lies in the fact that we did
not check whether the moves were good, but relied
only on the prediction given by the machine learning
algorithm.

When a new job arrives into the system, we use
the currently built model to decide to which resource
it should be dispatched. The algorithm is shown in

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 265 Issue 6, Volume 4, June 2009

Algorithm 3
INPUT: job description (jDesc) and last known sys-
tem state (sState).
OUTPUT: node of execution (nExec),

1: evaluations← {}
2: for all node : nodes do
3: eval← ML.eval(jDesc,node, sState)
4: if eval.getSuccess == true then
5: evaluations.add(eval)
6: end if
7: end for
8: bestEval← evaluations.getBest()
9: nExec← bestEval.getNode()

10: return nExec

Fig. 3. The main difference between this algorithm
and the algorithm used in previous experiments (de-
scribed in section 2.2) is in the fact that this algo-
rithm does not rely on the base prediction anymore
thus the dispatching of jobs to nodes is completely up
to the machine learning algorithm. The algorithm also
shows that we employed the same approach as in the
previous experiments, i.e. we select the resource ac-
cording to its probability of successfully execution the
job.

Let us now turn towards the periodic optimiza-
tion of the schedules with machine learning methods.
First, we search for the resource with highest tardi-
ness and find the job with highest expected tardiness.
We then take this job out of the schedule and employ
the same approach as shown in the Algorithm 3. The
job is put into schedule of the resource with highest
probability of the timely execution. This procedure is
repeated 10 times.

The machine learning algorithms were set up as
in our previous experiments, with the same parame-
ters for optimization of the built models and the same
attributes that were used for learning. We, however,
did not use the LWL algorithm in these experiments,
as the performance of its implementation in WEKA
rapidly degraded with larger amounts of data.

The description of our machine learning exten-
sions to the original algorithm shows that in these ex-
periments we used only the high-level scheme of the
original scheduling algorithm, as shown in Fig. 3. The
selection of resources was not provided with any help
from the original algorithm (i.e., there is no Base re-
source selector algorithm), but rather a scheme with
online reparations of the schedule was employed. The
basic difference between the architecture of the first
set of experiments (shown in Fig. 1) and these exper-
iments is in the position of the queues. While in the
first set of experiments we had no control over queues

(i.e., schedules) after we have dispatched the job, here
the queues are manipulated during the periodic opti-
mization phase.

Figure 3: The architecture overview of our experi-
mental setup.

Finally, let us sum up the differences between the
ALEA and our scheme. ALEA is using the EDD and
ERD insertion strategy, combined with Tabu Search.
All job migrations (i.e., between schedules of differ-
ent resources) are performed with insertion according
to the due date of the job. The candidate resources for
optimizations are found through search over all the re-
sources and calculating their tardiness. The algorithm
is also calculating the overall tardiness for the evalua-
tion of job moves. On the other hand, our algorithm is
calculating tardiness only when deciding on which job
should be moved on the candidate resource. The can-
didate resource is the one with longest queue of jobs
to be executed. These differences show that we are
using significantly lower amount of information for
initial dispatching and optimization of the schedules.
Furthermore, our insertion strategy is always accord-
ing to the due date criterion.

2.3.2 Experiments
We performed two sets of experiments. In both sets,
we used 8 resources, each with 2 CPUs. The jobs that
were generated were synthetic and always required
only 1 CPU. The start time of the jobs and their dead-
lines were set by the job generation algorithm, pro-
vided in ALEA. As job tardiness is dependent on the
ratio between the number of resources avaliable and
jobs to execute, this setup guaranteed job tardiness.

Descriptions of jobs were the same as in exper-
iments, described in section 2.2 and hence consisted
of the following attributes: an estimate of the time

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 266 Issue 6, Volume 4, June 2009

to run needed for execution of the job, the deadline
for the job execution, the queue length of the node at
time of job submission, the node on which the job was
submitted and finally, the success of the job execu-
tion, described only with values finished in time or
not finished in time, corresponding to finished until
the deadline or not.

In the first set of experiments we first used the
ALEA default settings to generate and execute 10000
synthetic jobs, which were used as the learning data
for the machine learning algorithms in order to pro-
duce the initial predictors. We then performed 10 ex-
periments with each of the selected machine learning
methods and compared them to the results obtained
with the original algorithm. During these experi-
ments, the machine learning algorithms always used
the learning data in order to initialize the predictor. In
other words, they did not use any information from
the previous experiments. The results are shown in
Table 6, where the average tardiness of jobs is shown
for each of the experiments and method used. The last
line shows the average of the average tardiness over all
of the experiments.
The comparison between methods shows that only

use of the J48 algorithm in our scheme can be roughly
compared to the ALEA algorithms. Furthermore, the
J48 algorithm can be compared only to the EDD in-
sertion strategy, while ERD strategy performs signifi-
cantly better.

In the next experiment, we allowed the machine
learning algorithms to incrementally learn over exper-
iments, but we did not allow for any initial learning
data before the first experiment. The machine learn-
ing algorithms performed an update of their models
after 10 new jobs entered the system. The aim of this
experiment was to see whether performance of the ML
algorithms can be improved with use of larger datasets
and through use of incremental learning.

The results are shown in Fig. 4. The mutual com-
parison is performed as follows: The benchmarks for
our approach were ALEA Tabu search optimization
strategies with EDD and ERD insertion strategy, both
repeated 10 times with 1000 jobs. The average tardi-
ness of these 10 experiments was then again averaged
over the number of experiments and is hence shown
as a flat line in the graph. The machine learning ex-
periments were performed 50 times with 1000 jobs,
giving 50 average tardiness results. Each dot in the
graph represents the average of 10 experiments, i.e.
the first dot is the average of experiments 1 to 10, the
second dot is the average of the experiments 2 to 11,
and so on. Thus, the graph consists of 40 experiments,
where the dots are calculated in way which guarantees
stability of the obtained results.

The comparison between the J48 and Naive

Bayes machine learning algorithms shows that J48
performs significantly better. Furthermore, from the
fourteenth experiment on, the J48 algorithm performs
as well as the EDD insertion strategy with Tabu search
optimization, while the ERD insertion strategy per-
forms overall best. Both of the machine learning ap-
proaches show improvements with increasing of num-
ber of learning examples. While the J48 algorithm
shows stable results with the increase of available
learning data, the results of the Naive Bayes algorithm
show much more instability. Even though the results
are averaged over 10 experiments, we can label the
performance of the Naive Bayes algorithm as erratic.

Comparison with the overall behaviour of the ma-
chine learning algorithms from this and previous ex-
periments, described in section 2.2, where we found
the LWL algorithm to be stable, while Naive Bayes
and J48 algorithms were brittle, shows that the large
set of experiments puts the J48 algorithm into the cat-
egory of stable algorithms.

3 Discussion
We performed two sets of experiments, both using
the same machine learning algorithms and infras-
tructure for selection of the resource for job execu-
tion. The first experiment concentrated on experi-
ments with smaller amounts of data with three ma-
chine learning algoriths: J48, Naive Bayes and LWL.
The second experiment concentrated on experiments
with larger amounts of data and, due to degraded per-
formance of the implementation of the LWL algo-
rithm in WEKA, used only two machine learning al-
gorithms: J48 and Naive Bayes. The objectives of the
two algorithms were different: in the first set of ex-
periments, we were maximizing the number of jobs
finished within the deadline, while in the second set
we minimized tardiness. The role of the machine
learning algorithms differed between the two experi-
ments: in the first set, their predictions were used only
if probability of successfully finishing the job on the
default selected resource was lower than the machine
learning predicted one. In the second set of experi-
ments, the machine learning algorithms were not in
the role of assistant, but had complete control over se-
lection of the resource. In both experiments we eval-
uated performance of the off-the-shelf machine learn-
ing approaches, aiming towards straightforward and
cost-effective integration into existing GRID environ-
ments. Furthermore, almost all of the attributes used
for model induction were simple and can be obtained
or calculated directly. The only exception is the re-
quired job CPU time, which was always given be-
forehand. Still, the evaluation of job complexity may,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 267 Issue 6, Volume 4, June 2009

J48 Naive Bayes ALEA-EDD ALEA-ERD
1 6852986 7802715 4562290 3686164
2 6975198 8311823 4898042 3946878
3 5991922 9450453 4629544 3834669
4 4273658 7858624 4616085 3802694
5 4956201 8225339 5242742 4485815
6 4426126 8187952 4805775 4157972
7 4636639 10273174 4932950 4134214
8 4194367 7955454 4515571 3879128
9 4243210 11394544 4421033 3667836

10 4126020 8864409 4288354 4016526
average 5067633 8832449 4691239 3961190

Table 6: The average tardiness over 1000 jobs - the average tardiness over 10 experiments is shown in italic.

to some extent, be also predicted [12]. Finally, the
number of parameters used for their self-optimization
through internal cross-validation was quite large and
hence enabled the use of the black-box approach,
which suits the intended use the most (i.e., the plug-in
architecture).

The performance of the machine learning algo-
rithms in both experiments shows issues with stability
of predictions. Furthermore, the performance of the
same algorithms may be radically different in different
setups of the experiments. For example, in the first set
of experiments, the performance of the Naive Bayes
algorithm can be either very good or rather poor. This
behaviour is to some extent evident also in the second
set of experiments, which shows, on a significantly
larger learning dataset, instabilites in terms of perfor-
mance. The J48 algorithm shows stable performance
only in the second set of experiments, where larger
amounts of learning data is available. We can thus
conclude that, given sufficient amount of data, J48 al-
gorithm can be used in the described setup. Finally,
the LWL algorithm, while its performance was stable
in the first set of experiments, could not be tested in
the second set of experiments due to performance is-
sues. Still, it is safe to assume that due to the nature
of the algorithm itself, its performance should provide
the required stability.

The comparison with the base or benchmark al-
gorithms shows that the performance of the black-box
approach with the off-the-shelf machine learning al-
gorithms, can perform either well or at least compa-
rably to some of the benchmarks. The applicability
of the employed approach is dependent on the ac-
tual GRID system, available attributes and available
scheduling or job dispatching algorithms.

Finally, we acknowledge the ideal circumstances
of our simulations. In the real-world we cannot as-
sume the machines and the network are ideal in terms

of possibility of failure. We also directly used the
time needed for computation of the job and the queue
lengths of the nodes. We decided that for these ex-
periments we omit these complications and try to
assess the machine-learning-assisted job dispatching
and scheduling algorithms on their own. Also, we ac-
knowledge that we have not used the whole array of
possible attributes, which are available in the real sys-
tems (e.g., user and user group to which the job be-
longs).

4 Conclusions
This paper describes use of off-the-shelf machine
learning algorithms for mapping jobs to resources
with black-box approach. The performance of the al-
gorithms was tested in two different setups with two
different objectives - maximization of jobs finished
within the deadline and minimization of tardiness.

In the first set of experiments, the machine learn-
ing methods were used as assistants to the base re-
source selection algorithm. Furthermore, the machine
learning algorithms were used cautiously and were al-
lowed to change the decision of the base scheduling
algorithm only if their prediction was, based on histor-
ical data, better. The results show that use of machine
learning algorithms in the sense of correcting the base
algorithm’s decisions improves the number of jobs
finished within the deadline to some degree. On the
other hand, the results also show that these algorithms
are brittle thus there is no guarantee that their use will
always improve the base algorithm. Furthermore, our
results also show that even the algorithm which can
be considered as overall best, in some cases underper-
forms when compared to the base algorithm. Still, the
results of the the experiment where we changed node
properties between batches of jobs are encouraging as
they show that our approach can adapt to completely

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 268 Issue 6, Volume 4, June 2009

Figure 4: The comparison of performance between ALEA (EDD and ERD version) versus J48 and Naive Bayes
algorithms, both learning incrementally.

different circumstances quite quickly.
In the second set of experiments the machine

learning methods were used to select the resources di-
rectly. The benchmark algorithms used were ALEA
with EDD and ERD job insertion strategy, combined
with Tabu search. Use of the machine learning meth-
ods in this set of experiments only followed the opti-
mization scheme of the original algorithm, while try-
ing to use even less information about the system. The
results show that the machine learning algorithms, in
this scheme, are as good as the ALEA with EDD job
insertion strategy and Tabu search, but perform worse
than ALEA with ERD job insertion strategy and Tabu
search optimization algorithm.

The machine learning algorithms were used as
black boxes, using internal cross validation for param-
eter tuning and without any inspections of the induced
models. The properties of the system were learned us-
ing a simple batch of jobs, while the testing was per-
formed with jobs and system, which guaranteed con-
gestions of the system.

Finally, given the number and type of experi-
ments, we also acknowledge that more experiments
need to be performed. Our future plans consist of use
of real system data, an increase of the number and di-
versity of experiments (i.e., different number of nodes,
system and network failing, different loads on the sys-
tem, use of user data, etc.) and inclusion of additional
base and machine learning algorithms (e.g., ALEA-
EG-EDF with Tabu search, Neural networks, etc.).

References:

[1] J. Boyan, M. L. Littman, Packet routing in dy-
namically changing networks: a reinforcement
learning approach, Advances in Neural Informa-
tion Processing Systems, 7, 1994, pp. 671–678.

[2] G. Di Caro, M.Dorigo, AntNet: Distributed stig-
mergetic control for communications networks,
Journal of Artificial Intelligence Research, 9,
1998, pp. 317–365.

[3] D. D. Clark, C. Partridge, J. C. Ramming,
J. T. Wroclawski, A knowledge plane for the in-
ternet, Proceedings of the 2003 conference on
Applications, technologies, architectures, and
protocols for computer communications, Karl-
sruhe, Germany, 2003, pp. 3–10.

[4] T. Itao, T. Suda, T. Aoyama, Jack-in-the-net:
Adaptive networking architecture for service
emergence, IEICE Transactions on Communica-
tions, E84-B(10), 2001.

[5] M. Chen, A. X. Zheng, J. Lloyd, M. I.Jordan,
E. Brewer, Failure Diagnosis Using Decision
Trees, First International Conference on Auto-
nomic Computing (ICAC’04), New York NY,
USA, 2004, pp. 36—43.

[6] E. K. Burke, J. .P. Newall, A Multi-Stage Evo-
lutionary Algorithm for the Timetable Problem,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 269 Issue 6, Volume 4, June 2009

IEEE Transactions on Evolutionary Computa-
tion, 3.1, 1999, pp. 1085–1092.

[7] Genetic Algorithms And Highly Constrained
Problems: The Time-Table Case, Proceedings
of the First International Workshop on Parallel
Problem Solving from Nature, Dortmund, Ger-
many, Lecture Notes in Computer Science 496,
Springer-Verlag, 1990, pp. 55–59.

[8] M. W. Carter, G. Laporte, and S. Y. Lee. Exam-
ination timetabling: Algorithmic strategies and
applications. Working Paper 94-03, University
of Toronto Dept of Industrial Engineering, Jan-
uary 1995.

[9] B. Paechter, A. Cumming, and H. Luchian. The
use of local search suggestion lists for improving
the solution of timetable problems with evolu-
tionary algorithms. Lecture Notes in Computer
Science 993 (AISB Workshop on Evolutionary
Computing), Springer-Verlag, Berlin, 1995, pp.
86–93.

[10] J. M. Thompson and K. A. Dowsland. Gen-
eral cooling schedules for a simulated annealing
based timetabling system. In: The Practice and
Theory of Automated Timetabling: Selected Pa-
pers from the 1st International Conference, Lec-
ture Notes in Computer Science 1153, Springer-
Verlag, Berlin, 1996, pp. 345-364.

[11] D. E. Smith, J. Frank, A. K. Jonsson, Bridg-
ing the Gap Between Planning and Scheduling,
Knowledge Engineering Review, 2000.

[12] H. Li, L. Wolters, An Investigation of Grid Per-
formance Predictions Through Statistical Learn-
ing, First Workshop on Tackling Computer Sys-
tems Problems with Machine Learning Tech-
niques (SysML), Saint-Malo, France, 2006.

[13] PeerSim. PeerSim.
http://peersim.sourceforge.net/.

[14] I. H. Witten and E. Frank, Data Mining: Prac-
tical machine learning tools and techniques,
2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[15] D. Klusek, L. Matyska, H. Hana. Alea Grid
Scheduling Simulation Environment, Parallel
Processing and Applied Mathematic Springer
Verlag, Berlin, 2007, pp 1028–1038.

[16] ALEA Simulation Framework, ver-
sion 1. http://www.fi.muni.cz/ xk-
lusac/alea/download/source1.zip.

[17] J. Li, R. Yahyapour, Learning-Based Negotia-
tion Strategies for Grid Scheduling, Sixth IEEE
International Symposium on Cluster Computing
and the Grid (CCGRID’06), 2006, pp. 576–583.

[18] W. Smith, Prediction Services for Grid Comput-
ing. In: The 22nd IEEE International Parallel
and Distributed Processing Symposium, April
2007.

[19] C. Franke, Design and Evaluation of Multi-
Objective Online Scheduling Strategies for Par-
allel Machines using Computational Intelli-
gence, PhD Thesis, University of Dortmund,
44221 Dortmund, Germany, 2006.

[20] Z. Xu, X. Hou, J. Sun, Ant algorithm-based task
scheduling in grid computing. In: Electrical and
Computer Engineering 2003, 2003, pp. 1107–
1110.

[21] G. Ritchie, J. Levine, A hybrid ant algorithm for
scheduling independent jobs in heterogeneous
computing environments, In:Third Workshop of
the UK Planning and Scheduling Special Inter-
est Group (PLANSIG 2004), December 2004.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Daniel Vladusic

ISSN: 1991-8763 270 Issue 6, Volume 4, June 2009

	29-283
	32-123
	32-201

