
Petri Nets and Fuzzy Sets in Hybrid Controllers Synthesis: The
Discrete-Event Aspect

LUCIEN NGALAMOU
University of the West Indies

Dept. of Electrical and Computer Eng.
St Augustine Campus

TRINIDAD and TOBAGO
lucien.ngalamou@sta.uwi.edu

LEARY MYERS
NEPAD

National Environment and Planning Agency
10 & 11 Caledonia Avenue, Kingston

JAMAICA
lmyers@nepa.gov.jm

Abstract:This paper presents a design approach intended for the modeling and synthesis of discrete-event modules
of hybrid controllers by combining a model of computation and a soft computing synthesis approach. The model
of computation is based on coloured Petri nets (CPNs) and the soft computing method uses fuzzy logic. The design
approach converts Petri net models into their equivalent fuzzy sets for rapid prototyping on embedded controllers
or programmable Logic devices. The Petri net model of a discrete-event controller is captured and modeled using
DesignCPN software tool whose latest version is called CPNTool. Design/CPN (CPNTool) uses colored Petri nets
(CPNs) in model representation. Fuzzy sets generated in the conversion process are compatible inputs (fuzzy sets)
to the Xfuzzy software, which is a fuzzy logic software for the design of fuzzy controllers. Xfuzzy can generate
equivalent C and VHDL codes from fuzzy sets.

Key–Words:Model of computation, coloured Petri nets, soft computing, fuzzy sets, and discrete-event controller.

1 Introduction
Hybrid systems [4] are complex systems which have
discrete-event dynamics as well as continuous time
dynamics. The part of an hybrid system presenting
a discrete behavior is often called discrete-event sys-
tem (DES)[3]. A Discrete-event system is an event
driven system where the evolution of its state space is
entirely dependent on the occurrence of asynchronous
events. Its modeling can be done by considering:

• discrete state space (logical, symbolic variables),

• event-driven dynamics,

• possible concurrent processes, and

• use of Petri net theory [8].

Examples of discrete-event systems can be found
in computer systems, communications networks, au-
tomated manufacturing systems, etc. Design methods
of DES controllers consist of modeling, simulation,
and synthesis. Petri nets are used extensively to model
discrete-event systems. The challenge is always at the
level of real implementations. DesignCPN is an ef-
ficient tool for modeling and simulation, but it lacks
synthesis features1.

1Possibility of generating C or VHDL

Many Petri net-based modeling methodologies
for hybrid systems have been proposed [1, 9, 10, 12],
which are based on the extension of Petri Nets in or-
der to model continuous behavior. Along the same
line of research, this paper presents an approach which
consists in investigating the development of a com-
plete tool for hybrid controllers modeling, simulation
and synthesis by combining Petri nets formalism and
soft computing [7]. A method for converting Petri net
models of discrete-event systems into their equivalent
fuzzy sets for the design of the discrete-event part of
the controller is considered. It does not use fuzzy-
ness in Petri nets [2, 7], instead the focus is on the
implementation of a conversion algorithm of Petri net
models into fuzzy sets. Its verification was made by
developing a software module called PetriFuzzy that
combines the modeling features of DesignCPN [13]
and the synthesis capabilities of Xfuzzy [14].

The rest of this paper is organized in six sections.
Section 2 presents an overview of model representa-
tions of discrete-event systems using Petri nets. Sec-
tion 3 describes Xfuzzy models of fuzzy controllers.
Section 4 presents a conversion method of Petri net
models of discrete-event controllers to their equivalent
fuzzy set representations, which is the crucial part of
PetriFuzzy design process. Section 5 demonstrates an
example of application of PetriFuzzy tool in synthe-
sizing a controller for a painting system followed by a

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 98 Issue 2, Volume 4, February 2009

conclusion in section 6.

2 Model Representation of Discrete-
event Systems using Petri Nets

Petri nets (PN) are a graphical and mathematical tool that
can be used to model Discrete-event systems (DES). Its
graphical capabilities enable the designer to visualize and
simulate dynamic and concurrent behavior, typical of DES.
Its mathematical properties allow the designer to derive
state and algebraic equations to further validate the behav-
ior and performance of the system being modeled. Model-
ing capabilities of PN can also be used to analyze systems
that have concurrent, asynchronous, distributed, parallel,
nondeterministic, and/or stochastic characteristics.

The properties of PN have been adapted and enhanced
to create High-level Petri Nets (HLPN), such as Predicate
Transition Nets, Fuzzy Petri Nets and Colored Petri Nets.

Coloured Petri nets (also known as CP-nets or CPN)
is one type of high-level Petri nets which is built on the
concepts and principles of Petri nets.

Practical applications of Petri nets entail the use of
computer-aided tools to model and analyze DES. Several
software tools are available for drawing, analysis, and sim-
ulation of various applications. One popular tool that will
be described here is Design/CPN [15].

2.1 Preliminaries
A Petri net is a kind of directed graph with an initial state
called theinitial marking,M0. A PN graph consist of two
kinds of nodes, calledplacesandtransitions, its third ele-
ment is an arrow which connects aplaceto a transitionor
a transition to aplace. Aplace is represented graphically
as a circle, whereas atransition is represented as a bar or
box. Arcs are labeled with their weights, which are positive
integers. Labels for unity weight are usually omitted. In a
particularmarking(state), a positive integert is assigned to
a placep, which means thatp is marked witht tokens. This
is illustrated graphically by placingt black dots (tokens) in
placep.

One has to learn about PN theory is the rule for tran-
sition enabling and firing. This rule governs the dynamic
behavior of the PN. When a transition is enable it can fire.
This means it will remove tokens (black dots) from its input
places and put them in its output places.

When modeling systems using PN several interpreta-
tion of places and transitions are used to mimic the behav-
ior of the system. In this paper a transition represents an
event, while the input place represents the precondition for
that event to occur and the output place the post condition
for that event.

2.2 Formal Definition of Petri Nets
As seen in [8], Petri nets are defined as follows.

2.2.1 Definition of Petri Nets

Definition 2.2.1 A PN is described as a 5-tuple,
PN = (P, T, F, W, M0) where:
P = {p1, p2, . . . , pn} is a finite set of places,
T = {t1, t2, . . . , tn} is a finite set of transitions,
F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),
W : F → {1, 2, 3, . . .} is a weight function,
M0 : P → {0, 1, 2, 3, . . .} is the initial marking,
P ∩ T = ∅ andP ∪ T 6= ∅.

A Petri net structure N = (P, T, F, W) without any specific
initial marking is denoted by N.
A Petri net with the given initial marking is denoted by (N,
M0) .

Figure 1: A Simple Petri Net Example

Example 2.2.1 The marked PN in Figure 1 has a formal
description given as follows:
P = {p1, p2, p3, p4}
T = {t1, t2}
F = {(p1, t1) , (t1, p2) , (t1, p3) , (p2, t2) , (p3, t2) , (p4, t1)}
W : F → {1, 1, 1, 1, 1, 1, 1}
M0P → {1, 0, 0, 0}

An n×m matrixA = [aij] of integers can be defined
for a PN withn transitions andm places, is given by

aij = a+
ij − a−ij (1)

Wherea+
ij = w (i, j) is the weight of the arc from

transitioni to its output placej. Similarly a−ij = w (j, i) is
the weight of the arc from transitioni to its output placej.

For the PN in Figure 1a+
ij anda−ij are give as follows:

a+
ij =


0 0
1 0
1 0
0 1

 , a−ij =


1 0
0 1
0 1
1 0


The incidence matrix for the PN in Figure 1 given by

the equation (1) is:

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 99 Issue 2, Volume 4, February 2009

a+
ij =


−1 0
1 −1
1 −1
−1 1


2.2.2 Firing and Execution Rules of Petri Nets

1. A transitiont is enable if each input placep of t is
marked with at leastw(p,t), wherew(p,t) is the weight
of the arc fromp to t.

2. An enabled transition may or may not fire (depending
on whether or not the event takes place).

3. A firing of an enable transitiont removesw(p,t)
tokens from each input placep of t, and addsw(t,p)
tokens to each output placep of t wherew(t,p) is the
weight of the arc fromt to p.

In the PN of figure 1,t1 is enabled in the initial mark-
ing m0 of p1 (m(p1) = 1) andw (p1, t1) = 1; 2. t2 is
not enabled sincew (p2, t2) and w (p2, t2) = 1. While
m(p2) = 0 , m(p3) = 0 which is less than one. Firingt1
removes a token fromp1 and places one token to each of
t1s output placesp1, p2.

Figures 2(b) and (c) show the state of the Petri net after
firing transition t1 and t2. In Figure 2(b),t2 is enabled
since the weight of the arcsw (p2, t2) andw (p3, t2) is one.
Firing t2 will remove the tokens fromp2, p3 and places one
token inp4. No transitions are enabled in the resulting Petri
net shown in Figure 2(c) since there is no token inp1, p2 or
p3.

2.3 Properties and Classifications of Petri
Nets

Properties of Petri nets can be broken down into two cate-
gories; behavioral and structural. The behavioral properties
depend on the initial marking while the structural proper-
ties only depend on the topology or structure of the Petri
net. Some of the most important behavioral and structural
properties are reachability, boundness, safeness conserva-
tiveness, liveness, reversibility, and home state.

Petri nets are classified based on their structural prop-
erties which describe how arcs connect places and tran-
sition. Petri nets are classified into state machines (SM),
marked graphs (MG), free-choice net (FC), extended free-
choice net (EFC), and asymmetric choice net (AC).

2.4 Modeling Discrete-event Systems With
Petri Nets

In this section we will look at how we can use Petri Nets
(PNs) to model systems. Consider a simple fire alarm sys-
tem which works as follows: the presence of smoke turns

2Arcs with a weight of1 are normally shown explicitly on the
diagram

Figure 2: A Simple Petri Net Execution

on the sprinkler and sounds an alarm; when there is no
smoke the system is off. This system represents a simple
Discrete-event System; since it is not known before hand
the exact time when smoke will be detected, the sprinkler
and the alarm can be configured to be on or off. This type of
system is easily described with a Petri net. The PN model
of this system is shown in Figure 3.

Figure 3: Simple Fire Alarm System

Initially a token is present in A (smoke detected), this
indicates that the presence of smoke is detected. Transi-
tion t1 is enabled because of the token in A. Whent1 fires
a token will be placed in B and C. This action represents
sounding the alarm and turning on the sprinkler. When a

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 100 Issue 2, Volume 4, February 2009

token is present in D (No Smoke detected), B, and C;t2
will fire removing tokens from D, B, and C. This action
turns off the alarm and sprinkler.

2.5 Coloured Petri Nets
Coloured Petri nets (CP-nets or CPN) is an extension of
Petri nets, aimed at increasing its expressive power. This is
achieved by allowing each token to have a data value called
token color. The data value can be of an arbitrary complex
type.

In a CP-net every place has tokens that only belong
to a specific type. This type is called thecolor setof the
place. Color sets of places determine the possible values of
tokens, similar to types determines the value of variables
in high level programming languages.

2.5.1 Basics
Modeling systems with CP-nets is similar to writing pro-
grams in a high-level language, with the added feature
of graphical representation through places, transition, and
arcs. CP-nets allow the designer to declare color sets, vari-
ables, constants, an functions in adeclaration node. The
language used in declaration nodes and net inscriptions is
CPN ML, which is derived from the popular functional lan-
guage Standard ML SML [16].

In a Petri net the marking of a place is represented by
an integer values specifying the number of tokens whereas
in CP-nets, the marking of a place is represented as a
multi-setover the color set of the place.

2.5.2 Multi-sets
A multi-set is the same as a set, except that it can have
multiple appearances of the same elements. A multi-setMs

is always defined over a setS, which means that elements
of Ms are taken fromS. The multi-set can be defined as a
sum where each element ofS has a coefficient saying how
many times it appears.

UsingN to define the set of all non-negative integers
and[A → B] to denote the set of all functions from A to
B, we consider the definition below.

Definition 2.5.1 A multi-setm, over a non-empty setS,
is a functionm ∈ [S → N]. The non-negative integer
m(s) ∈ N is the number of appearances of the elements
in the multi-setm.
We usually represent the multi-setm by a formal sum:∑

s∈S

m(s)8s

By SMS we denote the set of all multi-sets overS. The
non-negative integers{m(s)|s ∈ S} are called the
coefficientsof the multi-set m, andm(s) is called the

coefficientof s. A elements ∈ S is said tobelongto the
multi-setm iff m(s) 6= 0 and then we writes ∈ m.

As an example, let us consider the setS = {a, b, c, d, e, f}.
We can define a multi-setM over S as,
M = 18a + 28f + 58c
The integer before the sign8 is the coefficient, it determines
the number of occurrence of a particular element ofS in
M . By convention elements with zero coefficients are
omitted.

2.5.3 Arc Expressions
In CP-nets arc expressions are used to evaluate multi-sets.
Arc expressions are also allowed to contain a number of
variables which can be bound to different values, thus
allowing the arc expression to evaluate to different values.
Variables on arc expressions are bound to the current
marking of the connecting place to the arc.

2.5.4 Guards
A transition is allowed to have aguard. The guard is a
boolean expression which defines an additional constraint
which must be fulfilled before the transition is enabled.

2.5.5 Firing Rules
The rules for enabling and firing of a transition are similar
to those defined in Section 2.2.2, with the additional
constraint that the guard (if it exists) must be satisfied.

2.5.6 A Simple Example
A simple CP-net is shown in Figure 4 with a declaration
node, two places and a transition. The declaration node
defines a color set (INT) and a variablex. The color set
INT is a multi-set over the set of all integers andx is a
variable of typeINT . A andB have the same color set
(INT). The initial marking ofA is 23 and that ofB is
183 + +284 3, which meansB has one three and two fours.
The arc fromA to T has an arc expressionx which is
defined as a variable of typeINT , thusx will be bound
to 23 which is the current marking ofA. The arc fromB
to T has arc expression 3. The transitionT has a guard
x = 23. Following the rules for transition enabling, T is
only enabled ifx = 23 and the current marking ofB has
a 3. T is currently enable because all these conditions are
satisfied. When T fires 23 and 3 will be removed fromA
andB respectively. Leaving marking ofA empty andB
284.

3The CP-net software is used to create the diagram in figure 4
that uses ++ instead of + for multi-set definitions

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 101 Issue 2, Volume 4, February 2009

Figure 4: Simple Coloured Petri Net

2.6 Net Inscriptions and Declarations
CPN ML is the language used to declare color sets and
construct net inscriptions which include specification of
arc expressions, guards, and initialization expressions.
CPN ML also allows designers to define types, functions,
operations, variables, constants, and expressions, similar
to high level programming languages, in particular Stan-
dard ML (the language upon which CPN ML is built)[5, 6].

2.6.1 Color Sets
A color set declaration introduces a new color set, whose
elements are called colors. Similar to the definition of a
new type in a high level programming language. Table 1
shows all the possible color set declarations and their mean-
ings. Some sample color set declarations are shown below.

color Switch = with on | off;
color Age = int;

2.6.2 Functions
Assuming AA was a color set declared as:

color AA = int;

Then a function could be declared as:

fun Factorial(n:AA) = if n < 1
then n * Factorial(n-1) else 1;

Which is the recursive implementation of the popular facto-
rial function. Each declared function is not allowed to have
side effects, which means that functions are evaluated with-
out influencing any part of the system. A declared function
can be used:

• in the declaration of color sets (e.g. to construct sub-
set color sets),

• in the declaration of other functions, operations and
constants,

• in arc expressions, guards, and initialization expres-
sions.

2.6.3 Variables
Variables can be declared but they must have type which
must be an already declared color set.

var score:AA;

the declaration above shows a variable declaration of type
AA. A declared variable can be used in guard and arc
expressions but not in initialization expressions.

2.6.4 Constants
A constant can be declared with a type which must be an
already declared color set or some other type recognized by
CPN ML. A declared constant can be used:

• in the declaration of color sets,

• in the declaration of functions, operations, and other
constants,

• in arc expressions, guards,and other initialization ex-
pressions.

The expressionvaln = 4; declares a constant of type int
with value 4.

2.6.5 Net Expressions
Net expressions are used in arc expressions, guards, and
initialization expressions. They are constructed from
declared variables, constants, and functions.

2.7 Hierarchical CP-nets

When modeling a large system with CP-nets the general
approach would be to construct the system from smaller
modules which can then be used to form the complete
system. Hierarchical CP-nets is an extension of CP-nets
which allows the designer to construct a colored Petri net
model from a number of smaller CP-nets; similar to the use
of subroutines in high level programming languages. Two
new constructs,substitution transitionand fusion place
are introduced to facilitate the construction of hierarchical
CP-nets.

2.7.1 Fusion Place
Fusion places allow the designer to specify that a set of
places represent a single place even though they are drawn
as separate places. When a token is added or removed from
one of these places an identical token is added or removed
from all the others. The termfusion setis used to describe
the set of places that participate in the fusion.

There are three different types of fusion sets: global,
page, and instance fusion sets. Global fusion sets are
allowed to have members from several different pages,
while page and instance only have members from one page.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 102 Issue 2, Volume 4, February 2009

Table 1:CPN ML Color Set Declarations and Their Meanings
Color Set Declaration Meaning
color AA = int all integers
color BB = real all reals
color CC = string all text strings
color DD = bool two colours; false and true
color EE = unit only one color, denoted by ().
color FF = int with 10..40 all integers between 10 and 40
color GG = real with 2.0..4.5 all reals between 2.0 and 4.5.
color HH = string with ”a”..”z” and 3..9 all text strings with characters between

a and z and length between 3 and 9.
color II = bool with (no,yes) as DD, but with two different names for

the colours
color JJ = unit with e as EE, but with a different name for the

color
color KK = with man| woman| child three colours: man, woman, and child
color LL = index car with 3..8 six colours: car(3), car(4), . . . , car(8)
color MM = product AA∗ BB ∗ CC all triples (a,b,c) where a∈ AA, b ∈

BB, and c∈ CC
color NN = record i:AA∗ r:BB ∗ s:CC all labeled records {i=a,r=b,s=c}

where a∈ AA , b ∈ BB, and c∈ CC
color OO = union i1:AA + i2:AA + r:BB + c1 + c2 all colours of the form i1(a), i2(a), r(b),

c1 and c2 where a∈ AA and b∈ BB
color PP = list AA all list of integers , e.g., the color

[23,14,3,48]
color QQ = list AA with 3..8 as PP, but the list must have a length

between 3 and 8
color RR = subset AA with [2,4,6,8,10] n five colours: 2, 4, 6, 8, 10
color SS = subset AA by even all even integers, i.e., all integers x for

which Even(x) is true
color TT = AA contains exactly the same colours as

AA

2.7.2 Substitution Transition
Substitution transition allows the designer to give a more
precise and detailed description of activities represented
by a transition. This is similar to the concept of making
a function call in a high level programming language.
Substitution transition gives the designer the ability to
design large and complex systems with CP-nets, by
defining the detailed activities of a single transition as a
separate CP-nets. We will use a simple hierarchical CP-net
in the next section to show how a substitution transition is
used in hierarchical CP-nets models.

2.7.3 A Simple HierarchicalCP-net

This example deals with the control of lubricating oil being
dispensed from a tank. This can be implemented using two
sensors; one at the top of the tank and one at the bottom as

shown in Figure 5. A motor is needed to pump oil into the
tank until the high level sensor turns on. At this point the
motor should be turned off until the level falls below the
low level sensor, when this happens we should turn on the
motor and repeat the process. Our system can be designed
with two inputs (sensors) and one output (motor).

This system can be designed with a simple CP-net, but
it is more appealing an hierarchical model.

The Hierarchical for the oil tank system consists of
two pages. The main page (prime page) is shown in Fig-
ure 6. Two color setsSwitchand Sensorare defined in
the global declaration which represent the level of the oil
inthe tank (low/ligh) and the state of the motor (on/off).
The places on this page represent the Level of the oil and
the state of the motor.4 The only transition on the page

4In the diagram, the color set of a place is in italics, while the
name of the place is in bold.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 103 Issue 2, Volume 4, February 2009

Figure 6: Prime Page of The Oil Tank System

Figure 5: Oil Tank System: M shows the fill motor,
HS and LS are the high and low level sensors.

is a substitution transition. It provides us with the name
and number of the sub-page and how to connect the places
Level andMotor to port places on the sub-page.

Figure 7: Sub-page of The Oil Tank System

The sub-page refereed to is shown in Figure 7. From
the information in the HS box in Figure 6 we know that
Level should be connected tosLevelandMotor should be
confected tosMotor. It contains two transitions that would
change the state of the motor to on or off if the level of the
tank is high or low.

This example shows how Hierarchical CP-nets can be
useful to design more complex systems by dividing the sys-
tem in smaller modules and design these modules indepen-

dently.

2.8 Design/CPN
Design/CPN [17] is a software that can be used to design
and simulate CP-nets. It was originally developed by Meta
Software Corporation [16] and researchers from the CPN
group at University of Aarhus, Denmark [18]. There are
versions available for UNIX and Linux5. The current ver-
sion, at the time of writing is no longer supported by the
CPN group. It is now being replaced with Computer Tool
for Coloured Petri Nets CPN Tools [17]. A CPN model
of a system describes the states, which the system may be
in, and the transitions between these states. CP-nets have
been applied in a wide range of application areas, and many
projects have been carried out in industry [6]. Design/CPN
has four integrated parts:

• The CPN Editor supports construction, modification
and syntax checking of CPN models.

• The CPN Simulator supports interactive and auto-
matic simulation of CPN models.

• The Occurrence Graph Tool supports construction
and analysis of occurrence graphs for CPN mod-
els (also known as state spaces or reachability
graphs/trees).

• The Performance Tool supports simulation based per-
formance analysis of CPN models.

Design/CPN supports CPN models with complex data
types (color sets) and complex data manipulations (arc ex-
pressions and guards), which are both specified in the func-
tional programming language Standard ML. The package
also supports hierarchical CP-nets, such as net models that
consist of a set of separate modules (subnets) with well-
defined interfaces. A typical industrial model often con-
sists of 50-200 modules each with 10-50 different places
and transitions.

3 XFuzzy Models
Fuzzy Logic [18] has drawn over the last decade, a great
deal of attention due to its capability of translating ex-

5Design/CPN 4.0.5 was used for all the examples and work in
this thesis

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 104 Issue 2, Volume 4, February 2009

pert knowledge expressed by linguistic variable rules into a
mathematical framework. This approach is very interesting
since systems are becoming more and more complex and
the means to describe then mathematically are limited.

The design of a fuzzy system requires three major
steps which are: fuzzyfication (membership function and
weight of the inputs), interference (rules) and defuzzifca-
tion (outputs).

Xfuzzyis a software-based design environment that
can be used to formally specify, verify, and synthesized
fuzzy controllers. The modules integrated into Xfuzzy are
based on the XFL language [19]. The power and flexibility
of this language enable the use of Xfuzzy in a wide range
of applications: from the evaluation of different fuzzy op-
erators to the synthesis of fuzzy logic based systems [26].

Figure 8 shows the general structure of Xfuzzy. The
kernel of the environment is formed by a set of common
functions called the XFL library. The elements of this li-
brary perform the parsing and semantic analysis of XFL
specifications and store them using an abstract syntax tree.
This is the common format used inside the environment
when handling system descriptions. The modules in charge
of the successive design stages lay around the kernel li-
brary, using its services. On top of these modules, the en-
vironment has a graphical user interface providing a sim-
ple and intuitive access to its elements. The user interface
is based on X-Window, using the Athena-3D toolkit. The
current version of Xfuzzy runs on any Unix-compatible op-
erating system with X-Window.

Figure 8: General structure of Xfuzzy [27]

The modules integrated into Xfuzzy are based on
the XFL language [19]. The power and flexibility of

this language enable the use ofXfuzzyin a wide range
of applications: from the evaluation of different fuzzy
operators to the synthesis of fuzzy logic based systems. In
XFL a type has the following format:

Type Identifier: BaseType{
Membership Function1
Membership Function2
· · · }

Where BaseType refers to predefined types or any
type that has already been defined in the specification.
When a type uses one of XFL predefined types integer or
real,BaseTypetakes the form:

<integer| real ><[Cardinality] >(Range)

WhereRangedefines the universe of disclosure and
Cardinality specifies the number of distinct values that are
going to be considered for the universe of disclosure. The
definition of a Membership Function is of the form:

Identifier FunctionClass (PointList)

WherePointListcontains values for the points relevant
for defining the function, according to the class specified by
FunctionClass.

The basic element in XFL for controlling the behavior
of the system is called a module. Each module has a set of
variables (for input and output) and a specification of its
structure. A module definition has the form:

Indentifier (VariableList)

ModuleStructure

The Identifier allows reference to the module in other
(compound) modules. An XFL specification has to define a
module called system, which specifies the global behavior
of the system and whose input and output variables are
those of the system. Input/ Output variables are defined in
VariableList by means of:

TypeIdentifier ? Identifier (for inputs)
or
TypeIdentifier ! Identifier (for outputs)

The Identifier will be used in any reference to the
variable inside the module, whileTypeIdentifierspecifies
the type of the variable.XFL allows the definition of rule
bases of arbitrary (complex) structure. Modules can be
defined in terms of a set of composed modules. For a
simple module whose structure is defined in terms of a set
of rules ModuleStructure is

rulebase{

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 105 Issue 2, Volume 4, February 2009

Rule1

Rule2

· · ·

Rulen

}

While for a module whose structure is defined in
terms of several interconnected modules, ModuleStructure
takes the form
components ModuleReferences

Individual rules have the form:if Antecedent→ Con-
sequent.

The description of a fuzzy system in XFL consists es-
sentially of three parts:

• Selection of the fuzzy operations: fuzzy connectives,
implication function, aggregation mechanisms and
defuzzification method.

• Definition of universes of discourse and membership
functions, via XFL types.

• Specification of the system behavior: input/output
variables and rulebase, employing XFL modules.

For each of these parts, the Xfuzzy environment offers
graphical editors to ease the definition of the system. Fuzzy
operations can be selected from a list of those defined in
that moment inside the environment. The user can access
the definition of these operations and perform any desired
modifications. For the definition of types and modules,
Xfuzzy is provided with specific editors to perform graph-
ically the usual operations of creation and modification on
the XFL constructions. The user can also access directly
the XFL source by using a conventional text editor.

4 Petri Nets to Fuzzy Sets Conver-
sion for a Discrete-event Controller
Synthesis

Converting a Discrete-event Controller (DEC) modeled
with Coloured Petri Nets (CPN) in Design/CPN to its
functionally equivalent Fuzzy Logic Controller (FLC) for
Xfuzzy, can be achieved by mapping a color set declaration
in CPN to a XFL6 type. With each input and output place to
a transition being an input and output variable respectively,
hence a transition would represent an XFL module. Using
well-defined rules the modules created form transitions can
then be combined in series and parallel to produce a func-
tionally equivalent model of the system in Xfuzzy. The

6XFL is the language used by Xfuzzy to represent Fuzzy Logic
Controllers

entire process used to achieve this will be described below
in details.

The process is implemented as a software tool called
PetriFuzzy using Java. It converts the model of a DEC in
Design/CPN to its equivalent model in XFL, which can be
used by Xfuzzy to synthesize the controller. It achieves this
by parsing the XML output from Design/CPN, extracts rel-
evant information, and then uses this information to create
the equivalent Fuzzy Logic Controller.

As shown in Figure 9, the entire process is broken up
into three stages: XML Converter, CPN ML & MFInfo
Parser, Module Specification & Rule Base.

Stage 1: Relevant information such as places, transitions,
and arcs are extracted from the XML files modeled as
objects that include Page, Place, Arc, and Transition.
This was done using the Java API for XML Process-
ing (JAXP) [22].

Stage 2: All declaration nodes in the CPN model obtained
from stage 1 are parsed and XFL types are gener-
ated for each color set declaration. Since there is
no way to determine the membership functions for
each XFL type to be created from a color set declara-
tion, additional information in the form of a small lan-
guage Membership Function Information (MFInfo)
are placed as CPN ML comments beside each color
set. A parser for (MFInfo) and CPN ML were cre-
ated using Webgain/Sun Microsystem’s parser gener-
ator JavaCC [23]. However not all color set declara-
tions can be converted to XFL types.

Stage 3: Information obtained from in stage 1 along with
the XFL types from stage 2 is used to create the XFL
modules. Each transition is converted to a XFL mod-
ule with input and output being the input and output
places of the transition. The rule base for each mod-
ule that was created from transition is created using
the conditions for the transition to fire and the result
of firing the transition. All the modules are then com-
bine in series and parallel to form the main module
for the system.

The result is a full XFL specification for the system
that was modeled in design/CPN. We can now use Xfuzzy
to generate the C, Java, and VHDL codes for the controller.

4.1 Stage 1: XML Conversion

4.1.1 Representing the CP-net as Objects

Design/CPN has the ability to save the CPN Model as an
XML file. The XML file contains all the information about
the CPN Model. Relevant information can be extracted
from the XML files by parsing. An object oriented
model was developed to store the relevant information
parsed from the XML file. Each element in a CP-net:
arc, transition, and place, as an associated object in the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 106 Issue 2, Volume 4, February 2009

Figure 9: PetriFuzzy Software Model

software design approach.

Figure 10 shows the simplified UML class diagram
for the objects used to store the information from the CP-
net 7. The base classPetriObj was created for all CP-net
elements, any object which appears on a CP-net must in-
herit fromPetriObj, therefore the following classes related
Arc,Transition,Place, andDeclarationNodeare created.
The classPagewas created with a list of arcs, transitions,
places, and a declaration node as attributes. TheCpNet
class has a list of pages and one declaration node which is
the global declaration node. The Hash table [24] list imple-
mentation was used.

In this process, the XML file generated by De-
sign/CPN is analyzed using the Java API for XML Parsing
(JAXP) to generate a Document Object Model (DOM) tree
of the data, which is then traversed leading to the construc-
tion of theCpNetObject as shown in Figure 10.

4.1.2 The DOM Structure of Design/CPN XML
Files

Figure 11 shows how Design/CPN structures its XML files.
A DTD for Design/CPN XML files is provided as a part

7Methods and attribute information is left out for clarity and
space consideration.

of the software package to aid in parsing. On Figure 11
text attributes are represented by rectangles, while DOM
nodes are represented by ellipses. An XML file contains a
DOM root node which contains a ”WorkspaceElements”.
The WorkspaceElementshas aCP-net child node which
contains aPagenode. ThePagenode now has one or more
Arc, Transition,Place,Declarationnodes.

4.1.3 Converting the XML Files to Objects

Design/CPN does not automatically generate all the XML
files for hierarchical CP-net models, some of the files have
to be generated manually. In order to proceed with an easy
identification of file-to-page mapping, a simple convention
was considered where the XML files for each page in the
hierarchical model are saved with the same name as the
name of the page in the model. For hierarchical CP-nets the
substitution transition provides the name of the correspond-
ing sub-page, therefore each time a substitution transition
is found while parsing the DOM tree the program searches
for a file with the same name as the sub-page and parses
it. Considering the DOM tree structure of the XML files
shown in Figure 11, there is a need of an adequate algo-
rithm which can be used to traverse the tree and extract the
relevant text attributes; such algorithm is implementated as
functionParseXMLPage(Cpnet cpnet, DOMTree dtree)de-
scribed below.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 107 Issue 2, Volume 4, February 2009

Figure 10: UML Class Diagram of CP-net Objects

Data: Cpnetcpnet, DOMTreedtree

Result: Pagepg

ParseXMLPage (Cpnet cpnet, DOMTree
dtree)
begin

create a new Page object pg
add PetriObjs Place, Transition,
Arc,DeclarationNode from dtree to pg
foreachSubstitutionTransition st in dtreedo

add st to pg
get the subpage name
generate DOM tree dt for new subpage
new Page np = ParseXMLPage(cpnet,dt)
add npg to cpnet

end
return pg

end

Function: ParseXMLPage(Cpnet cpnet,
DOMTree dtree)

begin
get the XML prime page
create new CpNet object cpnet
generate DOM tree dtree
Page pg = ParseXMLPage(cpnet,dtree)
add pg to CpNet

end

Algorithm 1: Create Cp-net

Initially, FunctionParseXMLPagecreates aPagefrom
the DOM tree that is passed to it. It traverses the DOM
tree and adds any arcs, transitions, places, and declaration
nodes to the respective list in thePageobject. If it finds a
substitution transition it gets the sub-page name, generates
a DOM tree for that sub page. Then call itself to parse the
DOM tree. Algorithm 1 starts from the prime page and
calls Function ParseXMLPage to parse the XML file and
add it to theCpNetobject.

4.2 Stage 2: Creating XFL Types

At this stage, XFL types are created from color set decla-
rations obtained from theDeclaratoinNodesin the CP-net
model. A color set declaration such ascolor Switch
= with on | off;, should be converted to a XFL
type. Considering the specification of types in XFL, extra
information such as theCardinalityandRangefor the XFL
type are needed. ThePointListandFunctionClassdefine a
membership function. Since there was no support to add or
determine this extra information when parsing theDeclara-
toinNode, a small language called Membership Function

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 108 Issue 2, Volume 4, February 2009

Figure 11: DOM Structure of Design/CPN XML Files

Information (MFInfo)was created to specify the extra in-
formation needed. Since the color set declaration is done
in the language CPN ML, it’s possible to insert MFInfo
statements as a CPN ML comment beside the appropriate
color set declaration. An example of this would be:

Color AA = with up | down(*I[0-100] C256
mf(PointList),mf(PointList)*);

I specifies that the base type which is integer (could also be
R for Real), [0-100] would be the range, 256 would be the
Cardinality (optional) andmf would be the membership
function. In this approach the delta and rectangle functions
are adequate for discrete-event systems.

Table 2 shows the mappings from supported color set
declaration to XFL types. Not all color sets declarations
are supported. We can see where a color set declaration
such as,

color KK = with man | woman | child;

could be an XFL typeKK with delta membership
functionman, woman andchild.

color AA = int;

would be XFL typeAA with a rectangle membership
function frommin to max, wheremin andmax represent
the smallest and largest integers that can be modeled
XFL. In order to implement the above specifications, it’s
necessary to parse the declaration nodes and convert each
color set declaration with their additional MFInfo to XFL
types. The language used in the declaration node is CPN
ML, which requires a parser.

4.2.1 Membership Function Information
(MFInfo)

MFInfo is a simple language created to specify additional
information needed to generate an XFL type from a color
set. It allows the specification of type, range, cardinality
and membership functions. JavaCC was used to create a
simple MFInfo parser. Its EBNF [25] grammar is shown
below.

MFInfoStatement := ’R’ | ’I’ Range [Cardinality] MemFuns
Range := ’(’ <Double> ’..’ <Double> ’)’
Cardinality := ’C’ ’[’ <Integer> ’]’
MemFuns := ’mf’ ’{’ MemFun (’,’ MemFun)* ’}’
MemFun := Delta | Rectangle
Delta := ’d’ ’(’ <Double> ’)’
Rectangle := ’r’ ’(’ <Double> ’,’ <Double> ’)’

Table 3 shows the membership functions supported by
MFInfo. MFinfo can be used to provide additional infor-
mation necessary to create XFL types from color set dec-
larations. As shown in Table 3 only a subset of color set
declarations are supported.

Table 3: Membership Functions Used with MFInfo
Membership Function Name PointList

delta d (a)
rectangle r (a,b)

For a color set declaration such as

color KK = with man | woman | child;

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 109 Issue 2, Volume 4, February 2009

Table 2:CPN ML Conversion of Color set declarations to XFL types
Color Set Declaration Meaning XFL Type
color AA = int all integers Type rectangle AA min -

max
color BB= real all reals Type rectangle BB min -

max
color DD= bool two colors; false and true Type DD with MF false,

true
color EE= unit only one color, denoted

by ().
Type EE MF unit

color FF= int with 10..40 all integers between 10
and 40

Type FF MF rectangle 10 -
40

color GG = real with
2.0..4.5

all reals between 2.0 and
4.5.

Type GG MF rectangle 2.0 -
4.5

color II = bool with
(no,yes)

as DD, but with two
different names for the
colours

Type II with MF no, yes

color JJ= unit with e as EE, but with a differ-
ent name for the color

Type JJ MF e

color KK = with man |
woman| child

three colors: man,
woman, and child

Type KK MF delta man,
woman, child

color LL = index car with
3..8

six colors: car(3), car(4),
. . . , car(8)

Type LL MF car(3)...car(8)

color MM = product AA
∗ BB ∗ CC

all triples (a,b,c) where a
∈ AA, b ∈ BB, and c∈
CC

Type MM MF is the union
of MF in AA , BB , CC

color TT= AA contains exactly the
same colours as AA

Type TT = type AA color
set AA is supported

It’s necessary to create an XFL type with member-
ship functions. An example of MFInfo specification for
the color setKK is given as follows:

R(0..2) C[256] mf{d(0),d(1),d(2)}

R(0..2) specifies that the type should be real and
the range 0 to 2.C[256] sets the cardinality as 256, while
mf{d(0),d(1),d(2)} assigns three delta membership
function for man, woman, and child respectively. This
would be placed as a CPN ML comment beside the
corresponding color set as shown below.

color KK = with man | woman | child
(*R(0..2) C[256]mf{d(0),d(1),d(2)}*);

4.2.2 The CPN ML Parser

A CPN ML parser was created with JavaCC, CPN ML is
an extension of the functional language Standard ML.

Figure 12 shows the parsers that were implemented
in this stage. One that parses CPN ML color set declara-
tions and outputs the color set name, a list of names for
membership functions and the MFInfo. The other parses
the MFInfo to get the type (integer or real), cardinality,
range, and lists membership functions FunctionClass and
PointList.

In addition to parsing CPN ML, the relevant parser
stores the information on color set, variable, and value
declarations. Figure 13 shows the UML diagram of
the classes used to store color set declarations.ColSet-
Def is the base class which all the other classes in-
herit from. Each of these classes implements a method
createXfuzzyType which uses the range, cardinality
and membership function to create a Xfuzzy type.

The color set declaration:
color Motor = with on | off (* R(0..1)
mfd(0),d(1) *); would be converted to XFL type

//XFL type xfz_Motor
type xfz_Motor:real (0.0 < 1.0){

on delta(0.0)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 110 Issue 2, Volume 4, February 2009

Figure 12: Converting Color set Declarations to XFL
types

off delta(1.0)
}

The color set declaration shows aMotor with two
states on or off. These are used for the name of the mem-
bership functions. The MFInfo (shown between ”(*....*)”)
shows the type R , range 0..1 and the list of membership
function FunctionClass and PointLsit . The equivalent XFL
type is shown with the type real the range and the member
ship functions. XFL uses the default cardinality in case
where it is not specified.

The Color Set Declaration Parseras shown in Fig-
ure 12 would separate the MFInfo from the color set decla-
ration and send it to the MFInfo parser. The MFInfo parser
would now retrieve all the addition information necessary
to create the XFL type.

4.3 Stage 3: Creating XFL Modules and
Rule Base

At this stage of the translation process it’s possible to iden-
tify the following elements:

• The complete Petri-net represented as Java objects:
Place, Transition Arc, and Declaration Node stored in
a data structure CpNet.

• A dictionary of color set, var and val declarations
from the declaration nodes in the coloured Petri-net.

• A dictionary of XFL types created from the color set
declarations.

Figure 13: UML Diagram of Classes Used to Store
Color Sets

Figure 14 shows the classes used to store the informa-
tion found in the XML file. All the objects (Arc, Transi-
tion, Place, andDeclaration Node) inherit from the base
classPetriObj. This class has two attributes; name and ob-
jId. Both PlaceandTransitionhave aHash tableof input
and output arc identifiers (Ids). These arc Ids are then used
to reference the detail information on anArc. A Page ,
through the composition relationship is shown to have at
least zero or more arcs, transitions, places and one declara-
tion node. ACpNethas several pages and one declaration
node.

4.3.1 Converting the CpNet to XFL Modules

XFL uses modules to specify system behavior. In CPNs the
enabling and firing of transitions determine how the sys-
tem behaves. To model the behavior of the CPN model in
XFL we must capture the representation of a transition as
an XFL module. Converting the entire CpNet structure to a
single XFL module is achieved by a series of steps shown
below.

• Convert each transition on a page into a XFL module.

• Combine all the modules created from transition on
the page into one XFL module.

• Combine all the modules created from pages into one
module.

The two statements below are the main propositions
on which the conversion of aCpNet to a XFL module is
based.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 111 Issue 2, Volume 4, February 2009

Figure 14: UML Class Diagram of Classes Used to Represent a Cp-net

Proposition 4.3.1 A place is mapped directly to a XFL
variable with its type being the XFL type created from the
color set of the place.

Proposition 4.3.2 A transition is modeled directly to a
XFL module with input and output being the input and out-
put places of the transition respectively.
The input and output arc expressions of the transition along
with their connecting places are used to create the an-
tecedent and consequence of rule for the module.

A naming convention for places and transitions in the
CPN model was used to provide additional information for
the conversion process. System wide variables are speci-
fied by placingI or IO before the name of the place. If
S is a place with the namei XXX , it would be a sys-
tem input. Places without these before their names will be
taken as intermediate variables. Transitions withI before
their name are ignored and will not be converted to XFL
modules. The rules below are used to eliminate redundant
and useless information from transitions before converting
them to modules.

Rule 4.3.1 If a place is input and output to a transition
and their input and output expression are the same then the
output place can be discarded.

Rule 4.3.2 If a module has an output variable, which is de-
clared as, system input then the module input should be dis-
carded. Similarly a module with an input variable, which
is declared as system output should also be discarded.

4.3.2 Converting Transitions to XFL Modules

Converting transitions to XFL modules is strictly based on
propositions 4.3.1 and 4.3.2.

Rule 4.3.3 An arca with expressione, where the color set
of the connecting place isc, and the name of the place is
pname,
is converted to the XFL expression ”pname is e”.
if e is declared asval e in the Cp-net model; Then create a
new membership functionmf for val e and insert it in the
XFL type created from the color set of the connecting place
and use ”pname is e” for the XFL expression.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 112 Issue 2, Volume 4, February 2009

1 Subject Transition to Rule 4.3.1
2 Create a new modulem with input and output

being the input and output places of the
transition

3 Each input arc expression represents an
antecedent for the rule (Use Rule 4.3.3)

4 Each output arc expression represents a
consequence of the rule (Use Rule 4.3.3)

5 Combine all the expressions obtained in 3, with
theand operator to form the antecedent of the
rule

6 Combine all the expressions obtained in 4, with
theand operator to form the consequence of the
rule

7 create the rule for the module
(if antecedent → consequence)using
the results from 5 and 6

8 Subject the new module to Rule 4.3.2

Algorithm 2: Converting Transitions to XFL Mod-
ules

4.3.3 Combining Modules

XFL allows modules to be combined in series and parallel.
This feature of XFL was used to merge modules created
from transitions to achieve a single functionally equivalent
XFL module of the CPN model in design/CPN. However
modules cannot be merged arbitrarily to achieve this,
therefore Algorithm 3 was developed to merge modules
and preserve the behavior of the CPN model.

Given a list of modulesml

1 Combine modules in series until no more serial
combinations can be made

2 Combine modules with similar outputs until no
more modules with similar outputs remain

3 Combine modules in parallel until one module
is left
Each time a combination is made in 1, 2 and 3,
remove the modules used up fromml and
append the new one created toml.

Algorithm 3: Combining Modules

The Rules 4.3.4 and 4.3.5 show how combine modules
in series and parallel. XFL provides constructs to achieve
this. Since XFL does not allow us to combine modules
with similar output in parallel. Rule 4.3.6 was developed to
combine modules with similar output.

Rule 4.3.4 If a modulem1 has outputo1 that is an input
to a modulem2 thenm1 andm2 can be linked in series to
form a new modulem3. System inputs or outputs should be
preserved. So ifo1 is a system input or output it should be
preserved inm3.

Rule 4.3.5 Modules with different outputs can be com-
bined in parallel, preserving system variables as with serial
combination.

Figure 15: Combing Modules with Similar Output

Rule 4.3.6 To combine modulesm1 to mn with the same
output variableo. Modulesm1 to mn are combined in par-
allel to from new modulemp, by renaming their common
output variable. A dummy moduledmod is created withn
inputs for the renamed output variables, and one outputo
the original output variable. The modulemp is then linked
in series withdmod to form the final module (see Figure 15).

Figure 16 shows the objects used to create Xfuzzy
modules.Submoduleis the base class for all modules. It
has a list of input and outputXFLModVars. TheXFLRMod-
ule represents a module created directly form a transition.
It has a list ofXFLRule’s, which has a antecedent and a con-
sequence. The antecedent and consequence are represented
using binary trees, with the operator as the root.XFLCom-
Modulerepresents modules that have been linked in series
or parallel. XFLSpecModulesupports modules connected
as shown in Figure 15.XFLSubModuleis used for mod-
ules created from substitution transitions.

4.3.4 Converting a Page to a Module

A page can be converted to an XFL module by combining
all the modules created from transitions, on the page in se-
ries and parallel as outlined in the conversion rules. For
the resulting XFL module to have the behavior as the CPN
model, it is not advised to combine modules created from

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 113 Issue 2, Volume 4, February 2009

Figure 16: UML Class Diagram of Objects used to store Modules

transitions in series and parallel in an arbitrarily manner,
therefore it’s useful to consider an hierarchical approach in
which a model is broken into smaller nets (subnets) that
are easy to analyze, followed by the combination of these
individual subnets as shown in Section 4.3.2 into single
modules calledsubnet modules. All the subnet modules are
combined using the rules in Section 4.3.2 to form a single
module for the page.

Only transitions with one input and one output place
can be in a subnet, this ensures that XFL modules created
from transitions in a subnet can be combined as shown in
Section 4.3.2 and the behavior of the CPN is still preserved.
It is on this basis that a single functionally equivalent XFL
module can be created for a page by combining the mod-
ules for each subnet on the page. Each transition is con-
verted to a XFL module with input and output being the
input and output places of the transition. The rule based for
the transition is created using the conditions for the tran-
sition to fire and the result of firing the transition. All the
modules are then combined in series and parallel to form
the main module for the system. Design/CPN has the abil-
ity to save CPN models as XML files. An XML file con-
tains information about the CPN model. Relevant informa-
tion can be extracted from a XML file by parsing it and
storing the information as an object as shown in Figure 17.
The result is a full XFL specification for the system that
was modeled in Design/CPN. Xfuzzy can now use this to
generate C, Java or VHDL code.

Figure 18 shows the snapshot of the software module
implemented using the conversion approach described in
this section.

Figure 17: UML Class Diagram of CPN Objects

5 Example of Application: Con-
troller of a Painting System

The system of Figure 19 to be controlled, is a conveyor that
takes parts for a robot to paint. The robot sweeps over the
part, before the part can move on. The sensor lamps must
be on for the conveyor to work. All actuators and lamps
should be off when the switch is off. When the “On” switch
is turned, the conveyor should start. It should run until PE1
indicates the presence of a part at the paint station. At this
point, the conveyor should turn off. The paint arm, which
is assumed to have started in its counter clockwise position,
should be moved to the clockwise position (CW), and then
back to the counter clockwise (CCW) position. While the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 114 Issue 2, Volume 4, February 2009

Figure 18: Snapshot of the software that converts CPN
models into XFL descriptions

arm moves, the paint should be spraying (represented by
the Red lamp being on). After a complete spray operation,
the Red lamp should be off. The green light should turn
on and stay on for two seconds, indicating the process is
complete. The conveyor should then turn on again. The
system should then receive another part. The CPN model of

Figure 19: Diagram of the painting system

the controller is given in Figure 20. The global declarations
used for the CPN model are (expressed in ML):

Color Switch = with on — off (*R(0..1) mfd(0),d(1)*);
Color Conveyer = with running | not running

(*R(0..1) mfd(0),d(1)*);
Color Photoeye = with partpres |

part not pres(*R(0..1) mfd(0),d(1)*);
Color ArmSensor = with armpres |

arm not pres(*R(0..1) mfd(0),d(1)*);
Color SensorLamp = Switch (*R(0..1) mfd(0),d(1)*);

Color Lamp = Switch timed (*R(0..1) mfd(0),d(1)*);

Figure 20: CPN model of the Paint controller

The CPN model of the Paint controller is stored as a
XML file which is the input for Petri-Fuzzy. Petri-Fuzzy
will then generate the equivalent XFL code ready to be used
by Xfuzzy. Appendix I presents a piece of the generated
XFL code of the painting controller, particularly the mem-
bership functions which are all elements of the file “Glob-
Dec.xfl”, normally used as a header file for the XFL code
of the controller.

6 Conclusion
In this paper, we have presented a preliminary study that
consists of combining Peri nets and fuzzy sets for discrete-
even controller design. Further work will extend this
method to the continuous part of hybrid control in gen-
eral. Our method is based on the design of a software
”bridge” between two efficient tools that are DesignCPN
and Xfuzzy, hence, providing a way for automatic genera-
tion of C, Java, and VHDL codes from Colored Petri Nets.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 115 Issue 2, Volume 4, February 2009

Our development is based on compiler techniques com-
monly used in code generation; which in this case are used
to develop a generator of transformation between Petri nets
and fuzzy sets for discrete-event control purposes. Other is-
sues such as concurrency, and approximation of continuous
systems using fuzzy Petri nets are under investigation. The
software module that was developed using methods pre-
sented in this paper is called ”Petri-Fuzzy” Software (Ap-
pendix II), and was written entirely in Java.

Appendix I: XFL Code of the Painting
System Controller

//XFL type xfz Conveyer
type xfz Conveyer:real (0.0<1.0)
not running delta(0.0)
running delta(1.0)

//XFL type xfz PhotoEye
type xfz PhotoEye:real (0.0<1.0)
part not pres delta(0.0)
part pres delta(1.0)

//XFL type xfz Lamp
type xfz Lamp:real (0.0<1.0)
on delta(1.0)
off delta(0.0)

//XFL type xfz ArmSensor
type xfz ArmSensor:real (0.0<1.0)
arm not pres delta(0.0)
arm pres delta(1.0)

//XFL type xfz SensorLamp
type xfz SensorLamp:real (0.0<1.0)
on delta(1.0)
off delta(0.0)

//XFL type xfz Switch
type xfz Switch:real (0.0<1.0)
on delta(1.0)
off delta(0.0)

#use “GlobDec.xfl”
T4(xfz Lamp ? GreenLamp , xfz Lamp !
GreenLamp out 1, xfz Conveyer ! Conveyer2)
rulebase

if (GreenLamp is on)→GreenLamp out 1 is off ,
Conveyer2 is running

T3(xfz Lamp ? GreenLamp, xfz Lamp ? RedLamp,
xfz ArmSensor ? CW ,
xfz Lamp ! GreenLamp out 2, xfz Lamp !
RedLamp out 2)

rulebase

if (Red Lamp is on & GreenLamp is off & CW is
arm pres)→RedLamp out 2 is off ,
GreenLamp out 2 is on

T2(xfz Lamp ? RedLamp, xfz ArmSensor ? CCW,
xfz PhotoEye ? id170 , xfzLamp ! RedLamp out 1)
rulebase

if (CCW is armpres & RedLamp is off & id170 is
part pres)→RedLamp out 1 is on

T1(xfz Switch ? Power , xfzConveyer ! Conveyer1,
xfz SensorLamp ! SL2, xfzSensorLamp ! SL1)
rulebase

if (Power is on)→Conveyer1 is running , SL2 is on
, SL1 is on

PE1(xfzConveyer ? Conveyer , xfzPhotoEye !
id170)
rulebase

if (Conveyer is running)→id170 is partpres

GreenLamp out DUMMY(xfz Lamp ?
GreenLamp out 1,
xfz Lamp ? GreenLamp out 2 ,
xfz Lamp ! GreenLamp out) rulebase

if (GreenLamp out 1 is on)→GreenLamp out is on

if (GreenLamp out 2 is on)→GreenLamp out is on

if (GreenLamp out 1 is off)→ GreenLamp out is
off

if (GreenLamp out 2 is off)→ GreenLamp out is
off

module15(xfzLamp ? GreenLamp,
xfz Lamp ? RedLamp, xfz ArmSensor ? CW ,
xfz Lamp ! GreenLamp out, xfz Lamp !
RedLamp out 2,
xfz Conveyer ! Conveyer2)
components
((T4(GreenLamp,GreenLamp out 1, Conveyer2)

T3(GreenLamp, RedLamp, CW,
GreenLamp out 2, RedLamp out 2)) ;
GreenLamp out DUMMY(Green Lamp out 1,
GreenLamp out 2,GreenLamp out))

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 116 Issue 2, Volume 4, February 2009

RedLamp out DUMMY(xfz Lamp ? RedLamp out 1,
xfz Lamp ? RedLamp out 2 ,
xfz Lamp ! RedLamp out)
rulebase
if (Red Lamp out 1 is on)→RedLamp out is on

if (Red Lamp out 2 is on)→RedLamp out is on

if (Red Lamp out 1 is off)→RedLamp out is off

if (Red Lamp out 2 is off)→RedLamp out is off

module17(xfzLamp ? GreenLamp, xfz Lamp ?
RedLamp, xfz ArmSensor ? CW,
xfz ArmSensor ? CCW,
xfz PhotoEye ? id170 , xfzLamp ! GreenLamp out,
xfz Lamp ! RedLamp out,
xfz Conveyer ! Conveyer2) components
((T2(RedLamp, CCW, id170,RedLamp out 1)

module15(GreenLamp, RedLamp,
CW,GreenLamp out,
RedLamp out 2, Conveyer2)) ;
RedLamp out DUMMY(Red Lamp out 1,
RedLamp out 2,RedLamp out))

ConveyerDUMMY(xfz Conveyer ? Conveyer1,
xfz Conveyer ? Conveyer2 , xfz Conveyer ! Con-
veyerout)
rulebase

if (Conveyer1 is not running)→ Conveyerout is
not running

if (Conveyer2 is not running)→ Conveyerout is
not running

if (Conveyer1 is running)→Conveyerout is running

if (Conveyer2 is running)→Conveyerout is running

module19(xfzLamp ? GreenLamp, xfz Lamp ?
RedLamp, xfz ArmSensor ? CW,
xfz ArmSensor ? CCW, xfzPhotoEye ? id170,
xfz Switch ? Power ,
xfz Lamp ! GreenLamp out, xfz Lamp ! RedLamp out,
xfz Conveyer ! Conveyerout,
xfz SensorLamp ! SL2, xfzSensorLamp ! SL1)
components
((T1(Power,Conveyer1, SL2, SL1)

module17(GreenLamp, RedLamp,

CW, CCW, id170,GreenLamp out,
RedLamp out, Conveyer2)) ;
ConveyerDUMMY(Conveyer1, Con-
veyer2,Conveyerout))

system(xfzLamp ? GreenLamp,
xfz Lamp ? RedLamp, xfz ArmSensor ? CW,
xfz ArmSensor ? CCW, xfzConveyer ? Conveyer,
xfz Switch ? Power ,
xfz Lamp ! GreenLamp out,
xfz Lamp ! RedLamp out,
xfz Conveyer ! Conveyerout,
xfz SensorLamp ! SL2,
xfz SensorLamp ! SL1)
components
(PE1(Conveyer,id170) ;
module19(GreenLamp, RedLamp, CW, CCW, id170,
Power,GreenLamp out, RedLamp out,
Conveyerout, SL2, SL1))

Appendix II: Petri-Fuzzy Software

Petri-Fuzzy should run normally on a system capable of
running Design/CPN 4.0.5 and Xfuzzy 2.1. Both Xfuzzy
and Design/CPN can be obtained free of charge from the
following web sites:

• http://www.daimi.au.dk/designCPN/

• http://www.imse.cnm.es/Xfuzzy/

Petri-Fuzzy is the property of the University of The West
Indies. Petri-Fuzzy is a free software. It can be redis-
tributed or modified under the terms of the GNU General
Public License as published by the Free Software Foun-
dation. Petri-Fuzzy is distributed in the hope that it will
be useful, but without any warranty, without even the im-
plied warranty of merchantability or fitness for a partic-
ular purpose. See the GNU General Public License for
more details. Petri-Fuzzy can be obtained by sending an
email request to the authors. For those you cannot ob-
tain Design/CPN directly, please contact the author at lu-
cien.ngalamou@sta.uwi.edu

References:

[1] B. Le Bail,H. Alla, and R. DavidHybrid Petri Ntes,
Proceedings of the Europena Control Conference, pp.
1472 - 1477, 1991, Grenoble, France.

[2] T. Cao and A. C. Sanderson,Intelligent Task Planning
using Fuzzy Petri Nets, World Scientific.

[3] C. G. Cassandra and S. Lafortune,Indtroduction to
Discrete Event Systems, Kluwer Academic.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 117 Issue 2, Volume 4, February 2009

[4] A. M. Gll and P. Varaiya,Hybrid Dynamical Systems,
In Proceeedings of the 28th Conference on Descision
and Control, 2708-2712, 1989, Tampa, Florida

[5] K. Jensen,Coloured Petri Nets, Vol. 1, Springer Ver-
lag, 1997.

[6] K. Jensen,Coloured Petri Nets, Vol. 3, Springer Ver-
lag, 1997.

[7] X. Li, W. Yu, and F. Lara-Rosano,Dynamic Knowl-
edge Inference and Learning under Adaptive Fuzzy
Petri Net Framework, IEEE Trans. On Systems, Man
and Cybernetica, Vol.30, No.4, November 2000, 442-
450.

[8] T. Murata, Petri Nets: Properties, Analysis and Ap-
plications, Proceedings of the IEEE, 77(4): 514-580,
1991.

[9] S. Petterson and B. Lennartson,Hybrid Modelling fo-
cused on Hybrid Petri Nets, In Proceedings of the 2nd
European Workshop on Real-time and Hybrid Sys-
tems, Grenoble, France, 1995.

[10] S. Schof, M. Sonnenschein, and R. Weiting,Efficient
Simulation of THOR Nets, In Proceedings of the 16th
International Conference On Application of the Theory
of Petri Nets, ed. G. De. Michelis and D. Diaz, volume
935 of Lecture Notes in Computer Science, 412-431,
Turin, Italy, 1995.

[11] H.B. Verbuggen (editor),Fuzzy Logic Control: Ad-
vances in Applications, 3-33, World Scientific.

[12] R. Weiting and M. Sonnenschein,Extended High-
level Petri Nets for Modelling Hybrid Systems. In Pro-
ceedings of the IMACS Symposium on Systems Anal-
ysis and Simulation, Ed. A. Sydow, 259-262, Berling,
Germany, 1995.

[13] DesignCPN,http://www.diami.auu.dk/PetriNets/Tools

[14] XFuzzy,http://www.imse.cnm.es/Xfuzzy

[15] SML, Standard ML:
http://wiki.daimi.au.dk/cpntools/standardml.wiki.

[16] Meta Software Corporation:
http://metasoftware.com.

[17] Coloured Petri Ntes Group,
http://www.daimi.au.dk/CPnets.

[18] H.B. Verbruggen (editor),Fuzzy Logic Control: Ad-
vances in Applications, pp. 3-33, World Scientific.

[19] D. R. Lopez, S. Sanchez-Solano, and A. Barriga,XFL:
a fuzzy logic systems language, Proc. sixth IEEE In-
ternational Conference on Fuzzy Systems, vol. 3, pp.
1585-1591, Barcelona, 1997.

[20] Java XML API, emphhttp://sax.java.com.

[21] Java Compiler,https://javacc.dev.java.net.

[22] R. Lafore, Data Structures and Alagortithms in Java,
Waite Group Press, 1998

[23] CPN ML Grammar,
http://wiki.daimi.au.dk/cpntools/cpnml grammar.wiki.

[24] Extended Backus-Naur Form,
www.obix.lu/docs/reference/ebnf/ebnf.htm.

[25] http://www.engr.uky.edu/� holloway

[26] A. Barriga, S. Sanchez-Solano, C. J. Jimenez, D.
Galan, and D. R. Lopez,Automatic Synthesis of Fuzzy
Logic Controllers, Mathware & Soft Computing, vol.
III, n. 3, pp. 425-434. Sept. 1996.

[27] D. R. Lopez, S.;Sanchez-Solano, and A. Barriga,
Xfuzzy: A Design Environment for Fuzzy Systems, Sev-
enth IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 98), pp. 1060-1065, Anchorage - Alaska,
May 4-9, 1998.

[28] D. Colins and E. Lane,Programmable Controllers,
McGraw Hill, 1995.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lucien Ngalamou, Leary Myers

ISSN: 1991-8763 118 Issue 2, Volume 4, February 2009

