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Abstract: - An Adaptive Quantum-based Multi-criterion Evolutionary Algorithm called AQMEA is a new paradigm of 

decision making for complex systems. Quantum-based algorithms utilize a new representation for the smallest unit of 

information, called a Q-bit, for the probabilistic representation that is based on the concept of qubits. Evolutionary 

computing with Q-bit chromosomes has a better characteristic of population diversity than other representations, since 

it can represent linear superposition of states probabilistically. Moreover, we consider the three-criterion problem of 

task assignment.  
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1   Introduction 
 

The foundations of infinite dimensional ordered spaces 

create the base for decision making among several 

criteria. They were statued at the turn of the century XIX 

and XX by Georg Cantor and Felix Hausdorff. In 

complex decision situation, some goals, criteria or 

players are in conflict. In fact, John von Neumann and 

Oskar Morgenstern noticed that an optimization 

problems in the context of a social exchange economy 

are “a mixture of several conflicting problems” that are 

“nowhere dealt with in classical mathematics” in their 

Theory of Games and Economic Behavior in 1944 [1]. 

     Nowadays, there are several artificial intelligence 

techniques that can be applied to solve some multi-

criterion optimization problems [6]. Genetic algorithms, 

artificial neural networks, fuzzy logic algorithms, 

simulated annealing, tabu search, swarm approach and 

artificial immunological systems are crucial paradigms 

for a computer decision making [27].  

     On the other hand, a quantum-inspired algorithm is 

relatively new paradigm that can be applied for computer 

decision aid. Benioff considered a computer as 

a physical system and constructed a microscopic 

quantum mechanical Hamiltonian model of computer as 

represented by Turing machine [7]. It should be stressed 

that the Turing machine is a quite different approach for 

development of data processing than the von Neumann’s 

paradigm. Feynman studied simulation models of 

physics for computer implementations what was the 

milestone to build quantum algorithms [13]. 

     David Deutsch established the principles of quantum 

theory, and verified the Church-Turing principle to the 

universal quantum computer that is based on 

a theoretical model named the quantum Turing machine 

[8]. Moreover, he introduced some quantum 

computational networks. Quantum computers accelerate 

the efficiency of calculations and do not allow 

computing functions that are not theoretically computable 

by classical computers due to the Church-Turing thesis: 

“Every function which would naturally be regarded as 

computable can be computed by the universal Turing 

machine” [9]. 

     Shor proposed algorithms for quantum computation 

related to discrete logarithms and factoring [24]. In the 

factoring problem, it is given a composite number N like 

4, 6, 8, 9, 10, 12, and we want to find an integer p, strictly 

between 1 and N, that divides N. Shor's algorithm 

consists of a reduction of the factoring problem to the 

problem of order-finding what can be done on a classical 

computer. Then, a quantum algorithm is used to solve 

the order-finding problem. This approach is 

exponentially faster than the most efficient known 

classical factoring algorithm, and what is more, it can be 

applied to solve the widely used public-key 

cryptography method RSA that is based on the 

assumption that factoring large numbers is 

computationally infeasible for classical computers 

because no algorithm is known that can factor in 

polynomial time. However, Shor's algorithm shows that 

factoring could be efficient on a quantum computer. It 

was also a motivator for the development quantum 

computers and quantum algorithms. 

     In this paper, we consider a multi-criterion problem 

of task assignment, where a workload of a bottleneck 

computer and the cost of system are minimized. 

Furthermore, there are constraints for the performance of 

the distributed systems and the probability that all tasks 

meet their deadlines.  
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2   Quantum-based Algorithms 
     Vandersypen et. al., described an experimental 

implementation of Shor's quantum factoring algorithm 

using nuclear magnetic resonance [23]. They concluded 

that quantum computers, could factor integers in only 

polynomial time. Moreover, they reported an 

implementation of the simplest instance of Shor's 

algorithm: factorization of N = 15 (whose prime factors 

are 3 and 5) by applying seven spin-1/2 nuclei in 

a molecule as quantum bits, which can be manipulated 

with room temperature liquid-state nuclear magnetic 

resonance techniques. This method of using nuclei to 

store quantum information is in principle scalable to 

systems containing many quantum bits. They 

demonstrated experimental and theoretical techniques 

for precise control and modeling of complex quantum 

computers and presented a simple, parameter-free, 

predictive model of de-coherence effects in system. 

     Hey described rules of quantum computing by 

development quantum phenomena, such a entanglement, 

superposition, and a quantum bit, to carry out operations 

on data. The basic principle is that these properties can 

be applied to represent data and execute instructions on 

these data [18].  

     Han and Kim introduced a genetic quantum algorithm 

and its application to combinatorial optimization 

problem [14]. They proposed a novel evolutionary 

algorithm, called a quantum-inspired evolutionary 

algorithm (QEA) characterized by a Q-bit as 

a probabilistic representation of the smallest unit of 

information. A Q-bit chromosome is defined by a string 

of Q-bits and it represents a linear superposition of 

binary states in search space probabilistically. 

     The Q-bit individual has higher population diversity 

than other known representations. A Q-gate is a variation 

operator that drives the chromosomes toward better 

solutions and toward a single state. Initially, there are 

various individuals represented probabilistically because 

a Q-bit chromosome represents the linear superposition 

of all possible states with the same probability. As the 

probability of each qubit converges either to 1 or 0 by 

the Q-gate, the Q-chromosome approaches to a single 

state and the diversity property vanishes progressively. 

An algorithm can treat the stability between exploration 

and exploitation.  

     Even though QEA is based on the idea of quantum 

computing, it is not a quantum algorithm, but a classical 

evolutionary algorithm. To demonstrate its numerical 

performance, experiments on the knapsack problem have 

been carried out. A quantum-inspired algorithm executed 

well devoid of premature convergence. 

     Then, Han, et. al., introduced a parallel quantum-

inspired genetic algorithm for combinatorial 

optimization problems [15]. A genetic algorithm 

operates on the population of chromosomes and that set 

of Q-individuals can be divided on sub-populations 

performed by parallel set of quantum processors.  

     Han and Kim presented some results related to setting 

the parameters of quantum-inspired evolutionary 

algorithm for practical applications for a class of 

combinatorial optimization [16, 17]. That algorithm can 

be developed for the face verification [19] and for 

solving the Travelling Salesman Problem [26]. 

     Recently, QMEA quantum-inspired multi-objective 

evolutionary algorithm has been proposed for 

multiobjective 0/1 knapsack problems [21]. 

Experimental results pertaining to the multi-objective 

0/1 knapsack problem show that QMEA finds solutions 

close to the Pareto-optimal front while maintaining 

a better spread of non-dominated set. Another version of 

QMEA has been applied for a image segmentation [25]. 

Balicki proposed the other construction of QMEA for 

task assignment in computer networks [2].  

     In this paper, it is proposed an adaptive multi-

objective evolutionary algorithm based on quantum 

computing, which is named an adaptive quantum-based 

multi-objective evolutionary algorithm (AQMEA). In 

the previous papers, quantum-inspired multi-objective 

evolutionary algorithm (QMEA) was proved to calculate 

better outcomes than conventional genetic algorithms.  

     To improve the quality of the non-dominated set as 

well as the diversity of population in multi-objective 

problems, an algorithm is proposed by employing the 

concept and principles of quantum computing such as 

uncertainty, superposition, and interference. We 

introduce the AQMEA to improve proximity to the 

Pareto-optimal front, preserving diversity intact by 

employing advantages of quantum-inspired evolutionary 

algorithm. The improving proximity means to find the 

better solutions which are evaluated as good individuals 

by fitness function.  

     In the multi-objective evolutionary algorithms are 

applied a strong elitist method with mechanisms to 

maintain diversity efficiently using non-dominated 

sorting and crowding distance assignment [22]. It is even 

more powerful if the elitism is further strengthened and 

the solutions are spread out by quantum mechanism. 

Multiple observations of Q-bit individuals allow a local 

search in the area of the non-dominated solutions.  

     Also, maintaining best Q-bit individuals in every 

generation can avoid the possibility of losing high 

quality individuals. Furthermore to deal with quantum 

computing concepts, the comparison mechanism is 

presented between the best group and the others. 

Convergence and preservation of diversity being the key 

issues under scrutiny, the proposed approach is expected 

to help improve the performance of AQMEA. 
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3   Rules of Adaptive Quantum-based 

Multiobjective Evolutionary Algorithm 
An adaptive quantum-based multiobjective algorithm 

AQMEA utilizes a new representation, called a Q-bit, 

for the probabilistic representation that is based on the 

concept of qubits [20]. A qubit is a two-layer quantum 

system that can be modeled as the Hilbert space H2 with 

the given base  1,0B . The Bloch sphere is 

a geometrical demonstration of the state space for a qubit 

and it may also refer to the space of an n-level quantum 

system. 

     A Hilbert space H is a real or complex inner product 

space that is also a complete metric space with respect to 

the distance function induced by the inner product. It 

means that H is a complex vector space on which there is 

an inner product associating a complex number to each 

pair of elements of H that satisfies the properties of the 

complex conjugate, linearity, and positive definite. 

A real inner product space can be defined in the same 

way, apart from that H is a real vector space and the 

inner product takes real values. 

     A qubit may be in the “1” binary state, in the “0” 

state, or in any superposition of the two [10]. The state 

xm of the mth qubit in the Q-chromosome can be 

represented, as follow: 

,00 mmmQ  
  

 (1) 

where  

αm and βm - complex numbers that specify the probability 

amplitudes of the corresponding states, 

 - a superposition operation, 

m – the number of the gene in the chromosome, Mm ,1 . 

    Value 
2

m  
is interpreted as the probability that we 

observe the state “0” . Similarly, 
2

m  is the probability 

that state “1” is observed. A qubit may be characterized 

by the pair (αm, βm). There is, as below [11]: 

,1
22
 mm 

      
 (2) 

     Let it be considered a four-bit register of a classical 

computer with 16 different four-bit strings 0000, 0001, 

0010, …, 1110, 1111. If it is a deterministic computer, 

then a four-bit register is in one of those states with 

probability 1.  

     However, if it is a probabilistic computer, then there 

is a possibility of it being in any one of a number of 

different states. We can describe this probabilistic state 

by sixteen probabilities p0, p1,…, pE, pF . It means that 

a probabilistic computer is in one point from all possible 

states. There is a constraint that sum of these 

probabilities is equal to 1. 

     The state of a four-qubit quantum computer is 

described by a sixteen-dimensional vector (α0, α1,…, 

αF ), called a wave-function. However, the sum of the 

squares of the coefficient magnitudes, |α0|
2
 + |α1|

2
 + 

... + |αE|
2
, must be equal to one. Moreover, the 

coefficients are complex numbers.  

     Since states are represented by complex wave-

functions, two states being added together will undergo 

interference. This is a main difference between quantum 

computing and probabilistic classical computing [10]. 

     If we measure the four qubits, then we observe 

a four-bit string. The probability of measuring a string is 

equal the squared magnitude of that string's coefficients. 

Probability that we read state as 0000 is |α0|
2
, probability 

that we read state as 0001 is |α1|
2
, and probability that we 

read state as 1111 is |αF|
2
. Thus a measurement of the 

quantum state with some complex coefficients (α0, α1,…, 

αF) gives the classical probability distribution (|α0|
2
, 

|α1|
2
,..., |αF|

2
). We say that the quantum state "collapses" 

to a classical state. 

     In linear algebra, a basis plays important role and it is 

a set of vectors that, in a linear combination, can 

represent every vector in a given vector space, and such 

that no element of the set can be represented as a linear 

combination of the others. A basis is a linearly 

independent spanning tree. A sixteen-dimensional vector 

can be specified in many different ways, depending on 

a basis chosen for the space. The basis of four-bit strings 

is known as the computational basis, and it is suitable.  

However, the other bases of unit-length, orthogonal 

vectors can also be applied [11].  

     Bra-ket (Dirac) notation is used for describing 

quantum states by development of angle brackets and 

vertical bars. Moreover, it is less common used in 

mathematics because the inner product (or dot product) 

of two states can be denoted by a bracket, 
 

consisting of a left part,  , called the bra, and a right 

part,  , called the ket [10].  

     Dirac notation is often used to make the choice of 

basis. For example, the state (α0, α1,…, αF) in the 

computational basis can be written as 

11111110...001000010000 210 FE   . 

We apply the notation )0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0(0001  .  

The computational basis for a single qubit (two 

dimensions) is 0 = (1,0) and 1 = (0,1). 

     An alternative common basis consists of the 

eigenvectors of the Pauli-x operator:
 

 )1,1
2

1


 

and  )1,1
2

1
 . 
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     So, for a classical state of n bits, a 2
n
-dimensional 

probability distribution requires an exponential number 

of real numbers. We can think of the system as being 

one of the n-bit strings, but we do not know which one.  

     However, in quantum computing all 2
n
 complex 

coefficients need to be kept track of to see how the 

quantum computer calculates. For example, a 32-qubit 

quantum computer has a state described by 2
32

 complex 

numbers. 

 
 

4   Chromosome representation 
The chromosome can be represented by the chromosome 

matrix, as follows [14]: 











Mm

Mm
Q





......

......

1

1

         
 
(3) 

     Moreover, the procedure of random selection of 

decision values is involved with a chromosome matrix. 

If the decision variable xm is characterized by (αm, βm), 

then is equal to 0 with the probability 
2

m and it is 

equal to 1 with 
2

m  [18]. 

     AQMEA is working on a digital computer and 

collapsing into a single state does not occur in AQMEA. 

So, we simulate the process of observation.  

     A standard four-bit state and a quantum four-qubit 

state are sixteen-dimensional elements that are processed 

differently for standard or quantum computation.  

     In randomized computation, the application of 

stochastic matrices preserves that the sum of 

probabilities has to be equal to one. On the other hand, in 

quantum computation, allowed operations are unitary 

matrices. Those matrices are effectively rotations and 

preserve that the sum of the squares is equal to one [18].  

     A unitary matrix is an n by n complex matrix Q 

satisfying the condition [18]: 

Q* Q= Q Q* = I
         

 (4) 

  

where 

Q* - the conjugate transpose (the Hermitian adjoint) of 

U, 

I - the identity matrix in n dimensions. 

     What sort of unitaries can be applied depends on the 

quantum devices.   

     Quantum computations are reversible because they 

are probabilistic combinations of unitaries. So, quantum 

computation generalize classical computation.  

     Upon termination of the algorithm, the result needs to 

be read off. In the case of a classical computer, we 

sample from the probability distribution on the four-bit 

register to obtain one definite four-bit string, e.g. 0100.  

     In quantum computation, we measure the four-qubit 

state, which is equivalent to collapsing the quantum state 

down to a classical distribution with the coefficients 

being the squared magnitudes of the coefficients for the 

quantum state. It is followed by sampling from that 

distribution. This destroys the original quantum state.  

     Many algorithms only give the correct answer with 

a certain probability; however by repeatedly initializing, 

running and measuring the quantum computer, the 

probability of getting the correct answer can be 

increased. 

     The binary chromosome x=(x1,…,xm,…,xM)  can be 

measured with the probability p(x) calculated, as 

follows: 

),()(
1

m

M

m

xpxp 


  
 

(5) 

where 










1

0
)(

2

2

mm

mm
m

xfor

xfor
xp




 

 

     Let us consider the chromosome, as below: 






















2

3

2

1

7

3

5

2

3

2

2

1

2

1

7

2

5

1

3

1

Q  

     It means that the binary chromosome (0,0,0,0,0) can 

be observed with the probability 1/210, and the 

chromosome (0,0,0,0,1) – 1/70, and so on.  

     Evolutionary computing with Q-bit representation has 

a better characteristic of population diversity than other 

representations, since it can represent linear 

superposition of states probabilistically. What is more, 

the search space The search space Ω can be generated by 

one Q-bit chromosome (however Ω consists of  2
M

  

elements). 

     There is, as below: 

.1)(



x

xp  (6) 

     AQMEA is a probabilistic algorithm similar to other 

evolutionary algorithms. However, it maintains 

a population of Q-chromosomes. Although, the entire 

population is represented by one Q-chromosome, we 

consider the population of ζ Q-chromosomes because of 

destroying the measured values. In fact, only one value 

of Q-chromosome can be measured and the others are 

supposed to be missed. We model this situation by the ζ 

Q-chromosomes based on complex numbers αm and βm , 

and formulas (2), (3). 

     An initial population can be generated by random 

numbers αm[-1;1] and calculation βm from (2). After 
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formulation the first Q-chromosome, the next one is 

formed until the whole population is created.  

     Then, we observe states of Q-chromosomes. A values 

of gene in the generated x-chromosome are selected 

either 0 or 1 for each bit using the probabilities from the 

related Q-chromosome. In a quantum computer, during 

the observing a quantum state, it collapses to a single 

state. However, collapsing into a single state does not 

occur in QEA, since it is working on a classical 

computer, not a quantum computer.  

     We observe the Q-chromosome from the population 

Θ(t), where t is the number of population (t≤Tmax). We 

can observe the same chromosome λ times. The 

parameter of sampling should be significantly smaller 

than size of the search space 2
M

, of course. In results, 

λ x-chromosomes are produced from one 

Q-chromosome. If the number of Q-individuals is equal 

to ζ, the size of a binary population L = λ ζ.  

     Afterwards, we evaluate the fitness for each binary 

chromosome by using the ranking procedure [2]. We 

determine non-dominated solutions from the current 

population and copy them to the archive. 

     Quantum approach for implementation of genetic 

algorithms has several advantages that are related to the 

previous applications. Integer factorization is 

computationally non-admissible by a classical computer 

for large integers that are the product of only a few 

prime numbers. On the other hand, a quantum computer 

could efficiently solve this problem using Shor's 

algorithm to find its factors. This ability would allow to 

"crack" many of the cryptographic systems, because 

there are a polynomial time algorithm for solving the 

problem. In particular, most of the public key ciphers are 

based on the difficulty of factoring integers or the related 

discrete logarithm problem, e.g. RSA. These are used to 

protect secure Web pages or encrypted email. It is 

a major result for electronic privacy and security. The 

approach to increase the security of an algorithm like 

RSA rely on increasing the key size to such amount that 

an enemy does not have a technology to build and use 

a powerful enough q-computer. However, it is possible 

to obtain the powerful quantum technology in the next 

decade. 

     More advanced approach is base on implementation 

quantum cryptography. There are some digital signature 

schemes that may be secured against quantum 

computers, e.g. Lamport signatures [18]. 

     Quantum algorithms give not only polynomial 

speedup over the classical procedures, including the 

simulation of quantum physical processes from 

chemistry and solid state physics, the approximation of 

Jones polynomials, and solving Pell’s equation [17]. For 

some questions, quantum algorithms give a polynomial 

speedup. An example is quantum database search that 

can be solved by Grover’s algorithm using quadratically 

fewer queries to the database than by standard 

computers. The plus is provable. Several other examples 

of provable quantum speedups for query problems are 

the finding collisions in two-to-one functions and 

evaluating NAND trees [26]. 

 

 

 

5   Genetic operations 
In Adaptive Quantum-based Multi-objective Algorithm 

AQMEA, there are two populations. The first one is 

a Q-population Θ that consists on ζ Q-individuals, and 

the second one is a x-population P that consists on 

L individuals. Moreover, each Q-chromosome generates 

λ x-chromosomes, randomly. It means that the quantum 

chromosome can be characterized by the selection 

probability ps(Qi), as follows: 





,1,
)(

)(

)(

)(

1









i

xf

xf

Qp

tPx

ij

j

ij

i

s

ij

 

(7) 

where 

Q
i
 – the ith quantum chromosome from the current Q-

population Θ(t),  

x
ij
 – the jth binary chromosome determined randomly 

from the ith quantum chromosome; x
ij
 belongs to the 

current x-population P(t). 

     We can prove, as follows: 

1)(
1






i

i

s Qp  
(8) 

     A quantum crossover is based on the cross-overing of 

two matrixes given by formula (3). Each of matrixes is 

supposed to represent the Q-individual selected from the 

current quantum population with the probability ps.  

     A short overview of classical evolutionary algorithms 

for multi-objective optimization problems is submitted 

in [3, 4]. The name “adaptive evolutionary algorithm” 

for evolutionary algorithms is related to the changing of 

some parameters as a crossover probability, a mutation 

rate, a population size, and the others during the 

searching [5].  

     For considered algorithm, the crossover probability is 

decreased due to the number of new generations, as 

follows: 

max/Tt

c ep


  (9) 

where e denotes the Euler constant. 

     Figure 1 shows a scheme of the adaptive quantum-

based multi-criterion evolutionary algorithm AQMEA.     

We randomly generate ζ Q-chromosomes for the 

quantum population Θ(0), where ζ ≤ 10. Because the 
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quantum algorithm is simulated on the classical von 

Neumann’s computer, the structure of Q-chromosome is 

determined by (3) subject to (2). An initial population 

Θ(0) can be generated by random numbers αm[-1;1] 

and calculation βm from (2).  

     Then, we produce an initial binary population P(0) 

that consists od λ x-chromosomes generated from each 

quantum-chromosome. If the gene xm is characterized by 

(αm, βm), then it is equal to 0 with the probability 
2

m

and it is equal to 1 with 
2

m . 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An adaptive quantum-based multi-criteria 

 evolutionary algorithm AQMEA 

 

     The binary search space consists on  2
M 

 elements that 

are represented by x-chromosomes.  If x is admissible, 

then the fitness function value is estimated, as below: 

,1)()( maxmax  Pxrrxf
                   (10) 

where  

r(x) – the rank of an admissible solution,
 max)(1 rxr  ,

 
Pmax – the maximal value of the penalty function defined 

for non-admissible solutions. 

     In the quantum two-weight tournament selection (Fig. 

1, line 14), the roulette rule is carried out twice due to 

ps(Q
i
) for each Q

i
 from the current quantum population. 

If two potential Q-parents (a, b) are selected, we observe 

a Q-parent λ times and produce λ binary chromosomes. 

Then, we determine N(a) - the set of non-dominated 

solutions from binary chromosomes generated for the 

quantum individual a. Similarly, we obtain N(b). There 

is possible that one solution is included to the N(a) or 

N(b). In fact, it could be for the superior solution that 

dominates the others from the temporary set.   

     Afterwards, individuals from N(a) and N(b) are 

compared due to the Pareto relationship of domination. 

The dominated individuals are eliminated and N(a,b) 

- the new non-dominated Pareto solution set is created. If 

at least one solution from N(a) belongs to N(a,b), then 

the quantum chromosome a is accepted. The same rule is 

applied for the selection for cross-overing the Q-

chromosome b. 

     If potential quantum parents a, b generate binary 

solutions that are non-admissible, then the alternative 

with the corresponding smaller penalty is selected. Then, 

the random selection is repeated. 

     The fitness sharing technique can be substituted by 

the adaptive changing of main parameters and the 

generation of binary solution by observing quantum 

individuals. The quality of attained solutions increases in 

optimization problems with one criterion, if the 

crossover probability and the mutation rate are changed 

in an adaptive way.  

     The crossover point is randomly chosen for the 

quantum chromosome in the Q-crossover operator (Fig. 

1, line 15). The crossover point is selected between two 

columns of the matrix (3) and separates it on two sub-

matrixes. These sub-matrixes are exchanged with 

corresponded sub-matrixes from the other quantum 

chromosome. It is worth to notice that crossover is 

carried out on quantum chromosomes instead of binary 

chromosomes as at classical genetic algorithm.  

     The crossover probability is equal to 0.9 at the initial 

population and almost each pair of potential parents is 

obligatory taken for the crossover procedure.     

A crossover operation supports the finding of a high-

quality solution area in the search space. It is important 

in the early search stage, especially. If the number of 

generation increases, the crossover probability decreases. 

Some search areas with the high quality solutions are 

identified after several crossover operations. That is 

why, value pc decreases to 0.5065, if t =100 for 

1. BEGIN 
2. t:=0, t – the number of population  

3. set ζ  the size of Q-population Θ, L size of binary 

population P,  L= λ ζ, for the given sampling 

parameter λ 

4. pm:=1/(M ζ), M – the length of x 

5. generate an initial population Θ(0) and  P(0),  

6. calculate non-dominated ranks r(x) and fitness 

)(),( txxf P  

7. finish:=FALSE 

8. WHILE NOT finish DO 

9.     BEGIN /* new populations Θ and  P */ 

10.   t:= t+1,  :)(,:)( tt ΘP  

11.   calculate the selection probabilities ),(xps
 )1(  tPx  

by (6) 

12.   FOR ζ /2 DO 

13.   BEGIN /* reproduction cycle */ 

14.       2WT-selection of a potential parent pair {a,b} 

from Θ(t-1)  

15.       Q-crossover of a parent pair {a,b} with the 

  adaptive crossover rate pc, 1.0: max/


 Tt

c ep  

16.       Q-mutation of an offspring pair {a',b'} with the 

  adaptive mutation rate, 
max

:
MT

t
pm


  

17.       Θ (t):= Θ(t){a',b'} 

18.    END 

19.    generate P(t) by observing Θ(t) λ times 

20.    calculate ranks r(x) and fitness )(),( txxf P  

21.    IF (P(t) converges OR tTmax) THEN 

finish:=TRUE 

22.    END 

23. END 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jerzy Balicki

ISSN: 1991-8763 608 Issue 12, Volume 4, December 2009



maximum number of population Tmax=200. The final 

smallest value pc is 0.2679. 

     In Q-mutation (Fig. 1, line 16), the random swap of 

the column from matrix (3) by another one is applied. If 

the gene 









m

m




 is randomly taken for mutation, the new 

value αm is randomly taken from the period [-1; 1]. Then, 

the complementary value βm is calculated from (2). 

A mutation rate increases according to the progress of 

the generation number. 

     To improve the quality of solution, we propose the 

development of the negative selection algorithm (NSA) 

from an immune systems. The immune system can be 

seen as a distributed adaptive system. The negative 

selection algorithm is based on the discrimination 

principle that is used to know what is a part of the 

immune system is.  

   An antigen is a molecule that stimulates a response 

against trespassers. The term originated from the notion 

that they can stimulate antibody generation. Moreover, 

the immune system consists of some viruses as well as 

bacteria. An antibody (an immunoglobulin) is a large 

Y- shaped protein used to identify and neutralize foreign 

objects like bacteria and viruses. The antibody 

recognizes a specific target. The negative selection can 

be used to manage constraints in an evolutionary 

algorithm by isolating the contemporary population in 

two groups. Feasible solutions called “antigens” create 

the first cluster, and the second cluster of individuals 

consists of “antibodies” – infeasible solutions.  

   We assume the initial fitness for antibodies is equal to 

zero. Then, a randomly chosen antigen G ¯ is compared 

to the selected antibodies. After that, the distance S 

between G ¯ and the antibody B ¯ is calculated due to the 

amount of similarity at the genotype level. The measure 

of genotype similarity between the antigen and the 

antibody depends on their representation. This 

assessment of similarity for the integer version is, as 

follows [3]: 

,),(
1




 
M

m

mm BGBGS  (11) 

where  

;,1,position at antibody   theof value

,,1,position at antigen   theof value

solution,  theoflength    the

MmmB

MmmG

M

m

m









  

   The negative selection can be implemented by 

an external genetic algorithm to the AQMEA. In that 

approach, infeasible solutions that are similar to feasible 

ones are preferred in the current population. Although, 

almost all the random choices are based on the uniform 

distribution, the pressure is directed to improve the 

fitness of appropriate infeasible solutions. 

6   Convergence of AQMEA 
     Let the Pareto points {P1, P2,..., PU} be given for the 

considered instance of the optimization problem with N 

criteria, and let points {A1, A2,..., AW} be produced by an 

algorithm. The level of convergence to the Pareto front 

is calculated due to the Euclid distance, as follows: 

  
  


W

w

N

n

wnun

Uu

APS
1

2

1 ,1

.min                  (12) 

     An average level S  is calculated for several runs of 

the evolutionary algorithm.  

     As reported in [3], the best outcomes were obtained 

for some task assignment problems by the AMEA+. This 

algorithm gives better results than the previous AMEA. 

After 200 generations, an average level of Pareto set 

obtaining is 1.8% for the AMEA+, 3.4% for the AMEA. 

30 test preliminary populations were prepared, and each 

algorithm starts 30 times from these populations. For 

integer constrained coding of chromosomes, there are 12 

decision variables and the search space consists of 25 

600 solutions.  

     For the other instance with 15 tasks, 4 nodes, and 5 

computer sorts there are 80 binary decision variables. An 

average level of convergence to the Pareto set is 16.7% 

for the AMEA+ and 18.4% for the AMEA. A maximal 

level is 28.5% for the AMEA+ and 29.6% for the 

AMEA. For this instance the average number of optimal 

solutions is 19.5% for AMEA+ and 21.1% for AMEA. 

     An average level of convergence to the Pareto set, an 

maximal level, and the average number of optimal 

solutions become worse, when the number of task, 

number of nodes, and number of computer types 

increase. An average level is 34.6% for the AMEA+ 

versus 35,7% for the AMEA, if the instance includes 50 

tasks, 4 nodes, 5 computer types and also 220 binary 

decision variables.  

     It is worth to mention that those calculations have 

been carried out by a classic computer, but the expected 

results can be obtained for quantum computers. Consider 

a problem of a password cracker. In this question there is 

the only way to solve it by guessing answers repeatedly 

and check them. Moreover, there are some possible 

answers to check, and also every possible answer takes 

the same amount of time to check. Finally, there are no 

clues about which answers might be better: generating 

possibilities randomly is just as good as checking them 

in some special order [10]. In a password cracker 

problem, there are attempts to guess the password for an 

encrypted file. We assume that the password has 

a maximum possible length. 

     For such problems, the time for a quantum computer 

to solve this is proportional to the square root of n 

(number of possible answers about password). That can 

be a very large speedup, reducing a calculation time 
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from months to milliseconds. It can be used to attack 

symmetric ciphers such as Triple DES and AES by 

attempting to guess the secret key [11].   

     Grover's algorithm can also be used to obtain 

a quadratic speed-up over a brute-force search for a class 

of problems known as NP-complete [10]. Since 

chemistry and nanotechnology rely on understanding 

quantum systems, and such systems are impossible to 

simulate in an efficient manner classically, many believe 

quantum simulation will be one of the most important 

applications of quantum computing [11].   

 

 

 

7.   Results for benchmark problem  
To test the ability of the AQMEA, we consider a multi-

criterion optimization problem for task assignment in 

a distributed computer system, where three criteria are 

optimized. In the formulated task assignment problem as 

a multi-criterion question, both Zmax – a workload of 

a bottleneck computer and C – the cost of system are 

minimized; in contrast, R – a reliability of the distributed 

system is maximized. Moreover, there are constraints for 

the performance of the distributed systems and the 

probability that all tasks meet their deadlines. In 

addition, constraints related to memory limits and 

computer locations are imposed on the feasible task 

assignment.  

     The first criterion is the workload of the bottleneck 

computer for the allocation x, and its values are provided 

by the subsequent formula [5]: 
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where  
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vuik – the total communication time between the task Tv 

assigned to the ith node and  the Tu assigned to the kth 

node. 

     Figure 2 shows three cuts in task assignment graph. 

We can balance workload among several processors by 

finding an optimal value of the bottleneck computer. 

     Let j  be failed independently due to an exponential 

distribution with rate
j

~
. We do not take into account of 

repair and recovery times for failed computer in 

assessing the logical correctness of an allocation. 

Instead, we are supposed to allocate tasks to computers 

on which failures are least likely to occur during the 

execution of tasks. Computers and tasks can be assigned 

to nodes in purpose to maximize the third criterion – the 

reliability function R defined, as below [4]: 
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Fig. 2. Load balancing by finding an optimal task assignment 
 

     The second measure of the task assignment is a cost 

of computers that is calculated, as below: 

π

ij

I

i

J

j

j xxC 
 1 1

=)(   
(15) 

where κj corresponds to the cost of the computer j.  

 

The minimal performance of the distributed systems 

minΞ  is supposed to be smaller than the performance of 

the entire system that can be estimated according to the 

following formula: 

π

ij

I

i

J

j

j xδΞ(x)=
 1 1

 (16) 

where 
j  is the numerical performance of the computer 

j for the task benchmark, for instance [MFlops].
 
 

 

     The probability that all tasks meet their deadlines is 

supposed to be greater than the minimal probability Pmin. 

This parameter is usually set to be greater than 0.9.  

     

 
 


K

l Mm

vviD

lv

xCdpxP
1

))(()(               (17) (15) 

     Two main constraint types: the benchmark 

performance limit and also probability that all tasks meet 

their deadlines are supposed to be complement with 

some resource constraint. 

     Figure 3 shows the cut of the evaluation space that is 

explored by the most effective meta-heuristic AMEA* 

[3]. Evolutionary algorithm AMEA* [3], the ant 
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algorithm [12] and genetic programming MGP [4] have 

been applied for solving some versions of multi-criterion 

task assignment. We can compare quality of obtained 

solutions by AQMEA to qualities produced by the other 

multi-criterion meta-heuristics. 

      The binary search space consisted of 1.0737x10
9
 

elements and included 25 600 admissible solutions. An 

average level S  was calculated for fifty runs of the 

algorithm. After 350 assessments of those functions, an 

average level of Pareto set obtaining is 1.5% for the 

AQMEA, 1.7% for the MOTB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Pareto front and results of AMEA* 

     Quantum search provides a promising alternative for 

the other problems like the face verification problem 

[15], disk allocation [16] or the Travelling Salesman 

Problem [21]. 

     There are a number of practical difficulties in 

building a quantum computer, and quantum computers 

have only solved trivial problems. David DiVincenzo 

listed some requirements for a practical quantum 

computer [11]. Quantum computers are supposed to be 

scalable physically to increase the number of qubits. 

Qubits should be initialized to arbitrary values and 

quantum gates are expected to perform faster than de-

coherence time. What is more, a universal gate should be 

set, and qubits are supposed to be read easily. 

     A crucial question is controlling or removing de-

coherence what is related to isolating the system from its 

environment as the smallest interaction with the external 

systems would cause the inner system to de-cohere. This 

result is irreversible, as it is non-unitary, and is generally 

something that is supposed to be avoided, if not highly 

controlled. The transverse relaxation (de-phasing) time 

for some technologies, typically range between 

nanoseconds and seconds at low temperature. 

     These implementations are more complicated for 

optical approaches when the timescales are orders of 

magnitude lower and an optical pulse shaping is applied. 

Error rates are usually proportional to the proportion of 

operating time to de-coherence time. So, an operation is 

required to be completed much more quickly than the 

de-coherence time [18]. 

     If the error tempo is small enough, it is possible to 

apply quantum error correction, which corrects errors 

due to de-coherence. This is the constraint that the total 

calculation time should be longer than de-coherence 

period. This implies that a gate is supposed be able to 

execute its job 10
4
 times faster than the de-coherence 

time of the computer [10]. 

     The development of error correction is related to the 

increased number of required qubits. The number 

required to factor integers using Shor's algorithm is 

between n and n
2
, where n is the number of bits in the 

number to be factored. Error correction procedure 

inflates this result by an additional factor of n. For 

n=100, it implies necessitate for about 10
3
 qubits without 

error correction. With error correction, the figure would 

rise to about 10
5
 qubits [11].  

     Another approach to the stability-decoherence 

problem is to create a topological quantum computer 

with anyons, quasi-particles used as threads and relying 

on braid theory to form stable logic gates [18]. 

     In 2009, researchers at Yale University created the 

first rudimentary solid-state quantum processor. The 

two-qubit superconducting chip is able to run elementary 

algorithms. Each of the two artificial qubits are made up 

of a billion aluminum atoms but they acted like a single 

one that could occupy two different energy states [10]. 

 

 

8.   Concluding remarks 
     To find optimal solutions, the quantum-based 

adaptive evolutionary algorithm AQMEA is proposed. It 

is an advanced technique for finding Pareto-optimal task 

allocation problem with the maximization of the system 

reliability and distributed system performance. 

Moreover, the workload of the bottleneck computer and 

the cost of computers are minimized.  

     Although, there are several technological problems in 

building a quantum computer, quantum search provides 

a promising alternative for development some genetic 

algorithms and others multi-objective optimization 

techniques. 

     Our future works will concern on a development the 

combination between quantum computing and 

evolutionary algorithms for finding Pareto-optimal 

solutions.  

 

N* 

C [MU] 

Zmax[ TU ] 
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