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Abstract: - The asymptotic (exponential) stability in the sense of componentwise approach is considered for 
one and two dimensional linear discrete-time singular systems. The two dimensional system is described by 
Fornasini-Marchesini model. The main motivation for these results is the need, particularly felt in the 
evaluation in a more detailed manner of the dynamical behaviour of linear discrete-time singular systems. 
Combining the basic theory of  Drazin inverse and the results reported in the case of the discrete time linear 
systems (see Hmamed, 1997), both necessary and sufficient conditions are established ensuring the 
componentwise asymptotic (exponential) stability. In addition, numerical examples are proposed to illustrate 
the correctness of the obtained results.  
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1 Introduction 

During the last few decades, the singular 
systems, which are also defined as descriptor 
systems, have been attached much more 
attention since singular systems can describe 
better practical dynamical systems than 
standard state-space systems. Several studies 
have addressed the stability and stabilization 
problem of the class of continuous time singular 
systems with or without delay using various 
concepts [20], [21], [16]. [18] contributed in the 
normwise perturbation theory of singular linear 
structured system with index one. In [26] a 
parametrized differentiable family of singular 

regularizable systems is given.  [28], [29] discussed 
the problem of delay-independent and/or delay 
dependent stability and stabilization for singular 
systems with multiple time-varying delays, using 
the continuous-time Markov process sufficient 
conditions in the linear matrix inequality setting 
(LMI).  

The componentwise stability concept is 
considered as a special type of asymptotic 
stability, which combines the positive 
invariance of time-dependent rectangular sets 
with respect to the state space trajectories.    
This concept was first studied by [31] who 
applied the theory of flow-invariant 
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time_dependent rectangular sets to define and 
characterize the componentwise asymptotic 
stability (CWAS) and the componentwise 
exponential asymptotic stability (CWEAS) for 
continuous-time linear systems. Further works 
extended the analysis of componentwise 
stability to continuous-time with or without 
time delay [4], [14], [15] and [5], [6], [24], [23].  
    On the other hand, the Drazin inverse theory is 
used in several applications such that linear algebra, 
control and systems modeling theory, were found in 
the literature, various works focused on this 
methodology,  [19] in Banach algerba, [25], [26] in 
the control theory and [22], [17] gave some results 
on the problems of  the singular linear system under 
certain condition. In the work of [27], an oblique 
projection iterative method is proposed to compute 
matrix equation AXA=A  and to obtain the Drazin 
inverse for a square matrix A, and in [30] the 
perturbation of the drazin inverse is considered. 

The purpose of this work is to extend the concept 
of Componentwise asymptotic (exponential) 
stability of one and two-Dimensional linear discrete-
time systems reported in [5] to the componentwise 
stability of one and two-Dimensional discrete-time 
singular systems using the methodology of the 
Drazin inverse.  
     The paper is organized as follows. Some 
notations and terminology are given is section 
2. Section 3 deals with the main results, giving 
necessary and sufficient conditions for 
componentwise asymptotic (exponential) stability of 
1D singular systems. This is then extended to the 2D 
singular system described by Fornasini-Marchesini 
model in Section 4. Finally, two examples are given 
to illustrate the developed results. 
 
 

2 Notations 
The main notations of this paper are as follows: 

n
i )x(x ℜ∈=  (x a real vector);  

 nxn
ij)h(H ℜ∈= ( H a real matrix);  

D Int  interior of set D;  
Dδ  boundary of set D;  

)Mdet(  determinant of matrix nxnCM∈ ; 

 +H  matrix with component )0,hsup(h ijij =+ , 

i,j=1,2,..,n;  
−H  matrix with components )0,hsup(h ijij −=− , 

i,j=1,2,..,n;  

H  matrix with components ijh , i,j=1,2,..,n; +x  

vector with components;  

)0,xsup(x ii =+ , i=1,..,n;  

−x  vector with components )0,xsup(x ii −=− , 
i=1,..,n;  

x, y vectors in nℜ ; yx ≤  if ii yx ≤ , i=1,2,..,n;  

yx <  if ii yx < , i=1,..,n. 
 
 

3 Discrete Singular Systems  
In this section, some results about componentwise 
asymptotic (exponential) stability of 1D singular 
systems are established. We focus on discrete-time 
singular systems, which are described by the 
implicit form: 

 





=

=+

0x)0(x

)k(Ax)1k(Ex
, 0k >  

(1) 

where nx ℜ∈  is the state vector, nxnE ℜ∈ , 

nq)E(rank ≤= , nxnA ℜ∈ . 
In certain applications, namely in electrical 

engineering and biology, dynamical systems have to 
satisfy some additional constraints of the form. 

nx ℜ⊂Ω∈                                 (2) 
where Ω  is the set of admissible, states defined by: 
 

{ }n
2112

n int)k( ),k( );k()k(x)k(/x +ℜ∈ρρρ≤≤ρ−ℜ∈=Ω
                         (3) 

With 
0)k(lim     ,0)k(lim 2

k
1

k
=ρ=ρ

+∞→+∞→
               (4) 

This is a variant nonsymmetrical polyhedral set, as 
is generally the case in practical situations. 
In certain cases, )k(1ρ  and )k(2ρ  take the form 

k
ss )k( βα=ρ                              (5) 

with 10 <β<  and 0s >α  for s=1,2. 
The purpose of this section is to define a special 

type of asymptotic (exponential) stability of the 
system (1), namely the componentwise asymptotic 
(exponential) stability concept characterized by (3) 
and (4) ((3) and (5)). Necessary and sufficient 
conditions for componentwise asymptotic 
(exponential) stability of the system (1) are 
established. 

First, recall some important properties of implicit 
systems that are assumed intrinsic in the following 
analysis. 
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Definition 1 The system (1) is called 
componentwise asymptotically stable with respect 

to [ ]TT
2

T
1 )k(  (k))k(~ ρρ=ρ  (CWASρ~ ) if for every 

)0(x)0( 102 ρ≤≤ρ− , the response of (1) satisfies:  

 
)k()k(x)k( 12 ρ≤≤ρ− , 0k ≥∀             (6) 

 

Definition 2 The system (1) is called 
componentwise exponential asymptotically 
(CWEAS) if there exist 01 >α  and 02 >α  such 

that, for every 102 x α≤≤α− , the response of (1) 
satisfies 

k
1

k
2 )k(x βα≤≤βα− , 0k ≥∀                 (7) 

 

 

Definition 3  [1] The system (1) is said to be regular 
if 0)AsEdet( ≠− . 

 

Definition 4 [11] The system (1) is said to be 
impulse-free if )E(rank)AsEdet(deg =−  or 

1)AsE( −−  is proper. 

 

Definition  5  [3]  A rational function )s(G  is said 

to be proper if )(G ∞  is constant matrix, )s(G  is 

said to be strictly proper if 0)(G =∞ . 
For the convenience of the later statements in 

this paper, we use the pair (E,A) to represent the 
system (1). 
 

Theorem 1 [2] Suppose that (E,A) is regular. Then 
)k(f)k(Ax)1k(Ex +=+ , 0k ≥∀  is solvable and 

the general solution is given by: 

∑ +−−

∑+=

−ν

=

−

=

−−

1

0i

Di

1k

0i

1ikDk

)ik(f̂ÂE)PI(             

)i(f̂AÊqPA)k(x
             (8) 

where  

)i(f)AE()i(f̂ 1−−λ=  

E)AE(Ê 1−−λ=  

A)AE(Â 1−−λ=  

ÂÊA D= , DÂÊE =  
DÊÊP = , nq ℜ∈  

ν  is the index of Ê  
λ  is a scalar such that AE −λ  is nonsingular. 
 
The projection A ,E and P , ν  are independent of 
λ . 

 Matrix DÊ  is the Drazin inverse of Ê  and the 
index of a matrix is the size of the largest nilpotent 
block in its Jordan canonical form. 

We now give necessary and sufficient conditions 
for componentwise asymptotic (exponential) 
stability of the system (1). 
 

Theorem 2 Suppose that (E,A) is regular, a 
necessary and sufficient condition for the system (1) 
to be CWASρ~  is 

)k(~H
~

)1k(~ ρ≥+ρ , 0k ≥∀             (9) 
with 











=

+−

−+

HH

 H H
H
~

,     [ ] TT
2

T
1  )k(  (k) )k(~ ρρ=ρ                 

(10) 
and  

ÂÊH D=                                                   (11) 
 

Proof  From Theorem 1 the solution of the system 
(1) is written in the form 

( ) ( ) 0
kDDkD  x ÂÊqÊÊ  ÂÊ)k(x == , 

nq ℜ∈ 0k ≥∀  

then: 

)k(xÂÊ)1k(x D=+                    (12) 

with the initial condition qÊÊx D
0 = ,  nq ℜ∈ . 

At this step, we can use the proof given in [5] as the 
proof remains unchanged. 
 

Note that  [1] established the continuity proprieties 
of drazin inverse. 
 

Remark 1 

From [1] and [10], we know that the consistent 
initial conditions )0(xx 0 =  of system (1) are 
defined by: 

0
D

0 xÊÊx =  

and then, there always exists a vector nq ℜ∈  such 

that qÊÊx D
0 =  [13]. 

 

Remark 2 

In the case where matrix E is non-singular, then 
system (1) can be written as a classical autonomous 
linear system defined as 

)k(AxE)1k(x 1−=+                       (13) 
   
  Hence, if we apply the previous result to system 
(13), then the classical result of the componentwise 
stability of 1-D linear discrete-time systems is 
obtained, that is 
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0k    )k(~H
~

)1k(~ ≥∀ρ≥+ρ  

with          
( ) ( )
( ) ( ) 













= +−

−+

−−

−−

AEAE

AEAE
H
~

11

11

. 

For IE = , we obtain the result given in [5]. 
 In the symmetrical case )k()k()k( 21 ρ=ρ=ρ , 

we can deduce the following result. 
 

Corollary 1 Suppose that (E,A) is regular , a 
necessary and sufficient condition for the system (1) 
to be CWASρ  is 

0k   )k( H )1k( ≥∀ρ≥+ρ                (14) 

matrix H is defined by (11). 
 

Proof By observing that −+ += HHH , the proof 

follows from Theorem 2. 
 
 

Using the techniques of [5], we can also extend 
the results of Theorem 2 to the following Theorem 
which deals with the componentwise exponential 
asymptotic stability. 
 

Theorem 3 Suppose that (E,A) is regular , the 
system (1) (system (12)) is CWEAS if and only if 
one of the following conditions holds: 

i) ( ) 0~ H
~

I ≥α−β ;                                       (15) 

ii)

)hhhh                          

                         

,hhhhmax( max1

ij
j
2

j
1

iji
2

j
2

iji
2

i
1

iiii

ij
j
1

j
2

iji
1

j
1

iji
1

i
2

iiii
i

∑

∑

≠

−+−+

≠

−+−+

α

α
+

α

α
+

α

α
+

α

α
+

α

α
+

α

α
+≥β>

 

 (16) 

with [ ]TT
2

T
1

~ αα=α  and )h(ÂÊH ij
D == . 

    In the symmetrical case k
21 )k()k( αβ=ρ=ρ , we 

can deduce the following result. 
 

Corollary 2 The regular system (1) is CWEAS if 
and only if one of the following conditions holds: 
(i) α≥βα H  

(ii) 








α

α
∑≥β>
=

i

jn

1j
ij

i
hmax1  

with  )h(ÂÊH ij
D == . 

 

Remark 3 

When IE = , we obtain the result given by [5]. 
 
 

4 Two- Dimensional Fornasini- 

Marchesini model 
Applying the results developed in the last section, 
we extend the notion of componentwise asymptotic 
(exponential) stability to implicit 2-D Fornasini- 
Marchesini model described by the following 
equation: 

)j,1i(Bx)1j,i(Ax)1j,1i(Ex +++=++     (17) 
with the boundary conditions 

)0,i(x  and )j,0(x  for  i , j = 0,1,…     (18) 

where nx ℜ∈  is the state vector. 
Assume then that (E,A) is a regular pencil and 

impulse-free. A similar discussion applies if (E,B) is 
regular. Treat j as fixed, If the sequence )j,i(x  is 

considered known, then (17) is a difference equation 
)]j,1i(Bx[)1j,i(Ax)1j,1i(Ex +++=++ ,  0i ≥  

                         (19) 
for )1j,i(x +  with the terms in square brackets 
known (see [2]). 
Since (E,A) is a regular pencil, we may apply 
Theorem 1, we have: 

( )
( )

)j,ri(xB̂Â)ÂÊ()ÊÊI(                   

)j,1k(xB̂  ÂÊÊ                  

qÊÊ  ÂÊ)1j,i(x

DrD
1

0r

D

1i

0k

1kiDD

i DD

+∑−−

∑ ++

=+

−ν

=

−

=

−−   (20) 

here ν  is the index of Ê   

( )
( )

)j,r1i(xB̂Â)ÂÊ()ÊÊI(                      

)j,1k(xB̂  ÂÊÊ                      

qÊÊ  ÂÊ)1j,1i(x

DrD
1

0r

D

i

0k

kiDD

1i DD

++−−

++

=++

∑

∑
−ν

=

=

−

+

 

 

( )( )

( ) ( ) ( )

)j,r1ki(xB̂Â)ÂÊ()ÊÊI(         

 )j,1i(xÊ
)j,1k(xB̂  ÂÊ

ÊÂÊ        

qÊÊ  ÂÊÂÊ                  

DrD
1

0r

D

1i

0k

1kiD
D

i

B̂DD

DDD

+++−−

+
+

+
+

=

∑

∑

−ν

=

−

=

−−
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( )

( )

)j,r1ki(xB̂Â)ÂÊ( )ÊÊI(

)j,1i(x Ê  

)j,ki(xB̂Â)ÂÊ()ÊÊI()1j,i(xÂÊ

DrD
1

0r

D

DrD
1

0r

D

B̂D

D

+++−−

++









+−++=

∑

∑

−ν

=

−ν

=

 
 

( )
( )

( )
))j,1ki(x     

)j,ki(xÂÊ(B̂Â)ÂÊ(        

)ÊÊI(   

)j,1i(x Ê   

)1j,i(x  ÂÊ

D

B̂D

D

DkD
1

0k

D

++−

+

×−+

++

+=

∑
−ν

=

 

 

( )
( )

    )j,1ki(xB̂Â)ÂÊ()ÊÊI(   

)j,1i(x Ê   

)1j,i(x ÂÊ

DkD
1

0k

D

B̂D

D

++−−

++

+=

∑
−ν

=

 

(21) 
 

Definition 6 The regular system (17) is called 
componentwise asymptotically stable with respect 

to [ ]TT
2

T
1 )j,i( )j,i()j,i(~ ρρ=ρ (CWASρ~ ) if, for every 








ρ≤≤ρ−

ρ≤≤ρ−

)j,0()j,0(x)j,0(

)0,i()0,i(x)0,i(

12

12

   

for i,j=0,1,2,. 
The response of (17) satisfies 

)j,i()j,i(x)j,i( 12 ρ≤≤ρ− , )0,0()j,i( >∀    (22) 
where 

0)j,i(  ,0)j,i( 21 >ρ>ρ )0,0()j,i( >∀  

 
0)j,i(lim     ,  0)j,i(lim 1

2j or/and i
1

j or/and i
=ρ=ρ

∞→∞→∞→∞→
 

 

Definition 7 The regular system (17) is called 
componentwise exponential asymptotically stable 
(CWEAS) if there exist 01 >α  and 02 >α  such 
that, for every 





γα≤≤γα−

βα≤≤βα−
j

1
j

2

i
1

i
2

)j,0(x

)0,i(x
 for i,j=0,1,2,…     (23) 

 
The response of (17) satisfies 

ii
1

ii
2 )j,i(x γβα≤≤γβα−   )0,0()j,i( >∀  

where 10 <β<  and 10 <γ< . 
    We give now necessary and sufficient conditions 
for componentwise asymptotic (exponential) 
stability of the system (19) or (17). 
 

Theorem 4 Suppose that (E,A) is regular and 
impulse-free, a necessary and sufficient condition 
for the system (17) to be CWASρ~  is 

)j,1i(~H
~

)1j,i(~H
~

)1j,1i(~
21 +ρ++ρ≥++ρ  

)0,0()j,i( >∀                                 (24) 
with 











=

+−

−+

)ÂÊ()ÂÊ(

)ÂÊ()ÂÊ(
H
~

DD

DD

1  

 











=

+−

−+

)B̂Ê()B̂Ê(

)B̂Ê()B̂Ê(
H
~

DD

DD

2 , 

 

[ ]TT
2

T
1 )j,i(   )j,i()j,i(~ ρρ=ρ                 (25) 

 

Proof Since system (20) is impulse free, in this 
case, ν  becomes 1 [10]. 
Express )1j,i(x +  by using (20) with 1=ν  as 

( )
( )∑

−

=

−− ++

=+
1i

0k

1kiDD

DiD

)j,1k(xB̂  ÂÊÊ                   

qÊÊ  ÂÊ)1j,i(x
                               

(26) 
then 

( )

( )∑
−

=

−−

+

++

++=++

1i

0k

1kiDDD

DD1iD

)j,1k(xB̂ ÂÊ)ÂÊ(Ê                  

)j,1i(xB̂ÊqÊÊ  ÂÊ)1j,1i(x

 

(27) 
From the Drazin inverse theory used in [1], we 
know that 
 

ÊÂÂÊ =  , DD ÊÂÂÊ =  and DDDD ÊÂÂÊ =  
then 

)j,1i(x H)1j,i(x H)1j,1i(x 21 +++=++    (28) 
with  

ÂÊH D
1 = , B̂ÊH D

2 =               (29) 

and boundary conditions 0,ix)0,i(x =  and 

qÊÊ)j,0(x D= , nq ℜ∈ , 1j ≥ . 
 

At this step, this follows similar lines to the proof 
of Theorem 3.3 in [5]. 
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Remark 4 

The boundary values )0,i(x  may be taken arbitrary 

and the boundary values 1j  ),j,0(xÊÊD ≥ , are 
arbitrary [2]. Then, we can apply the results given in 
the last section, implying the existence of a vector 

nq ℜ∈  such that: 

1j  ,xqÊÊ)j,0(x j,0
D ≥==  

By analogy with section 3, we give some 
definitions. 
 

Remark 5 

If E is nonsingular square matrix, then equation (24) 
is the classical condition given in [5]. 

In the symmetrical case 
)j,i()j,i()j,i( 21 ρ=ρ=ρ , we can deduce the 

following result. 
 

Corollary 3 Suppose that (E,A) is regular and 
impulse-free, a necessary and sufficient condition 
for the system (17) to be CWASρ  is 

)j,1i( H )1j,i( H )1j,1i( 21 +ρ++ρ≥++ρ                         

(30) 
matrices 1H  and 2H  are defined by (29). 

 

Proof On observing that −+ += 211 HHH  and 
−+ += 222 HHH , the proof follows from Theorem 

1. 
 

Theorem 5 Suppose that (E,A) is regular and 
impulse-free, the system (17) (system (28)) is 
CWEAS if and only if one of the following 
conditions holds: 
 

i) αβ−γ≥αβγ ~)H
~

H
~

(~
21 ;                         (31) 

ii) 





αβ+γ+αβ+γ





ααβ+γ+αβ+γ

≥βγ>

∑

∑

=

++−−

=

−−++

n

1j

j
2

2
ij

1
ij

j
1

2
ij

1
ij

i
1

n

1j

j
2

2
ij

1
ij

j
1

2
ij

1
ij

i

/)]hh()hh([   

,/])hh()hh([

maxmax1

                           (32) 

with T
21 ]  [~ αα=α . 

In the symmetrical case 
ji

21
~)j,i()j,i( γβα=ρ=ρ , we can deduce the 

following result.                                                             
 

Corollary 4 Suppose that (E,A) is regular and 
impulse-free, the system (17) is CWEAS if and only 
if one of the following conditions holds: 
 

i) αβ+γ≥βγα )H H ( 21                    (33) 

 

ii) 







∑

α

α
β+γ≥βγ>

=

n

1j
i

j
2
ij

1
ij ) h h(1           (34) 

matrices 1H  and 2H  are defined by (29). 

 

Remark 6 

We can extend the results of this section to the 
Roesser two dimensional model given in [8] and 
[11], [12] by: 
 




















=





















+

+
v
1,i

h
j,i

43

21
v

1j,i

h
j,1i

43

21

x

x
 

AA

AA

x

x
 

EE

EE
         (35) 

 
with the boundary conditions 

)0,i(x  and  )j,0(x vh    for i ,j = 0,1. 
Several techniques may be used to show that the 

implicit Roesser and implicit FM model are 
equivalent [8]. Indeed, in the Roesser model define 

 









=

0E

0E
F

2

1
1 , 








=

4

3
2 E0

E0
F              (36) 

and similar quantities with respect to 









=

43

21

AA

AA
A . 

Then (35) may be written as 
 

)j,i(Ax)1j,i(x F)j,1i(x F 21 =+++             (37) 

 
Consequently all the results derived in this section 
still hold for the Roesser model (35) on taking into 
account the relation (36). 

Following the same ideas, those results can 
easily be extended to the following general two 
dimensional system model: 

 
)j,1i(xA)1j,i(xA)j,i(xA)1j,1i(Ex 210 ++++=++

.                    (38) 
 

Example 1 
To illustrate the application of Theorem 2, we 
consider the system (1), where, 
 









=

00

01
E , 








=

10

12.0
A  
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Since 1)A  E( −−λ exists for 0=λ , then we can 

choose 0=λ  so that, 2
1 IÂ  ,EAÊ −== − . 

we get:   








−
=

00

02.0/1
Ê , 







−
=

00

02.0
ÊD  

The consistence conditions are given in the 
following form:  









==

0

)0(x
)0(xÊÊ)0(x 1D  

It is not hard to see that the system (1) takes the 
form: 

)k(x
00

02.0
ÂÊ)1k(¨x D









==+  

Let )01.1klog(2
3

2
)k( k

1 +







=ρ −   

 

and )01.1klog(2
6

5
)k( k

2 +







=ρ − .  

It is obvious that condition )k(~H
~
 )1k(~ ρ≥+ρ holds 

where  







=

00

02.0
H  that is  

)01.1klog(2 

0

1

0

4.0

               

)01.2klog(2 

3

5.2

5.1

1

)1k(~

k

2

+



















≥

+



















=+ρ

−

−

 

 
As it is illustrated by Fig. 1, it  is  easy  to  see  that 
this system  is  CWASρ~ . 

where [ ]T1 0)k(x )k(x =   

and  [ ]T12111 )k()k( )k( ρρ=ρ  . 

 
 

Fig .1: The trajectory of )k(_    )k(x 111 ρ  
 

 Fig . 2: The trajectory of )k(_    )k(x 121 ρ  
Example2 
Now, we consider the 2-D Fornasini- Marchesini 
model described by (17) where, 
 









=

00

01
E , 








=

2.00

11.0
A , 








=

01

10
B  

 
(E, A) is regular [2] if we choose 0=λ then,  

EAÊ 1−−=  

 
IÂ −=  
BAB̂ 1−−=  

then we obtain: 
 








−
=

00

01.0/1
Ê , 








 −
=

00

1.0/10
B̂  
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 and then,  







=

01

10
H0  and 








=

00

10
H1 . 

Let,  

)01.1jlog(1.01)(i log32 
5.0

3
)j ,i( ji

1 ++







=ρ −−  

And  

)01.1jlog(1.01)(i log32 
1

6
)j ,i( ji

2 ++







=ρ −−  

It is obvious that condition (26) holds. The 
following figure shows clearly that this system is 
CWASρ~  

[ ]T21 )j,i(x)j,i(x )j,i(x =  
 

[ ]T12111 )j,i()j,i( )j,i( ρρ=ρ  
 

[ ]T22212 )j,i()j,i( )j,i( ρρ=ρ  
 

 
Fig .3: Trajectories of )j,i(_    )j ,i(x 1ρ  

 

 
Fig .4: Trajectories of )j,i(   )j ,i(x 2ρ+  

 
 

Conclusion 
In this paper, we have given an extension of the 
componentwise asymptotic (exponential) stability 
concept for singular 1D and 2D discrete linear 
singular systems. Necessary and sufficient 
conditions for componentwise asymptotic 
(exponential) stability have been established.  We 
considered also the symmetrical particular case, 
results have been obtained by applying the same 
approach. To show the validness of the theoretical 
results two numerical examples have been given.  
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