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Abstract: - In this paper an extensive theoretical and empirical analysis of recently introduced Particle Swarm 
Optimization algorithm with Convergence Related parameters (CR-PSO) is presented. The convergence of the 
classical PSO algorithm is addressed in detail. The conditions that should be imposed on parameters of the algorithm 
in order for it to converge in mean-square have been derived. The practical implications of these conditions have been 
discussed. Based on these implications a novel, recently proposed parameterization scheme for the PSO has been 
introduced. The novel optimizer is tested on an extended set of benchmarks and the results are compared to the PSO 
with time-varying acceleration coefficients (TVAC-PSO) and the standard genetic algorithm (GA). 
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1   Introduction 
The natural world is extraordinary complex and often 
provides us with remarkably elegant, robust and 
beautiful solutions to even the toughest problems. The 
field of global optimization has prospered much from 
such nature-inspired techniques. Since the first 
introduction of the evolutionary computing in the mid 
twentieth century (see [1] and references therein) a 
number of highly successful optimizers emerged. 
Genetic Algorithms (GAs), exploiting the ideas of 
Darwinian evolution, are arguably the most well known 
among these [2]. Deep connection between statistical 
mechanics and optimization was the source of another 
successful stochastic optimizer, Simulated Annealing 
(SA) [3]. More recently, the Ant Colony Optimization 
(ACO) algorithm inspired by shortest path search 
strategies utilized by ants during foraging was proposed 
[4,5] and utilized in various application [6]. The field of 
global optimization is, however, evolving rapidly and 
new optimizers are constantly emerging. Among the 
latest developments are Artificial Bees Colony (ABC) 
optimizer [7] and Bacteria Foraging Optimization (BFO) 
[8]. 
     Among these nature-inspired strategies, Particle 
Swarm Optimization (PSO) algorithm is relatively 
novel, yet well studied and proven optimizer. Since its 
original introduction by Kennedy and Eberhart in 1995 
[9], PSO raised a considerable interest among 
researchers. Originating in an attempt to mimic 
simplified social behavior of animals moving in large 
groups (birds in particular), PSO is grown to be a 

successful global optimization technique, well fit for 
solving complex, multimodal problems. Compared to 
other evolutionary techniques, most notably GA, PSO is 
simple and elegant in concept, it has but a few adjustable 
parameters, it is computationally inexpensive, very easy 
to implement and can easily be parallelized on massive 
parallel processing machines [10, 11, 12]. 
      PSO operates on a set of particles. Each particle is 
characterized by its position ( x ) and velocity ( v ). 
Position of each particle is a potential solution, and each 
particle is capable of memorizing the best position it 
ever achieved in the course of optimization process ( p ). 
This position is referred to as the personal best position. 
The swarm as a whole memorizes the best position ever 
achieved by any of its particles ( g ), known as the 

global best position. In the k th iteration, the position and 
velocity of each particle are updated as 
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where w , cp  and  cg  are parameters of the algorithm, 
inertia, cognitive factor and social factor respectively, 
while rp  and rg  are independent, uniformly distributed 
random numbers in the range [0, 1]. 
     The idea behind PSO is the following. Each particle 
investigates a portion of a search space. During its 
investigation, a particle has a tendency to revisit the 
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good areas, that is the neighbourhood of the points with 
small objective value. However, each particle is not 
totally independent. There is some communication 
inside the swarm. In particular, each particle 
communicates its personal best position. Knowing the 
best position found by any other particle, each member 
of the swarm will be attracted to this globally known 
best point.  
     Numerous studies have been published addressing 
PSO both empirically and theoretically, resulting in 
many modification of the algorithm. Among the first and 
most important of them is the study reported by Shi and 
Eberhart [13]. An account of early PSO development 
can be found in van der Berg’s PhD thesis [14].  Over 
the years, the effectiveness of the algorithm was proven 
on various engineering problems [15, 16, 17, 18, 19, 20, 
21, 22, 23]. However, the theoretical justification of the 
PSO procedure long remained open. A sound theoretical 
analysis of the algorithm was needed in order to address 
this issue properly. First formal theoretical analyses are 
due to Ozcan and Mohan [24, 25]. They addressed the 
dynamics of simplified, one-dimensional, deterministic 
PSO model. Clerc and Kennedy also analyzed PSO in 
[26] focusing on swarm stability and explosion. Jiang et 

al [27] were the first to analyze stochastic nature of the 
algorithm.  
     Several modifications of the original algorithm were 
proposed [14], including the ones designed for 
combinatorial optimization problems [28, 29]. Recently, 
Rapaić and Kanović explicitly addressed the time-
varying nature of most practical PSO implementations in 
[30]. The result was a new PSO modification with 
parameters based on convergence analysis of the 
algorithm. Several variants of this modification, named 
Convergence Related PSO (CR-PSO), were tested on 
four standard benchmarks and compared to four other 
common PSO schemes. It was concluded that CR-PSO 
outperforms other PSO variants in most of the 
considered cases. 
      In this paper a more extensive empirical analysis of 
newly introduced algorithm is presented. The extended 
set of standard benchmark problems is used to test the 
performance of the algorithm. The obtained results are 
compared to the results of PSO with time-varying 
acceleration coefficients (TVAC-PSO) proposed by 
Ratnaweera, et al [11] and standard genetic algorithm 
(GA) [2], both applied on the same set of benchmarks. 
      The paper is organized as follows. A method to 
analyze convergence of particle swarms is revisited in 
Section 2. CR-PSO algorithm is presented in Section 3. 
Empirical results, including an account of benchmarks 
used to test the algorithms and the discussion of 
numerical experiments are given in Section 4. Section 5 
contains the concluding remarks. 
 

2   Convergence analysis of Particle 

Swarm Optimizers 
Particle Swarm Optimization is a stochastic optimization 
procedure. Equations (1) and (2) can be considered as 
equations describing the motion of a discrete-time, linear 
stochastic system with two external inputs p  and g . 
     In general there are different ways to define the 
notion of convergence for stochastic sequences. The 
notion of “mean-square” convergence is utilized in 
recent theoretical studies of PSO [27, 30]. In this setting, 
a stochastic sequence is said to converge to a real 
number a  if and only if its mathematical expectation 
converges to a  and simultaneously its variance 
convergence to zero. In this way, the investigation of 
convergence of a stochastic sequence can be made by 
analysis of two separate deterministic ones. 
     The main problem when analyzing the PSO 
algorithm lies in the fact that its parameters vary in time. 
If one would fix the PSO parameters, assuming that the 
algorithm does converge, the limit position of each 
particle would be 
 

cgcp

gcgpcp

+
⋅+⋅

=µ ,                           (3) 

 
where p  and g  are the limit values of the personal best 

and global best positions, respectively. In other words, 
the algorithm would converge to a point within a line 
segment connecting the limit values of the two attractor 
points. The distance from the limit position of a particle 
and each attractor would be proportional to the 
corresponding acceleration factor, cp  and cg , 
respectively. Let us denote the mathematical expectation 
of a stochastic sequence by E . The idea utilized in [30] 

is to analyze 2])[( kyE , with 
 

][][][ kkxky µ−=                       (4)  

 
and  
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If this newly introduced deterministic sequence 
converges to zero, the original stochastic sequence 
converges to µ . To see this, note that asymptotically 

][kµ  is equal to µ  (the mathematical expectation of the 

limit value of x ) and 2])[( kyE  is asymptotically equal 
to the variance of a particle position. 
     It is readily obtained that (1) and (2) are equivalent to  
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and, due to (4) 
 

][]1[][][])[][(]1[ kQkykwkykRkky +−−−Ψ=+ .    (7) 

 
where the following abbreviations were introduced in 
order to shorten the notation 
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By application of a series of elementary, yet somewhat 
cumbersome steps, the following expressions can be 
derived from (7) 
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The key point is that equations (7), (11), (12) and (13) 
define the dynamics of a linear time-varying (LTV) 
system. To see this, let us introduce 
 

]1[][1 −= kyk Eα ,                             (14) 
 

  ][][2 kyk E=α ,                               (15) 
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( )]1[][][5 −= kykyk Eα .                       (18) 
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It now obvious that (7), (11), (12) and (13) can be 
expressed in a more compact fashion using matrix 
notation 
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with 
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If the system (20) is stable in the sense usually applied 
in control theory, the PSO algorithm converges. Further 
discussion regarding this statement can be found in [13], 
[14] and [15]. Related discussion can also be found in 
[10], [11] and [12]. 
     The investigation of stability of LTV systems is not 
trivial, although it was addressed many times in 
literature. In general, it is common to apply Lyapunov 
methods [31], but other techniques have been utilized as 
well [32]. The following statement was formulated and 
proven in [30]. 
 
Lemma 1. Consider a sequence generated by first-order 

difference equation 

 
][][][]1[ kkkk bxAx +=+ ,  

0
xx =]0[           (26) 

 
Assume ][kA  converges to  and ][kb  converges to b . 

Then, if all eigenvalues of A  lie within the unit circle, 

the sequence ][kx   converges to ( ) bAI
1−− . 
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In order to apply Lemma 1 to the systems described by 
(20), it is necessary to investigate locations of the 
eigenvalues of matrix ][kA . As it is well known, 

eigenvalues of a matrix are zeros of its characteristic 
polynomial.  
 

])[det(),( kzkzf AI −=                       (27) 
 
Note that the ][kA  matrix is lower block-triangular for 

any k . Its characteristic polynomial can therefore be 
found as 
 

),(),(),( 21 kzfkzfkzf =                     (28) 
 
where ),(1 kzf  and ),(2 kzf  are the characteristic 

polynomials of matrices ][1 kA  and ][2 kA . These 
polynomials are 
 

][][),( 2
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The location of roots of these polynomials can be 
investigated by various methods, including for example 
Jury’s criterium widely utilized in control theory [33]. 
However, the conditions for the roots of (29) and (30) to 
lie within the unit circle have already been investigated 
in [27]. These conditions are 
 
 

1][0 << kw ,                                   (31) 
 

])[1(4][][ kwkcgkcp +<+ ,                           (32) 
 

0),1(2 >kf .                                    (33) 
 
In fact, it was proven in [27, 30] and also demonstrated 
in the sequel of this paper that (33) implies (32). 
Combining Lemma 1 with the above conditions 
regarding the location of eigenvalues, the following 
statement can be derived 
 
Theorem 1. Assume that both ][kp  and ][kg  converge 

to g . Assume also that the PSO parameters ][kw , 

][kcp  and ][kcg  converge to their respective limit 

values w , cp  and cg . If the conditions(31)and (33) 

hold for all k  larger than some 0k the PSO algorithm 

defined by (1) and (2) converges to g .  

 
     Theorem 1 is a direct consequence of Lemma 1. To 
see this, note that if global best and personal best 
particle position both converge to the same limit point 

g , it follows from (10) that ][2 kQE  is zero in limit. 

Therefore, by Lemma 1 αααα zero in limit also. By 
definition of αααα is clear now that both mean value and 
variance of y  are asymptotically zero. As a direct 

consequence, the mean value of ][kx  tends to µ  and its 
variance is zero in limit. However, from the equality of 
personal and global best position limits it follows that 
asymptotically g=µ . 
     The assumption that the personal best and local best 
particle position converge is reasonable. It is, in fact, 
related to the shape of the optimality criteria. If an 
optimum does exists it is usually the case that these 
attractor points will converge. In practice, at the end of 
the search the entire swarm usually clusters in a small 
area of the search space. There is however, no guarantee 
that the swarm will converge to either global or local 
optimum. Van den Berg suggested a modification of 
PSO that guarantees that the limit point will be at least 
locally optimal [2]. 
 
 

2   PSO with convergence related 

parameters 
Various authors report numerous different 
recommendations for the selection of the PSO 
parameters. These recommendations can be roughly 
classified as either empirical or theoretical. Empirical 
analyses are typically conducted using a set of 
benchmark problems. Theoretical analyses usually 
address the convergence of the optimizers, as well as the 
communication topology of the swarm. 
     It is generally true for all population-based optimizers 
that high population diversity is desirable at initial 
phases of the optimization process. The particles should 
initially be allowed to roam freely through the search-
space. In the later stages, as the optimization process 
reaches its end, the particles should become more 
constrained and the swarm needs to be more 
concentrated. The swarm should not attempt to reach 
uncovered areas of the search space, but should rather 
try to fine-tune the good solutions found so far. 
Consequently, the dynamics of each individual particle 
should be less stable at the beginning of the search and 
become more stable at the end. According to condition 
(31) this means that the inertia factor (w) should 
decrease during the search. It is common practice to use 
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inertia factor decreasing from 0.9 to 0.4. It is also 
plausible to use a bit higher initial inertia value, 1.2 for 
example. In this case, the swarm will be unstable 
initially, and consequently would diversify considerably 
in the first few iterations of the optimization procedure.  
     It is also known that particles should be more-or-less 
independent in the initial phases of the search. This 
enables the swarm to spread widely across the search 
space. However, as the optimization process finishes, the 
swarm should act more as a community, i.e. the particles 
should move in accordance to the global knowledge of 
the swarm. This means that cognitive factor (cp) should 
dominate social factor (cg) in the beginning, yet social 
factor should prevail near the end of the search. It has 
been proven in [30] that cp=cg is the best choice when 
only the speed of convergence of the algorithm is 
regarded. However, this is not the only issue one should 
think of when adjusting parameters of a PSO scheme. 
The TVAC-PSO scheme, for example, uses cognitive 
factor decreasing from 2.5 to 0.5 and social factor 
simultaneously increasing from 0.5 to 2.5. 
     Based on these recommendations and on detailed 
convergence analysis presented earlier, a new set of PSO 
parameters is proposed in [30]. These parameters are the 
acceleration constriction ratio (ξ) defined by 
 

])[1(][4][][ kwkkcgkcp +⋅=+ ξ                   (34) 
 

and the acceleration ratio (η) such that 
 

[ ] [ ] [ ]cg k k cp kη= ⋅  .                         (35) 

 
Note that (34) formally resembles (32). The original 
PSO parameters (w, cp, cg) can be replaced by a set of 
new ones (w, ξ, η). The proposed parameters simplify 
convergence conditions (31), (32), (33), and enable 
direct control over the diversity of the swarm in the 
course of the optimization. 
     According to [30], the CR-PSO is convergent 
provided that (31), 
 

0 [ ] 1kξ≤ ≤ ,                                 (36) 
 

 
2 21 [ ] 1 [ ] 1 [ ]1( [ ])

2 3 2[ ](1 [ ]) (1 [ ])

w k k k
g k

kw k k

ξ η
η

ξ η

− − +
> =

+ +
.       (37) 

 
The condition (36) is a direct consequence of the 
definition of acceleration constriction ratio (34) and 
previously introduced condition (32). The condition (37) 
is derived by simple, yet tidious calculations from (33). 
Interesting conclusions can be obtained by ploting the 
right hand side of (37) as a function of η. This plot is 
presented in Fig 1. 
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Fig 1. The right-hand side of condition (37) as a 

function of acceleration ratio η. 

 
Notice that g(η) is allways positive. Therefore, in order 
for the condition (37) to hold the left hand side must also 
be positive. This implies (36). Therefore (37) implies 
(36), and consequently (33) implies (32). It is also 
interesting to note that when (32) is satisfied the 
condition (33) is not too restrictive. The following figure 
depicts the area of convergence of CR-PSO in w-ξ plane. 
 

 
Fig 2. The area of convergence of CR-PSO in w-ξ plane 

 
     Having in mind these conditions, several parameter 
adjustment schemes can be adopted. For instance, by 
keeping ξ and η fixed while decreasing w, the algorithm 
is guaranteed to gradually move deeper in the 
convergence region. However, other parameter 
adaptation schemes are also plausible, since all three 
parameters can be varied simultaneously. A particularly 
promising idea is to keep ξ fixed, while decreasing w 
and increasing η. The later is not beneficial regarding the 
convergence, yet, it is beneficial regarding the 
explorative and exploitative abilities of the algorithm. 
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     In the following analysis two parameter adjustment 
schemes are applied, based on experimental results 
shown in [30]. In both of them, inertia factor w is chosen 
to be linearly decreased from 0.9 to 0.4, which is 
common choice in the literature, and factor ξ is kept 
fixed at value of 0.5. Factor η is increased from 1/5 to 5 
in the first scheme (CR-PSO v1), and from 1/2.5 to 2.5 
in the second scheme (CR-PSO v2).  
 
 

3   Experimental results 
Performance of the algorithms is compared on a set of 
benchmarks listed in Table 1. All benchmarks attain a 
global minimal value of zero. Two experiments were 
performed, both including 100 trials with 30 particles 
moving for 100 iterations in a 5-dimensional search 
space. In the first experiment, the entire initial 
population was shifted away, so that an extensive 
exploration was needed in order for a search procedure 
to localize the global optimum. In the second 
experiment, particles were initialized within a hypercube 
centred on the global optimal solution. In order to find 
the global optimum, algorithms needed to overcome 
only a relatively small number of local optimal 
solutions. Edges of the initial hypercube in both 
experiments are chosen to be of length 20. In the second 
experiment, the shift applied to each direction is chosen 
to be 100. 
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Fig3. The results of the first experiment, with initial 

population shifted (benchmarks 1-5) 
 
    For the PSO with time-varying acceleration 
coefficients (TVAC-PSO) inertia factor w was also 
linearly decreased from 0.9 to 0.4, cognitive factor cp 
was decreased from 2.5 to 0.5 and social factor cg was 
increased from 0.5 to 2.5. For the genetic algorithm, the 
following options were applied: rank scaling function, 
stochastic uniform selection, scattered crossover 
function, elitism with two elite individuals. Standard 

MATLAB implementation of GA was used. In order for 
the comparison to be fair, the same number of 
individuals (30) and generations (100) was used. 
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Fig4. The results of the first experiment, with initial 

population shifted (benchmarks 6-10) 

 

Rosenbrock Griewank Rastrigin Ackley Michalewitz
-8

-6

-4

-2

0

2

4

Benchmark

M
e
d
ia
n
 o
f 
fu
n
c
tio
n
 v
a
lu
e
 (
lo
g
)

TVAC-PSO

CR-PSO v1

CR-PSO v2

GA

 
Fig5. The results of the second experiment, with initial 

population centred (benchmarks 1-5) 

 
     Fig.3 and Fig.4 show results of the first experiment. 
Graphs represent the median of the function value in 
logarithmic scale for TVAC-PSO, both variants of CR-
PSO (in both variants) and GA, respectively. 
     Clearly, both CR-PSO schemes outperform TVAC-
PSO on Griewank, Dixon-Price, Spherical and Perm 
function. However, in the case of Griewank function, all 
three PSO variants perform worse than GA. All 
optimizers fail in an attempt to optimize the Ackley’s 
function. CR-PSO seems considerably worse in the case 
of Rosenbrock, Zakharov and Levy function. It also 
seems that variant 2 of CR-PSO outperforms variant 1 in 
most of the considered cases. 
     Fig.5 and Fig.6 show the results of the second 
experiment. In this case, both CR-PSO variants show 
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superior performance on all of the considered 
benchmark, with the exception of Michalewitz function. 
It can also be concluded that CR-PSO v2 outperforms 
CR-PSO v1 in most cases. 
     The results of both experiments are presented in 
detail in Tables 5 and 6, respectively. 
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Fig6. The results of the second experiment, with initial 

population centred (benchmarks 6-10) 

 
 
 
 

4   Conclusion 
Recently, a novel, convergence-related parameterization 
of the well-known PSO meta-heuristic was proposed 
[30]. The presented optimizers were theoretically well 
based, and initial empirical results seemed promising. A 
detailed theoretical analysis has been presented in this 
paper. This theoretical analysis, identical to the one 
presented in [30], yet a bit more elaborate, provides a 
significant insight to the stochastic dynamic of the PSO 
swarm. A detailed empirical analysis has also been 
presented in this paper. Two of the most successful CR-
PSO schemes were benchmarked against TVAC-PSO 
and GA on ten well-known unconstrained global 
optimization benchmark problems. 
     The results presented in this paper confirm those 
presented previously in [30]. The tighter control over the 
convergence of the swarm does, in most cases, ensure 
better performance of the optimizer. However, there is 
still much space for improvements. In particular, the 
effect of the acceleration constriction ratio factor is still 
not well understood. Also, it seems that even more 
efficient optimizer could be constructed by hybridization 
of CR-PSO with GA, i.e. by introduction of evolutionary 
operators, such are crossover and mutation, in the 
original CR-PSO. Further research should address this 
and other similar issues in more depth. 

Table 1. An account of benchmark functions used for comparison. 
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Table 2. The results of the first experiment (initial population shifted from global optimum). 

Benchmark 
TVAC - PSO CR-PSO v1 

mean median std. dev. mean median std. dev. 
Dixon-Price                          9.29·10-1 2.50·10-2 1.82·101 1.86·10-1  3.23·10-7 3.00·10-1 
Rosenbrock 3.167·102 9.17·101 6.127·102 1.47·104  1.34·103 2.77·104 
Zakharov 7.60·102 2.19·101 2.11·103 3.49·104  1.57·103 8.79·104 
Griewank 8.06·10-1 3.32·10-1 9.25·10-1 1.17·10-1  1.03·10-1 7.14·10-2 
Rastrigin 4.12 3.08 3.25 4.18  3.97 2.70 
Ackley 2.00·101 2.00·101 2.00·10-2 2.00·101  2.00·101 5.48·10-2 
Michalewitz 2.05 2.06 4.49·10-1 2.26  2.34 3.85·10-1 
Spherical 2.45·10-6 4.43·10-7 1.50·10-5 1.37·10-10  1.86·10-11 4.50·10-10 
Perm 5.50·1014 1.43·103 2.85·1015 1.17·1021  4.94·101 9.46·1021 
Levy 2.38·103 2.40·103 5.13·102 1.36·105  1.29·105 1.20·105 
 CR-PSO v2 GA 

mean median std. dev. mean median std. dev. 
Dixon-Price                          2.27·10-1  4.60·10-9 3.15·10-1 1.06·103 2.94·102 1.710·103 
Rosenbrock 1.34·104  1.42·103 2.34·104 1.81·103 2.29·102 3.77·103 
Zakharov 1.59·105  6.11·104 2.46·105 1.76·101 2.86 4.46·101 
Griewank 8.47·10-2  7.26·10-2 5.82·10-2 8.94·10-2 7.23·10-2 6.46·10-2 
Rastrigin 3.07  2.98 1.90 7.39 7.27 2.82 
Ackley 2.00·101  2.00·101 4.98·10-2 2.00·101 2.00·101 5.40·10-3 
Michalewitz 2.32  2.34 3.68·10-1 9.94·10-1 9.65·10-1 2.38·10-1 
Spherical 2.78·10-13  5.97·10-14 8.09·10-13 1.22·10-1 9.85·10-2 1.18·10-1 
Perm 7.24·1021  4.31·101 5.07·1022 2.46·1012 2.78·103 1.96·1013 
Levy 1.22·105  1.11·105 1.16·105 4.95·102 4.10·102 5.02·102 

 
 

Table 3. The results of the second experiment (initial population centered around  global optimum). 

Benchmark 
TVAC - PSO CR-PSO v1 

mean median std. dev. mean median std. dev. 
Dixon-Price                          1.77·10-1 6.36·10-6 2.94·10-1 2.26·10-1  6.35·10-10 3.17·10-1 
Rosenbrock 1.61·101 1.19 7.85·101 4.30  6.09·10-1 2.43·101 
Zakharov 2.62·10-6 4.15·10-7 6.48·10-6 1.27·10-10  2.89·10-11 2.79·10-10 
Griewank 1.02·10-1 9.40·10-2 4.90·10-2 4.49·10-2  3.44·10-2 3.18·10-2 
Rastrigin 4.21 3.02 2.96 2.62  1.98 1.89 
Ackley 4.95·10-2 1.11·10-4 2.82·10-1 8.30·10-7  5.42·10-7 1.10·10-6 
Michalewitz 1.42 1.42 5.97·10-1 1.97  2.03 6.10·10-1 
Spherical 7.72·10-9 2.88·10-9 1.51·10-8 1.02·10-12  1.29·10-13 6.54·10-12 
Perm 2.70·102 5.92·101 4.61·102 1.30·101  4.29 2.82·101 
Levy 4.25·10-2 3.34·10-9 2.19·10-1 2.71·10-13  7.46·10-14 5.49·10-13 
 CR-PSO v2 GA 

mean median std. dev. mean median std. dev. 
Dixon-Price                     2.191·10-1  1.76·10-11 3.14·10-1 2.61 1.09 4.05 
Rosenbrock 3.87  7.93·10-1 1.67·101 3.96·101 1.99·101 5.50·101 
Zakharov 2.87·10-12  4.22·10-13 7.24·10-12 1.77 1.07 2.11 
Griewank 4.48·10-2  3.49·10-2 2.95·10-2 4.59·10-2 4.02·10-2 2.35·10-2 
Rastrigin 2.40  1.98 1.66 5.94 5.61 2.59 
Ackley 5.41·10-8  4.15·10-8 4.37·10-8 1.13 1.06 5.74·10-1 
Michalewitz 1.98  2.07 5.82·10-1 9.70·10-1 9.48·10-1 2.52·10-1 
Spherical 1.79·10-15  4.10·10-16 5.99·10-15 8.20·10-2 6.12·10-2 7.04·10-2 
Perm 3.16·101  9.60 6.99·101 7.61·103 2.85·103 1.62·104 
Levy 1.45·10-15  3.36·10-16 3.09·10-15 3.66·10-2 2.74·10-2 3.20·10-2 
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