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Abstract: Thispaper investigates the feedback stabilization problem of linear time-varying uncertain delay systems
using linear memoryless state feedback control. Each uncertain parameter and each delay under consideration may
take arbitrarily large values. In such a situation, the locations of uncertain entries in the system matrices play an
important role. It has been shown that if a system has a particular configuration called a triangular configuration,
then the system is stabilizable irrespectively of the given bounds of uncertain variations. In this paper, so far ob-
tained stabilizability conditions are devel oped into the ones called a doubletriangular configuration. The objective
of this paper is to show that if a system has such an extended configuration, then the system is also stabilizable
independently of both the bounds of uncertain parameters and time delays. An illustrative example is presented to

verify the effectiveness of the obtained result.
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1 Introduction

The robust stabilization problem of uncertain systems
has attracted increasing interest [1]-[3]. Thisismainly
dueto the fact that many dynamical systemscontain a
certain amount of uncertainties. Differential equations
with time delay arise in many areas of applied math-
ematics [4]-[6], because in most instances physical,
chemical, biological or economical phenomena natu-
rally depend not only on the present state but also on
some past occurrences. Then, this paper examinesthe
stabilization problem of linear time-varying uncertain
delay systems by means of linear memoryless state
feedback control.

The systems under consideration contain uncer-
tain entries in the system matrices and uncertain de-
lays in the state variables. Each value of uncertain
entries and delays may vary with time independently
in an arbitrarily large bound. Under this situation, the
locations of uncertain entries in the system matrices
play an important role. This paper presentsinvestiga-
tion of the permissible locations of uncertain entries,
which are allowed to take unlimited large values, for
the stabilization using linear state feedback control.

It is useful to classify the existing results on the
stabilization of uncertain systemsinto two categories.
The first category includes several results [7]-[10]
which provide the stabilizability conditions depend-
ing on the bounds of uncertain parameters. Theresults
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in the second category [11]-[14] provide the stabiliz-
ability conditions that are independent of the bounds
of uncertain parameters but which depend on their lo-
cations. This paper specifically addresses the second
category.

For uncertain systems with delays, the Lya
punov stability approach with the Krasovskii-based or
Razumikhin-based method is a commonly used tool.
The stabilization problem has been reduced to solv-
ing linear matrix inequalities (LM1) [7]-[9]. However,
LMI conditionsfall intothefirst category; for thisrea-
son, they are often used to determine the permissible
bounds of uncertain parameters for the stabilization.
When the bounds of uncertain parameter values ex-
ceed a certain value, LMI solver becomes infeasible.
In such cases, guidelinesfor redesigning the controller
are usually lacking.

On the other hand, the stabilizability conditionsin
the second category can be verified easily merely by
examining the uncertainty locations in given system
matrices. Once a system satisfies the stabilizability
conditions, a stabilizing controller can be constructed,
irrespective of the given bounds of uncertain varia-
tions. We can redesign the controller for improving
robustness merely by modifying the design parame-
ter when the uncertain parameters exceed the upper
bounds given beforehand.

In the second category, the stabilization problem
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of linear time-varying uncertain systems without de-
lays was studied by Wei [11]. The stabilizability con-
ditions have a particular geometric configuration with
respect to the permissible locations of uncertain en-
tries. Using the concept of antisymmetric stepwise
configuration (ASC) [11], Wei proved that a linear
time-varying uncertain system is stabilizabl e indepen-
dently of the given bounds of uncertain variations us-
ing linear state feedback control if and only if the sys-
tem has an ASC. Wei derived the successful result on
the stabilization problem of systems without delays,
however, his method [11] is inapplicable to systems
that contain delaysin the state variables.

On the one hand, based on the properties of an
M -matrix, Amemiya [12] developed the conditions
for the stabilization of linear time-varying uncertain
systems with time-varying delays using linear memo-
ryless state feedback control. The conditions obtained
in [12] show a similar configuration to an ASC, but
the alowable uncertainty locations are fewer than in
an ASC by one step.

The aforementioned results presume that all state
variables are accessible for designing a controller.
However, itis usual that the state variables of the sys-
tems are measured through the outputs and hence only
limited parts of them can be used directly. The output
feedback stabilization of linear uncertain delay sys-
tems with limited measurable state variables has been
investigated in [13] [14]. The conditions so far ob-
tained show that if a system has a particular configu-
ration called a triangular configuration, then the sys-
tem is stabilizable independently of the given bounds
of uncertain variations. The triangular configuration
consists of two kinds of triangular forms, which can
be classified into up-low form and left-right form.
Both triangular forms are shown below. In this paper,
the notation * isawaysused to denote the permissible
location of an uncertain entry.

F0 0 * % *x * % % *x 07
0 00 «x x x x x 0 0
0 000 *x x x 000
0 00 00« 00O0OTOQO0
00 0 O0O0O0OTODTUODTU OO (1)
0 00 00« 00O0OTOQO0
0 000 *x x x 000
0 00 «x x x x x 0 0
0 0 % * * x * *x * 0
L O * * % % * % % * >k |
Triangular configuration with up-low form
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f« 0 0 0 0 0 0 0 0 07
« x 0 0 0 0 0 0 0 =«
* % x 0 0 0 0 0 x =
* % x % 0 0 0 % * =
¥ % ok ok ok 0 x x k%
* % x % 0 0 0 % * = @)
* % x 0 0 0 0 0 x =
« x 0 0 0 0 0 0 0 =«
* 00 0 00 00 O0O0
L0 0 0 0 0 0 0 0 0 0

Triangular configuration with left-right form

The up-low form was derived based on the assumption
that a system has one-input and two-outputs, whilethe
left-right form was derived under the assumption that
a system has two-inputs and one-outpuit.

In this paper, we develop so far obtained stabi-
lizability conditions by introducing anovel configura-
tion. The objective of thispaper isto show if asystem
has such an extended configuration, then the system
is stabilizable irrespectively of the given bounds of
uncertain variations. The configuration derived here
consists of both triangular configurations with up-low
form and left-right form. To achieve our objective
here, we assume that a system has two-inputs and two-
outputs. The stabilization problem discussed here can
be reduced to finding the proper variable transforma-
tion such that the transformed system satisfiesan M -
matrix stability criterion. Finding transformationsthat
lead to the M -matrix structure is a very difficult task
for us because it requires troublesome hand-written
caculations. Nevertheless, this paper provides the
successful manner of constructing such a proper vari-
able transformation.

This paper is organized as follows. Some nota-
tionsand terminology are given in Sec. 2. The system
considered hereis defined in Sec. 3. In Sec. 4, some
preliminary results are introduced to state the present
problem. Themainresultisprovidedin Sec. 5. Theil-
lustrative examples are shownin Sec. 6. Finally, some
concluding remarks are presented in Sec. 7.

2 Notationsand Terminology

First, some notations and terminology used in the sub-
sequent description are given. For a,b € R™ or
A, B € R™™ every inequality between « and b or
Aand Bsuchasa > bor A > B indicates that it
is satisfied componentwise by ¢ and b or A and B.
If A ¢ R**™ satisfies A > 0, A is called a non-
negative matrix. The determinant and the transpose
of A € R™" are denoted by det(A4) and A’, re-
spectively. For a = (ay,...,a,) € R™, |a] € R™
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is defined as |a| = (Ja4], .., |am|)’. Alsofor A =
(a;;) € R ™ | A| denotes a matrix with |a;;| asits
(¢,7) entries. Let diag{- - -} denoteadiagonal matrix.
Let [a,b], a,b € R be aninterval in R. The set of
all continuous or piecewise continuous functionswith
domain [a, b] and range R" is denoted by C"[a, b] or
D"[a, b], respectively. We denote it simply by C™ or
D™ if thedomainisR.

The notation for a class of functionsisintroduced
below. Let £(i) € C* and let m € R be acongtant. If
& () satisfiesthe conditions

lim sup ‘5 ‘ < 00,

| 4] —+c0

lim sup g,ffi)a = 00 ®)
ES

for any positive scalar « € R, then &(i) iscalled a
function of order m, and we denote thisas follows

Ord((p)) = (4)

The set of all C* functions of order m is denoted by
O(m),

m.

= {&(p)|&(pn) € CY, Ord(¢ =m}.
Also, itisworth to notethat m can be a negative num-
ber and that the following relations between &, (1) €
O(my) and &, (p) € O(mg) hold:

Ord(& (p) £ &2(p)) = max{my, ma}, (6)
Ord(&1(p) X & (u)) = my + ma, (7
Ord(&1(p)/&2(p)) = m1 — ma. )

A real square matrix all of whose off-diagonal entries
are non-positive is called an M-matrix if it is non-
singular and its inverse matrix is non-negative. The
set of all M-matricesis denoted by M.

3 System Description

Let n be a fixed positive integer. The system con-
sidered here is given by a delay differential equation
defined on z € R™ for ¢ € [to, oo) asfollows

i(t) = A% ()+AA1() (1)
+ZAA2Z z(t —75(t)) + Bu(?),
y(t) = C’ ()7 9)

with an initial curve ¢ € D"[ty — 70, to). Here, A,
AAL(t), AA* (1) (i=1,...,r) aredl red n x n ma
trices, where r is a fixed positive integer; also, A° is
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a known constant matrix. Furthermore, AA*(¢) and
AA%(t) (i = 1,...,7) are uncertain coefficient matri-
ces and may vary with ¢ € [tg, o0). Other variables
are as follows () € R? isa control variable and
B € R"** isaknown constant matrix. y(¢) € R?is
an output variableand C' € R™*? isaknown constant
matrixX.

In addition, al ;(¢) (¢ = 1,...,r) are piecewise
continuous functions and are uniformly bounded, i.e.,
for a non-negative constant  they satiy

0<7(t) <m0 (i=1,u7) (10)
for dl ¢ > ty;. The upper bound =, can be ar-
bitrarily large and is not necessarily assumed to be
known. It is assumed that all the entries of AA(¢)
and A A% (¢) are piecewise continuous functions and
are uniformly bounded, i.e., for non-negative constant
matrices A A and A 4?0 ¢ R"*", they satisfy
|AAN ()| < AA™, JAAT ()| < AATC (1)
for al ¢t > ty. The upper bound of each entry can
independently take an arbitrarily large value, but each

is assumed to be known.

Assumption 1 Because the system must be control-
lable and observable, we assume that A°, B =

(b1,02) € R"2and C' = (¢, ¢3) € R™*? are given
as follows:
0 1 0 0 0
AO — 0 .0 bl —
00 o 1| 0
00 0 0 1 (12)
by = (0, ...,0,1,0,...,0),
¢ = (1,0, ...,0),
¢ = (0,...,0,1,0,...,0),

where all the entries of B are equal to zero except
that the first entry and the kth entry of &, and b, are
equal to 1, respectively. Likewise, all the entries of
C are equal to zero except that the first entry and the
(n — I + 1)th entry of ¢; and ¢, are equal to 1, re-
spectively. k& and (n — [ + 1) have strong relations
to the configuration of uncertain entries and they are
defined in the subsequent discussion.

It is seen from [15] that, for a certain value of uncer-
tain entry, the system might lose the controllability or
the observability without Assumption 1.

Next, we consider the following system:

£(1) = (A° = LC"=(t) + Ly(t) + Bult),

where z(t) € R is an auxiliary state variable and
L € R™"*?jsaconstant matrix. Thisisan observer in

(13)
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the most basic sense. Our objective is to find a con- 1 1 e 1
troller for stabilizing the overall 2n-dimensiona sys- Akt+1 Akt2 e Mg
tem consisting of (9) and (13). Let e(¢) be defined T2 = | Ay Ao o A2 (19)
by : : : '
eft) = =(1) - 2(1). (14) it i T e
Let u(t) be given by )
oy =1 Uf_l_z .. 01
uw(t) = G'2(t) = G'e(t) + G'z (1), 15 o 1
=G0 =G +Ge), a8 T o L
where G € R"*? isa constant matrix. S '
L Tn—t Op—1 On-1 1
Definition 2 System (9) is said to be robustly stabiliz-
able if there exists a linear memoryless state feedback o1 o2 o 1
control u(t) = G'z(t) such that the equilibrium point nol+l Tn-lkr o Tnei
z = 0 of the resulting closed-loop system is uniformly g2 | Tn-t+2 Tn-tyz v Tnoli2 1 21)
and asymptotically stable for all admissible uncertain : : o Pl
delays and uncertain parameters. ol-1  gl-2 . o, 1
L ) T and S are well known to be nonsingular in view of
4 Preiminaries the above assumptions. Here, let v be defined by
The 2n-dimensional system consisting of z(¢) € R" Se
ande(t) € R™ iswritten asfollows U= -1y (22)
(t) = A® — LC’ —AA() wll) Then, system (16) can be transformed into
BG' A+ BG' + AAN(1)
. S(A° — LC) st 0
0 —AA%() ’ o(t) = [ Z14 40 np | v()
+Z[O AA% (1 ]w(t—n(t)), (16) 0 T=1(A° 4+ BG)T
+H v (t) + H*v(t — 7;(t)), (23)
where w(t) = (¢'(t), (1))’ € R*". where H' and H? are given asfollows
Because of Assumption 1, it is possbleto choose
G € R™*? suchthat al theeigenvaluesof (A°+ BG') . 0 ~SAAY )T
arereal, negative and distinct. Likewise, itisalso pos- H = [ T-1BG'S-1 T=1AAV()T ] (29

sible to choose L € R"™*? such that all the eigenval-

uesof (A° — LC") arereal, negative and distinct. Let r .
G and L be chosen in such away. In addition, let =Y [ 0 —EAA Qi(t)T ] (25)
A, Az, -+, Ay and oy, o9, - - -, 0, besuch eigenvalues — |0 TTAAMMT
of (A° + BG') and (A° — LC"), respectively. Let T : _
and S be Vandermonde matrices constructed from A; Define A and X asfollows:
and o;, respectively, as follows: A = T YA+ BG)T = diag.(A, Ao, -+, An),
0 Sl g Y = S(AY- LC)ST =diag.(01, 02, -, 0,).
0 Let P! and P2 be defined as follows:
where Tl € kak, T2 € R(n—k)x(n—k), Sl € P1 B ¥ 0 (27)
R"=Dx("=1) gnd §2 € R'*! are given by 10 A
0 |S| AAZ|T] ]
1 1 a1 P = [ _ _ - ,(28)
N A T |BG'| S |77 AA%|T
= A A N , (18) where A A*° is given by
L e T 30 _ 10 r 2i0
M=l k=1 ke AAT = AATO )7 AAT0 (29)

ISSN: 1991-8763 468 Issue 9, Volume 4, September 2009



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

In addition, let P be defined by

P=-pl - p% (30)
Since|A + B| < |A| 4 |B|forany A, B € R"*", we
see that the following relation holds.
|H'| +|H? < P2, (31)
Now, we introduce the fundamental lemma which
playsacrucia roleto lead the main result.

Lemma 3 ([13]) If there exist 7" and .S which assure

Pe M, (32

then system (9) is robustly stabilizable.

Note that our problem has been reduced to finding 7’
and S that enable P to satisfy condition (32). In the
subsequent discussion, we consider the possibility of
choosing T" and S that assure P € M.

5 Main Results

In this section, we first introduce a novel configura-
tion with respect to the permissible | ocations of uncer-
tain entries. That means the stabilizability conditions
in [14] are extended with respect to the alowable |o-
cations of uncertain entries. Next, the main result is
given, which shows that if such developed conditions
are satisfied, then system (9) is robustly stabilizable.

First, we introduce a set of matrices Q(k,[) €
R™*™ asfollows:

Definition 4 Let k& and ! be fixed integers such that
0<k<n/2,0<l<n/2andn —2k—-2[4+3>0.
For these k and [, let Q(k, 1) = {D = (d;;) € R**"}
be a set of matrices with the following properties:
LIf1<i<k thend;; =0,
fore+1<j<2k—v+41.
2. Ifk—|—1§i§2k—1,thendij:0,
for2k —i+1<j3<e¢+41.
.12k <@ < n,thend;; =0,forl < j <2k—i+1.
4, |f2k—i—|—2§jSn—l—l—l,thendijzo,
forj—1<:<2n -2l —j+ 1.
5. Ifn—l—|—2§j§n,thendij:0,
for2n — 20— j4+1<i<j—1.

Note that the conditions in Definition 4 determine the
permissible locations of uncertain entries in the sys-
tem matrices. Now, we state the main result.

Theorem 5 If for fixed &£ and /,
AA* € Q(k, 1) (33)

then system (9) is robustly stabilizable.
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System (9) issaid to have a double triangular con-
figuration if the system satisfies condition (33). A
schematic view of the system having a double trian-
gular configuration is shown below. In fact, £ and
(n — [ + 1) indicate the positions of the apexes of a
doubletriangular configuration. We see from (34) that
adouble triangular configuration is obtained by com-
bining an up-low triangular configuration (1) with a
left-right triangular configuration (2). A comparison
with the stabilizability conditions in [14] shows that
the allowable uncertainty locations of a double trian-
gular configuration are more numerous than those of
atriangular configuration.

(34)

k n—101+1
o b ! i
00 0 0 0 0 0:ix * % *x %
x %« 0 0 0 0 0 *xisx *x % % x*
¥ x x 0 0 0 x =x* * ok ok ok X
* x x 0 0 0 *x =« x % ok x ok
* 0« 0.0 0 0 0 *i%x % * % x
# 000 0 0 0 0 0ix x x x
00000000 0 F %01
00 000O0O0O0iO0 00
0000O0O0DO0O0IO0O0O0 O0:
000 O0O0O0TO0ODTPO 0 0 « 0 0
0000 O0OO0UO0OO0i0 % x % 0
(00 000 0 0 0 b * % % *]|

Proof of Theorem 5: According to Lemma 3, the ex-

istence of 7" and S which assure P € M isinves
tigated in the rest of this section. On evaluating the
existence of 7" and S, it is important how to choose
the eigenvalues A;(i = 1,...,n) of (A° + BG') and
theeigenvalueso; (i = 1,...,n) of (A° — LC").

Here, let 1 be a positive number and let «; (i =
1,...,n) be al negative numbers that are different
from one another. Likewise, let 3;(i = 1,...,n) be
all negative numbers that are different from one an-
other. Let i be chosen much larger than all the entries
of AA3°. That means u is much larger than all the
upper bounds of uncertain entries. «;(i = 1,...,n)
are used for distinguishing eigenvalues A ; from one
another. Likewise, 3;(i = 1,...,n) are used for dis-
tinguishing eigenvalues ¢; from one another. Proper
way of choosing A; and ¢; are shown bel ow.

N=apt €0() (i=1,...,k),
M=ot eO(-1) (i=k+1,...,n-1),
N=apt €eO1) i=n—-1+1,...,n),

(35)
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o =Fipt €01) (i=1,...,k)
o, =Bpt €O(=1) (i=k+1,....,n-1),
o;=Bput €0() (i=n—1+1,...,n),

To complete the proof of Theorem 5, we should show

that if we choose A; and o; asin (35), then 7" and S

constructed from such A; and o; assure P € M.
Now, we can write 7" and S asfollows

L0 17
T = i—1 : (36)
L k;l -

T2:[T21‘T22],

[ 0 |1 0 | T
=L —i+1 JI[_ i=1 ||, (37
j=rrsullrey=ul
Sll
Sl = |: 512 :| ) (38)
n n
Sll — ... —l. -+ 0 7 (39)
) )
512 — —nl--- _7”.0 -+ 0 7 (40)
+1 |+
) )
52: 1 —j -+ 0 7 (41)

where 7?! and 7% denote (n — k) x (n — k — ) and
(n—k) x [ matrices, respectively. Inaddition, S'! and
S12 denotek x (n—1) and (n—k —1) x (n—1) matri-
ces, respectively. In the above notation, and

m/| denote a row vector and a column vector, whose

all entriesare functions of ;. of order m, respectively.
For convenience, we adopt such notation for matrices
in the subsequent discussion and neglect further ex-
planation when it is clear. The notations of (36) and
(37) meanthat all theentriesof the i-throw of 7%, 72!
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and 72 are functions of . of order (i — 1), (—i + 1)
and (7 — 1), respectively. The notations of (39), (40)
and (41) mean that all the entries of the j-th column of
St §12 and S? arefunctionsof 1. of order (n—1—j),
({—n+j)and (I—j), respectively. From therelations
between theroots and the coefficients of the character-
isticequationdet(A°+ BG'), wefindthat G/ € R?*"
has the following structure:

G =
Ok) -+ O -1 0 0
021
0 0 +% ?S(XU . 0(1)

(42)

Considering such structures of 7', S and G, it turns
out from the careful cal culation that each block matrix
in (28) isfurther decomposed into 9 block matrices as
follows

[T AA™|T| =
0 —k n—k—1
k-2 S| e
3k + 21
o o || RR+20—2n 0
(43)
|S|AA™|T| =
n—k 2n — k
n—l-1 -1 -2
2% + 1 k4l n—k
—n—1 n—1 -1
0 --- 0
20 + k 0 k1
. SN
. 0 - 0 |
(44)
T |BG||S7H =
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- 0 --- 0 -
l—n+2 n—2k—1
0 --- 0
A R [ R
ESE W k= ||| ko2

(45)

In the above notation, all the entries of each block ma-
trix are functions of x of the same order. In al these
(3 x 3)-block matrices, all blocks of the first, second,
and third row represent matrices with &, (n — k — ),
and [ rows, respectively, and all blocks of the first,
second, and third column represent matrices with &,
(n — k — 1), and [ columns, respectively.

Now, let P € R?"*?7in (30) be decomposed into
4 block matrices asfollows

Pll P12
P= , 46
[ Py Py ] (46)
where

P = -3 (47
Py = —|S|AAYT, (48)
Py = —|T7YBG&||S7Y, (49)
Py —A — |T7HAAY|T. (50)

It isapparent that P € M if and only if
PipeM, (51)
Py € M, (52)
Pyy — Py P' Py € M. (53)

Taking into account the fact that Py, is a diagona
matrix whose every entry is positive, we see that
Py € M. It remains to show that %, € M and
Py — P21P1_11P12 € M are satisfied.

The following lemma shown in [16] is useful for
verification of whether agiven matrix isan M-matrix.

Lemma6 ([16]) Let B € R"*™ be a diagonal ma-
trix whose every entry is positive, and let C' € R™*",
Let B and C' be decomposed into 9 block matrices as
follows:

B11 0 0 Cll 012 013
B=| 0|Ba| 0 |, C=|Cau|Cxn|Cxs|, (54)
0|0 [Bss ('31]|C32|Cs3
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Suppose that all the entries of each block matrix are
functions of 1 of the same order. Let all the entries of
B;; and C; belong to O(b;;) and O(c¢;;), respectively.
For sufficiently large p, if

bi1 > c11, (55)
baz > €22, (56)
bss > ¢33, (57)
bi1 > c12 — bz + ca1, (58)
bi1 > 13 — b3z + ¢31, (59)
bz > 23 — b3z + ¢32, (60)

by1 > max{cy2, (€13 — b3z + c32) } — ba2
+ max{ca1, (c23 — b3z + ¢31)}, (61)

then the matrix A = B — |C| is an M -matrix.

Using Lemma 6, we can deduce whether the ma-
trix whose entry represents the functional order is an
M-matrix. Taking into account the fact that A is a
diagonal matrix in which all diagonal entries belong
to O(1) from the first to the kth entry, O(—1) from
the (k + 1)th to the (n — {)th entry or O(1) from the
(n — [ + 1)th to the nth entry, we have the following
inequalities:

1 > 0, (62)
-1 > =2, (63)
1 > 0, (64)
> (k)= (-1)+ (k—2) = -1, (65)
> (n—k—1)—14 (3k+20—2n-2)
= —n+2k+20—-4, (66)
—1 > (2n—2k—20—2) — 1+ (2k 4 20— 2n)
= -3, (67)
1 > max{-k,-n+k+20-2}—-(-1)
+ max{k — 2,k — 5}
= —-n+2k+4+20-3, (68)

Usingn — 2k — 21+ 3 > 0, we seethat al theinequal -
ities (55)-(61) are satidied for P,,. Hence, it follows
from Lemma 6 that Py € M.

On theone hand, it is seen from the careful calcu-
lation that Py — Py P;" Py2 has the following order
structure:

P22—P21P1_11P12:—A—
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1 —k n—k—1
2n — 2k
k—2 —1 Tl o
3k +20-2n||Rk+ 2] —2n 1
Likewise, we have the following inequalities:
1 > 0, (70)
-1 > =2, (71)
1 > 0, (72)
> (k- (-D+k-2)=-1, (73
> (n—k—-1)—14+ (3k+2{—2n)
= —n+2k+20-2, (74)
—1 > (2n—2k—20—2) — 1+ (2k+ 20— 2n)
= _37 (75)
1 > max{-k,-n+k+20-2}—-(-1)
+ max{k — 2,k — 3}
= —-n+2k+4+20-3, (76)

Under the assumption of » — 2k — 21 + 3 > 0, we
see that al the inequalities (55)-(61) are satisfied for
Pyy — Py, P! Pry. Hence, it follows from Lemma 6
that Ppy — Py P! Pip € M.

Consequently, it follows from (51)-(53) that P €
M. Therefore, using Lemma 3, we can conclude that
system (9) isrobustly stabilizable.

6

6.1 Design of Controller

I Hlustrative Examples

An illustrative example is given here. Consider the
following system:

A%z (1) + AA )z (1)
+AAM W) (t — (1) + Bu(t),

y(t) = Ca(t), (77)
where () = 0.6(2.1 + sin(¢)),
01 00
e-froisl
00 00
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01 1 0
0 0 0 0
B= 0 0 ¢'= 0 0|’
1 0 01
sin(t) 0 cos(t) sin(t)
1 0 0 0 cos(t
AN = 5 0 0 0 0( ) ’
0 0 0 sin(t)
sin(3t) 0 cos(3t) sin(3¢)
1 0 0 0 cos(3t)
21 1
A (t) 2 0 0 0 0
0 0 0 sin(3t)

For the above system, the locations of the time-
varying system parameters satisfy condition (33) of
Theorem 5. Consequently, we see that system (77) is
robustly stabilizable.

Note that the upper bounds of the time-varying
system parameters such that the following inequality
holdsfor al t > ¢, are given asfollows

Al @] +]Aar (0] < 4%, (79)

where

A = (79)

o O O =
o O O O
o O O =
—_ O = =

We find that £ = 1 and [ = 1 from the structure of
Q(k, 1) asfollows:

n—1+1

AAP € Q(1,1) = (80)

oo o x — X
coc oo
c oo x
¥ O ¥ ¥

Using (35), we can choose the proper eigenvalues ) ;
and o; sothat 7" and S constructed from such A; and
o; assure P ¢ M.

Here, weset o;(i = 1,...,4) and 5;(i = 1, ..., 4)
as negative numbers shown below.

] = —0.67 Qg = —0.27 3 = —0.87 Oy = —1.07
ﬁl = —0.6, ﬁz = —-0.2, ﬁS = —0.8, ﬁ4 = —1.0.
(81)
 is chosen as a positive number that is much larger
than all the upper bounds of time-varying parameters:

w=20. (82)
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We obtain the following eigenval ues:

)\1 =01 = 127
)\3 = 03 = 0047

)\2 =03 = 0017

)\4 = 04 = 20. (83)

G and L can be found from the relations between the
eigenval uesand coefficients of the characteristic equa-
tiondet(A®+ BG') and det(A° — LC"), respectively.
For the eigenvaluesin (83), G and I are given asfol-
lows:

0 —12
-0.008 -1
G = —1.0004 0O ' (84)
—20.05 0
12.05 0
0.6004 0
L= 0.0048 1 (85)
0 20

Let 7" and S be constructed by A;(¢ = 1,...,4) and
oi(i = 1,...,4) in (83), respectively. Then, we can
caculate P and P~! asfollows

P11 P12 P13 P14 Pis Pie P17t Pis
P21 P22 P23 P24 P25 P2e P27 P28
P31 P32 P33 P34 P3s P3e P37 P38
pP= P41 P42 P43 Paa P45 P46 P47 P4s :
Ps1 Ps2 P53 Psa Pss Pse P57 Pss
Pe1 Pe2 P63 Pea Pes Pes  Per  Pes
pPri Pr2 Ptz Pra Prs Pre Prr Prs
L P81 P82 P83 Ps4 Pss Pse  Pst Pss
(86)
where
P11 =12, p1a = —9.49 X 10713, pj5 = —=9.51 x 10713,
p1a = 0,p15 = —144, p1g = —1.46, p17 = —6.01,
prs = —65280, pay = 9.13 x 10722, pyy = 0.01,
P23 = 4.54 x 10719, poy = 0, pas = —1.00 x 1074,
pas = —2.01 X 107°, pyr = —2.02 x 1077,
pos = —4.04,p31 = —1.36 X 1072, p3; = 0,
p33 = 0.04, p34 = 0, p35 = —0.02,
pas = —2.02 X 1077, pgr = —1.31 X 1074,
pag = —16.7, pg1 = 0, pag = 0, pa3 = 0, pag = 20,
pas = 0, pag = —1.00 x 1074, pyr = —0.02,
pag = —400, p5; = —0.08, ps2 = —66.8p53 = —66.9
psa = 0,ps55 = 11, psg = —0.01, ps7 = —0.04,
pss = —420, pe; = —9.30 X 1078, peg = —2.67,
pez = —1.00, pea = —33.4, pes = 0, peg = 0.01,
per = —0.004, pgg = —1200, p71 = —9.32 x 1076,
pro = —2.68, pr3 = —1.01, pry = —33.5, p75 = 0,
pre = —2.00 x 1074, pr7 = 0.04, prg = —801,
ps1 = —1.40 X 1078, pgy = —0.004, pg3 = —0.01,
pga = —0.05, pgs = 0, pgg = —2.51 x 1077,

par = —4.01 x 107%, pgg = 18.9,
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a1
a1
431
qa1
ds51
de1
qm1
L 481

q12
q22
q32
q42
52
d62
q72
qs2

q15
q25
435
qa5
ds5
de5
q7s
qss

q18
q28
q3s
qas
qs8
des
q7s
qss

(87)

a7
q27
q37
qa7
qs7
de7
qr7
qs7

d16
q26
q36
qa6
ds56
de6
q7e
qs6

q14
q24
q34
Gaq
G54
de4
qra
q84

q13
q23
433
qa3
q53
de63
q73
qs3

where

qi1 = 0.21, q12 = 5.49 x 10°, q15 = 7.04 x 10%,
14 = 2.68 X 10°, ¢15 = 17.9, 16 = 362,

qi7 = 801, 15 = 2.93 X 10°, g1 = 2.44 x 1074,
g2z = 1.21 X 10°, ga3 = 140, go4 = 5.48,

q25 = 0.03, g26 = 0.72, go7 = 1.64, g5 = 611,
g31 = 5.62 X 107%, g33 = 2.47 x 10%, g33 = 341,
q3a = 12.2,q35 = 0.08, g3 = 1.62, g37 = 3.64,
g3s = 1.34 X 10%, g4 = 6.93 x 1076, q4p = 32.5,

qas = 4.07, quq = 0.212, q45 = 9.78 X 1074, g4 = 0.02,

a7 = 0.05, g4 = 18.4, g51 = 0.01, g5 = 2.82 x 10,
gs53 = 3.66 X 10%, g4 = 136, g55 = 0.969, gs6 = 18.1,
qs7 = 40.6, gsg = 1.49 x 10%, gg; = 0.19,
G2 = 8.75 X 10°, ge3 = 1.09 x 10°, ggq4 = 4.37 x 103,
ges = 26.4, ggs = 651, ger = 1.26 x 103,

ges = 4.70 X 10°, gr1 = 0.04, g2 = 2.02 x 105,

gr3 = 2.54 x 10*, g7y = 1.01 x 103, ¢75 = 6.11,

g6 = 128, g77 = 315, g7s = 1.08 x 10°,

gs1 = 1.26 X 1077, gg2 = 0.59, gs3 = 0.07,

gsa = 0.003, gs5 = 1.78 X 1077, gs6 = 3.72 x 1074,
gs7 = 8.47 X 107%, ggs = 0.37.

From (86) and (87), it isobvious that all off-diagonal
entries of P are non-positive and that ”~! is a non-
negative matrix. Then it followsthat P € M. There-
fore, system (77) isrobustly stabilizable by construct-
ing the feedback gain G in (84) and the observer gain
in (85). In designing a stabilizing feedback gain, the
upper bounds of delays are assumed not to be known.
For that reason, the controller designed from the given
upper bounds of uncertain parametersisapplicablefor
any delays, however large they might be because the
stability condition used here is independent of time-
varying delays.

6.2 Network Configuration

Designing a network structure of information flow
arisesin many systems including communication sys-
tems, formation moving (flying) systems, molecular
biological systems, genetic systems, etc. Consider
two network structures shown below. For simplic-
ity, each subject X;(i = 1,---,7) isgoverned by the
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state equation #; = v;, where x; is the state variable
of X; and v; is the input of information flow. Let
X; — X denote that z,(¢) is employed in the in-
formation input v;(¢) of X;. Let X; ----> X; denote
that €;;2;(t — 7(t)) isemployed in theinformation in-
put v;, where ¢;; is an uncertain parameter.

Figure 2: Network?2

Network 1 (Figure 1) and Network 2 (Figure 2)
can be described by the following state equation:

@(t) = A% () + AALz(t — 7(t)) + Bu(t),

(1) = C'a(t), (89
where

[ 2 (t) ] 70 1L 000 0 07

o (t) 0010000

z3(t) 0001000

zt)=| z4(t) | ,A°=]00 0 0 1 0 0

5 (1) 00000T10

z6(1) 00000O0 1

| 27(t) ] 000000 O]
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vy

Il
— oo ocooo
coocoo— o

aQ

Il
coocoo o~
o~ ocoocoo

Therein, for Network 1 and Network 2, AA' is given
by (89) and (90), respectively.

0 00 0 g5 00
0 000 0 00
£31 0 0 O £35 0 0
AA'=| 0 000 0 0 0 (89)
0 000 0 00
0 000 0 00
L 0 0 0 0 75 0 0
"0 000 0 0 0]
0 000 0 00
£31 0 0 O £35 0 0
AA'=| 0 000 0 0 0 (90)
51 000 0 00
0 000 0 00
L 0 0 0 0 75 0 0
It is seen from (89) and (90) that
AAYIn(89) € Q(2,2), (91)

AAYIn(90) ¢ Q(k, 1) foranyk,l. (92)

Therefore, we see from (91) and (92) that Network 1
has a double triangular configuration, while Net-
work 2 doesnot have a double triangular configura-
tion. Consequently, we see from Theorem 5 that Net-
work 1 can be stabilized by means of linear memo-
ryless state feedback control however large the given
boundsof uncertain parameters and time delays might
be.

7 Conclusion

The stabilization problem of linear uncertain delay
systems using linear memoryless state feedback con-
trol was investigated in this paper. In particular, we
investigated the permissible locations of uncertain en-
tries and delays, both of which are allowed to take
unlimited large values for the stabilization. It was
shown that if uncertain entries enter the system ma-
trices in a way to form a particular geometric pattern
called adoubletriangular configuration, then the sys-
tem is stabilizable irrespectively of both the bounds of
uncertain parameters and delays. It was found that a
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double triangular configuration derived here consists
of both an up-low triangular form and a right-left tri-
angular form. Hence, it was seen that the alowable
uncertainty locations of adoubletriangular configura-
tion are more numerous than those of atriangular con-
figuration. The triangular configuration shown here
has a strong similarity to an antisymmetric stepwise
configuration by Wei [11]. To develop the conditions
obtained here into the ones of antisymmetric stepwise
configurations is a problem to be considered next.
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