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Abstract: This paper investigates the feedback stabilization problem of linear time-varying uncertain delay systems
using linear memoryless state feedback control. Each uncertain parameter and each delay under consideration may
take arbitrarily large values. In such a situation, the locations of uncertain entries in the system matrices play an
important role. It has been shown that if a system has a particular configuration called a triangular configuration,
then the system is stabilizable irrespectively of the given bounds of uncertain variations. In this paper, so far ob-
tained stabilizability conditions are developed into the ones called a double triangular configuration. The objective
of this paper is to show that if a system has such an extended configuration, then the system is also stabilizable
independently of both the bounds of uncertain parameters and time delays. An illustrative example is presented to
verify the effectiveness of the obtained result.

Key–Words: Stabilization, Linear systems, Time delay, Uncertain systems, � -matrix

1 Introduction
The robust stabilization problem of uncertain systems
has attracted increasing interest [1]-[3]. This is mainly
due to the fact that many dynamical systems contain a
certain amount of uncertainties. Differential equations
with time delay arise in many areas of applied math-
ematics [4]-[6], because in most instances physical,
chemical, biological or economical phenomena natu-
rally depend not only on the present state but also on
some past occurrences. Then, this paper examines the
stabilization problem of linear time-varying uncertain
delay systems by means of linear memoryless state
feedback control.

The systems under consideration contain uncer-
tain entries in the system matrices and uncertain de-
lays in the state variables. Each value of uncertain
entries and delays may vary with time independently
in an arbitrarily large bound. Under this situation, the
locations of uncertain entries in the system matrices
play an important role. This paper presents investiga-
tion of the permissible locations of uncertain entries,
which are allowed to take unlimited large values, for
the stabilization using linear state feedback control.

It is useful to classify the existing results on the
stabilization of uncertain systems into two categories.
The first category includes several results [7]-[10]
which provide the stabilizability conditions depend-
ing on the bounds of uncertain parameters. The results

in the second category [11]-[14] provide the stabiliz-
ability conditions that are independent of the bounds
of uncertain parameters but which depend on their lo-
cations. This paper specifically addresses the second
category.

For uncertain systems with delays, the Lya-
punov stability approach with the Krasovskii-based or
Razumikhin-based method is a commonly used tool.
The stabilization problem has been reduced to solv-
ing linear matrix inequalities (LMI) [7]-[9]. However,
LMI conditions fall into the first category; for this rea-
son, they are often used to determine the permissible
bounds of uncertain parameters for the stabilization.
When the bounds of uncertain parameter values ex-
ceed a certain value, LMI solver becomes infeasible.
In such cases, guidelines for redesigning the controller
are usually lacking.

On the other hand, the stabilizability conditions in
the second category can be verified easily merely by
examining the uncertainty locations in given system
matrices. Once a system satisfies the stabilizability
conditions, a stabilizing controller can be constructed,
irrespective of the given bounds of uncertain varia-
tions. We can redesign the controller for improving
robustness merely by modifying the design parame-
ter when the uncertain parameters exceed the upper
bounds given beforehand.

In the second category, the stabilization problem
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of linear time-varying uncertain systems without de-
lays was studied by Wei [11]. The stabilizability con-
ditions have a particular geometric configuration with
respect to the permissible locations of uncertain en-
tries. Using the concept of antisymmetric stepwise
configuration (ASC) [11], Wei proved that a linear
time-varying uncertain system is stabilizable indepen-
dently of the given bounds of uncertain variations us-
ing linear state feedback control if and only if the sys-
tem has an ASC. Wei derived the successful result on
the stabilization problem of systems without delays,
however, his method [11] is inapplicable to systems
that contain delays in the state variables.

On the one hand, based on the properties of an
� -matrix, Amemiya [12] developed the conditions
for the stabilization of linear time-varying uncertain
systems with time-varying delays using linear memo-
ryless state feedback control. The conditions obtained
in [12] show a similar configuration to an ASC, but
the allowable uncertainty locations are fewer than in
an ASC by one step.

The aforementioned results presume that all state
variables are accessible for designing a controller.
However, it is usual that the state variables of the sys-
tems are measured through the outputs and hence only
limited parts of them can be used directly. The output
feedback stabilization of linear uncertain delay sys-
tems with limited measurable state variables has been
investigated in [13] [14]. The conditions so far ob-
tained show that if a system has a particular configu-
ration called a triangular configuration, then the sys-
tem is stabilizable independently of the given bounds
of uncertain variations. The triangular configuration
consists of two kinds of triangular forms, which can
be classified into up-low form and left-right form.
Both triangular forms are shown below. In this paper,
the notation � is always used to denote the permissible
location of an uncertain entry.

�
���������������

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

�
���������������

(1)

Triangular configuration with up-low form

�
���������������

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

�
���������������

(2)

Triangular configuration with left-right form

The up-low form was derived based on the assumption
that a system has one-input and two-outputs, while the
left-right form was derived under the assumption that
a system has two-inputs and one-output.

In this paper, we develop so far obtained stabi-
lizability conditions by introducing a novel configura-
tion. The objective of this paper is to show if a system
has such an extended configuration, then the system
is stabilizable irrespectively of the given bounds of
uncertain variations. The configuration derived here
consists of both triangular configurations with up-low
form and left-right form. To achieve our objective
here, we assume that a system has two-inputs and two-
outputs. The stabilization problem discussed here can
be reduced to finding the proper variable transforma-
tion such that the transformed system satisfies an � -
matrix stability criterion. Finding transformations that
lead to the � -matrix structure is a very difficult task
for us because it requires troublesome hand-written
calculations. Nevertheless, this paper provides the
successful manner of constructing such a proper vari-
able transformation.

This paper is organized as follows. Some nota-
tions and terminology are given in Sec. 2. The system
considered here is defined in Sec. 3. In Sec. 4, some
preliminary results are introduced to state the present
problem. The main result is provided in Sec. 5. The il-
lustrative examples are shown in Sec. 6. Finally, some
concluding remarks are presented in Sec. 7.

2 Notations and Terminology
First, some notations and terminology used in the sub-
sequent description are given. For �� � � �

� or
��� � ����, every inequality between � and � or
� and � such as � � � or � � � indicates that it
is satisfied componentwise by � and � or � and �.
If � � ���� satisfies � � �, � is called a non-
negative matrix. The determinant and the transpose
of � � �

��� are denoted by ������ and ��, re-
spectively. For � � ���� ���� ���� � ��, ��� � ��
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is defined as ��� � ������ ��� �����
�. Also for � �

����� � �
���, ��� denotes a matrix with ���� � as its

�	� 
� entries. Let �	���� � �� denote a diagonal matrix.
Let ��� �	, �,� � � be an interval in �. The set of
all continuous or piecewise continuous functions with
domain ��� �	 and range �� is denoted by ����� �	 or
	���� �	, respectively. We denote it simply by � � or
	� if the domain is�.

The notation for a class of functions is introduced
below. Let 
��� � �� and let � � �be a constant. If

��� satisfies the conditions


�� 
��
�����

��� ������

��� �
�


�� 
��
�����

��� ����
����

��� � 

(3)

for any positive scalar � � �, then 
��� is called a
function of order �, and we denote this as follows:

����
���� � �� (4)

The set of all �� functions of order � is denoted by
����,

���� �
�

����
��� � ��� ����
���� � �

	
� (5)

Also, it is worth to note that� can be a negative num-
ber and that the following relations between 
 ���� �
����� and 
���� � ����� hold:

����
����� 
����� � ������� ���� (6)

����
����� 
����� � �� ���� (7)

����
�����
����� � �� 
��� (8)

A real square matrix all of whose off-diagonal entries
are non-positive is called an � -matrix if it is non-
singular and its inverse matrix is non-negative. The
set of all � -matrices is denoted by �.

3 System Description

Let � be a fixed positive integer. The system con-
sidered here is given by a delay differential equation
defined on � � �� for � � ����
� as follows:

����� � ������ � ����������

�
�


���

����������
 ������ �������

���� � ������� (9)

with an initial curve � � 	���� 
 ��� ��	. Here, ��,
������, ������� �	 � �� ���� �� are all real �� � ma-
trices, where � is a fixed positive integer; also, �� is

a known constant matrix. Furthermore, ������ and
������� �	 � �� ���� �� are uncertain coefficient matri-
ces and may vary with � � ����
�. Other variables
are as follows: ���� � �� is a control variable and
� � ���� is a known constant matrix. ���� � �� is
an output variable and � � ���� is a known constant
matrix.

In addition, all ����� �	 � �� ���� �� are piecewise
continuous functions and are uniformly bounded, i.e.,
for a non-negative constant �� they satisfy

� � ����� � �� �	 � �� ���� �� (10)

for all � � ��. The upper bound �� can be ar-
bitrarily large and is not necessarily assumed to be
known. It is assumed that all the entries of ������
and ������� are piecewise continuous functions and
are uniformly bounded, i.e., for non-negative constant
matrices ���� and ����� � ����, they satisfy��������

�� � �����
���������

�� � ������ (11)

for all � � ��. The upper bound of each entry can
independently take an arbitrarily large value, but each
is assumed to be known.

Assumption 1 Because the system must be control-
lable and observable, we assume that ��, � �
���� ��� � ���� and � � ���� ��� � ���� are given
as follows:

�� �

�
����

� � � �

�
. . . . . . �

� � � �
� � � �

�
���� � �� �

�
����

�
...
�
�

�
���� �

�� � ��� ���� �� �� �� ���� ����
�� � ��� �� ���� ����
�� � ��� ���� �� �� �� ���� ����

(12)

where all the entries of � are equal to zero except
that the first entry and the �th entry of � � and �� are
equal to �, respectively. Likewise, all the entries of
� are equal to zero except that the first entry and the
�� 
 � � ��th entry of �� and �� are equal to �, re-
spectively. � and �� 
 � � �� have strong relations
to the configuration of uncertain entries and they are
defined in the subsequent discussion.

It is seen from [15] that, for a certain value of uncer-
tain entry, the system might lose the controllability or
the observability without Assumption 1.

Next, we consider the following system:

����� � ��� 
  ������� �  ���� � ������ (13)

where ���� � �� is an auxiliary state variable and
 � ���� is a constant matrix. This is an observer in
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the most basic sense. Our objective is to find a con-
troller for stabilizing the overall ��-dimensional sys-
tem consisting of (9) and (13). Let !��� be defined
by

!��� � ����
 ����� (14)

Let ���� be given by

���� � "����� � "�!��� �"������ (15)

where " � ���� is a constant matrix.

Definition 2 System (9) is said to be robustly stabiliz-
able if there exists a linear memoryless state feedback
control ���� � "����� such that the equilibrium point
� � � of the resulting closed-loop system is uniformly
and asymptotically stable for all admissible uncertain
delays and uncertain parameters.

4 Preliminaries

The ��-dimensional system consisting of ���� � ��

and !��� � �� is written as follows:

�#��� �

�
�� 
  �� 
������
�"� �� ��"� �������

�
#���

�
�


���

�
� 
�������
� �������

�
#��
 ������� (16)

where #��� � �!����� ������� � ���.
Because of Assumption 1, it is possible to choose

" � ���� such that all the eigenvalues of �����"��
are real, negative and distinct. Likewise, it is also pos-
sible to choose  � ���� such that all the eigenval-
ues of ��� 
  ��� are real, negative and distinct. Let
" and  be chosen in such a way. In addition, let
$�� $�� � � � � $� and %�� %�� � � � � %� be such eigenvalues
of ��� � �"�� and ��� 
  ���, respectively. Let &
and ' be Vandermonde matrices constructed from $�
and %�, respectively, as follows:

& �

�
& � �
� & �

�
� ' �

�
'� �
� '�

�
� (17)

where & � � �
���, & � � �

�����������, '� �
�
���	�����	� and '� � �	�	 are given by

& � �

�
������

� � ��� �
$� $� ��� $�
$�� $�� ��� $��
...

... ���
...

$���� $���� ��� $���
�

�
������
� (18)

& � �

�
������

� � ��� �
$��� $��� ��� $�
$���� $���� ��� $��
...

... ���
...

$�����
��� $�����

��� ��� $������

�
������
� (19)

'� �

�
����
%��	��� %��	��� ��� %� �

%��	��� %��	��� ��� %� �
...

... ���
...

...
%��	����	 %��	����	 ��� %��	 �

�
���� � (20)

'� �

�
����
%	����	�� %	����	�� ��� %��	�� �

%	��
��	�� %	��

��	�� ��� %��	�� �
...

... ���
...

...
%	��� %	��� ��� %� �

�
���� � (21)

& and ' are well known to be nonsingular in view of
the above assumptions. Here, let ( be defined by

( �

�
'!

&���

�
� (22)

Then, system (16) can be transformed into

�(��� �

�
'��� 
  ���'�� �

� &����� � �"��&

�
(���

�)�(��� �)�(��
 ������� (23)

where )� and )� are given as follows:

)� �

�
� 
'������&

&���"�'�� &��������&

�
� (24)

)� �
�


���

�
� 
'�������&
� &���������&

�
� (25)

Define � and � as follows:

� � &����� ��"��& � diag.�$�� $�� � � � � $���
� � '��� 
  ���'�� � diag.�%�� %�� � � � � %���

(26)
Let * � and * � be defined as follows:

* � �

�
� �
� �

�
� (27)

* � �

�
� �'����� �& ���&���� ��"�� ��'���� ��&�������� �& �

�
� (28)

where ���� is given by

���� � ���� �

�

���
������ (29)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tomoaki Hashimoto, Takashi Amemiya

ISSN: 1991-8763 468 Issue 9, Volume 4, September 2009



In addition, let * be defined by

* � 
* � 
 * �� (30)

Since ����� � ���� ��� for any ��� � ����, we
see that the following relation holds.

�)��� �)�� � * �� (31)

Now, we introduce the fundamental lemma which
plays a crucial role to lead the main result.

Lemma 3 ([13]) If there exist & and ' which assure

* � �� (32)

then system (9) is robustly stabilizable.

Note that our problem has been reduced to finding &
and ' that enable * to satisfy condition (32). In the
subsequent discussion, we consider the possibility of
choosing & and ' that assure * � �.

5 Main Results
In this section, we first introduce a novel configura-
tion with respect to the permissible locations of uncer-
tain entries. That means the stabilizability conditions
in [14] are extended with respect to the allowable lo-
cations of uncertain entries. Next, the main result is
given, which shows that if such developed conditions
are satisfied, then system (9) is robustly stabilizable.

First, we introduce a set of matrices ���� �� �
�

��� as follows:

Definition 4 Let � and � be fixed integers such that
� � � � ���, � � � � ��� and �
 ��
 ��� � � �.
For these � and �, let ���� �� � �+ � ����� � �

����
be a set of matrices with the following properties:
1. If � � 	 � �, then ��� � �,

for 	� � � 
 � �� 
 	� �.
2. If � � � � 	 � ��
 �, then ��� � �,

for �� 
 	� � � 
 � 	� �.
3. If �� � 	 � �, then ��� � �, for � � 
 � ��
	��.
4. If �� 
 	� � � 
 � � 
 � � �, then ��� � �,

for 
 
 � � 	 � ��
 �� 
 
 � �.
5. If � 
 � � � � 
 � �, then ��� � �,

for ��
 ��
 
 � � � 	 � 
 
 �.

Note that the conditions in Definition 4 determine the
permissible locations of uncertain entries in the sys-
tem matrices. Now, we state the main result.

Theorem 5 If for fixed � and �,

���� � ���� �� (33)

then system (9) is robustly stabilizable.

System (9) is said to have a double triangular con-
figuration if the system satisfies condition (33). A
schematic view of the system having a double trian-
gular configuration is shown below. In fact, � and
�� 
 � � �� indicate the positions of the apexes of a
double triangular configuration. We see from (34) that
a double triangular configuration is obtained by com-
bining an up-low triangular configuration (1) with a
left-right triangular configuration (2). A comparison
with the stabilizability conditions in [14] shows that
the allowable uncertainty locations of a double trian-
gular configuration are more numerous than those of
a triangular configuration.

k �
 �� �
� ��

����������������������

� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

�
����������������������

(34)

Proof of Theorem 5: According to Lemma 3, the ex-
istence of & and ' which assure * � � is inves-
tigated in the rest of this section. On evaluating the
existence of & and ', it is important how to choose
the eigenvalues $��	 � �� ���� �� of ��� � �"�� and
the eigenvalues %��	 � �� ���� �� of ��� 
  ���.

Here, let � be a positive number and let ,��	 �
�� ���� �� be all negative numbers that are different
from one another. Likewise, let -��	 � �� ���� �� be
all negative numbers that are different from one an-
other. Let � be chosen much larger than all the entries
of ����. That means � is much larger than all the
upper bounds of uncertain entries. , ��	 � �� ���� ��
are used for distinguishing eigenvalues $ � from one
another. Likewise, -��	 � �� ���� �� are used for dis-
tinguishing eigenvalues % � from one another. Proper
way of choosing $� and %� are shown below.

$� � ,��
� � ���� �	 � �� � � � � ���

$� � ,��
�� � ��
�� �	 � � � �� � � � � �
 ���

$� � ,��
� � ���� �	 � � 
 � � �� � � � � ���

(35)
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%� � -��
� � ���� �	 � �� � � � � ���

%� � -��
�� � ��
�� �	 � � � �� � � � � �
 ���

%� � -��
� � ���� �	 � � 
 � � �� � � � � ���

To complete the proof of Theorem 5, we should show
that if we choose $� and %� as in (35), then & and '
constructed from such $� and %� assure * � �.

Now, we can write & and ' as follows:

& � �

�
�������

�
...

	
 �
...

� 
 �

�
�������
� (36)

& � �


& �� & ��

�
�

�

�
�������

� �
...

...

	� � 	
 �

...
...

� 
 � � � �
 � 
 �

�
�������
� (37)

'� �

�
'��

'��

�
� (38)

'�� �

�
���

�

�

�

� � �
�

�




� � � �

�
��� � (39)

'�� �

�
���

�

�
��

� � �
�

�
�


� � � �

�
��� � (40)

'� �

�
��� �


�
� � � �




� � � �

�
��� � (41)

where & �� and & �� denote ��
 ��� ��
 � 
 �� and
��
���� matrices, respectively. In addition, ' �� and
'�� denote ����
 �� and ��
�
 �����
 �� matri-
ces, respectively. In the above notation, � and

� denote a row vector and a column vector, whose

all entries are functions of � of order �, respectively.
For convenience, we adopt such notation for matrices
in the subsequent discussion and neglect further ex-
planation when it is clear. The notations of (36) and
(37) mean that all the entries of the 	-th row of & �, & ��

and & �� are functions of � of order �	
 ��, �
	 � ��
and �	 
 ��, respectively. The notations of (39), (40)
and (41) mean that all the entries of the 
-th column of
'��, '�� and '� are functions of � of order ��
�

�,
��
��
� and ��

�, respectively. From the relations
between the roots and the coefficients of the character-
istic equation ��������"��, we find that"� � ����

has the following structure:

"� ��
�����

���� � � � ���� 
� � � � � � � � � � � �

� � � � �
����
��

��

� � �

���


��
���� � � � ����

�
����� �

(42)

Considering such structures of & , ' and " �, it turns
out from the careful calculation that each block matrix
in (28) is further decomposed into � block matrices as
follows:
��&�������� �& � ��
����������������

� 
� �
 � 
 �

� 
 � 
� ��
 ��

�� 
 �

�� � ��

��
 � �� � �� 
 �� �

�
����������������

�

(43)

�'����� �& � ��
����������������

�
 �
 �
� 
 �

� 
 �

�� 
 �

� 
 �

�� � �

� 
 �

� � �

�
 �

�
 �

� 
 �

� � � � �
... � � �

...
� � � � �

�� � �

�
 � �
 � 
 �

�
����������������

�

(44)

��&���� ���"��� ��'���� �
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�
����������������

�
 �� � �
 �� 
 �

� � � � �
... � � �

...
� � � � �

� � �

� 
 �

� 
 �

� 
 �

� 
 � 
 ��

�� � ��

��

� � �
 � � 
 � � �

�
����������������

�

(45)

In the above notation, all the entries of each block ma-
trix are functions of � of the same order. In all these
��� ��-block matrices, all blocks of the first, second,
and third row represent matrices with �, �� 
 � 
 ��,
and � rows, respectively, and all blocks of the first,
second, and third column represent matrices with �,
��
 � 
 ��, and � columns, respectively.

Now, let * � ������ in (30) be decomposed into
� block matrices as follows:

* �

�
*�� *��
*�� *��

�
� (46)

where

*�� � 
�� (47)

*�� � 
�'������& �� (48)

*�� � 
�&�����"���'���� (49)

*�� � 
�
 �&��������& �� (50)

It is apparent that * � � if and only if

*�� � �� (51)

*�� � �� (52)

*�� 
 *��*
��
�� *�� � �� (53)

Taking into account the fact that *�� is a diagonal
matrix whose every entry is positive, we see that
*�� � �. It remains to show that *�� � � and
*�� 
 *��*

��
�� *�� � � are satisfied.

The following lemma shown in [16] is useful for
verification of whether a given matrix is an� -matrix.

Lemma 6 ([16]) Let � � ���� be a diagonal ma-
trix whose every entry is positive, and let � � ����.
Let � and � be decomposed into � block matrices as
follows:

� �

�
�
��� � �

� ��� �

� � ���

�
� � � �

�
�
��� ��� ���

��� ��� ���

��� ��� ���

�
� � (54)

Suppose that all the entries of each block matrix are
functions of � of the same order. Let all the entries of
��� and��� belong to������ and������, respectively.
For sufficiently large �, if

��� � ���� (55)

��� � ���� (56)

��� � ���� (57)

��� � ��� 
 ��� � ���� (58)

��� � ��� 
 ��� � ���� (59)

��� � ��� 
 ��� � ���� (60)

��� � �������� ����
 ��� � ����� 
 ���
��������� ����
 ��� � ������ (61)

then the matrix � � � 
 ��� is an� -matrix.

Using Lemma 6, we can deduce whether the ma-
trix whose entry represents the functional order is an
� -matrix. Taking into account the fact that � is a
diagonal matrix in which all diagonal entries belong
to ���� from the first to the �th entry, ��
�� from
the �� � ��th to the �� 
 ��th entry or ���� from the
�� 
 � � ��th to the �th entry, we have the following
inequalities:

� � �� (62)


� � 
�� (63)

� � �� (64)

� � �
��
 �
�� � ��
 �� � 
�� (65)

� � ��
 � 
 ��
 � � ���� ��
 ��
 ��

� 
� � �� � ��
 �� (66)


� � ���
 �� 
 ��
 ��
 � � ���� ��
 ���

� 
�� (67)

� � ����
��
�� � � ��
 �� 
 �
��

������ 
 �� �
 ��

� 
� � �� � ��
 �� (68)

Using �
��
���� � �, we see that all the inequal-
ities (55)-(61) are satisfied for *��. Hence, it follows
from Lemma 6 that *�� � �.

On the one hand, it is seen from the careful calcu-
lation that *�� 
 *��*

��
�� *�� has the following order

structure:

*�� 
 *��*
��
�� *�� � 
�
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�
����������������

� 
� � 
 � 
 �

� 
 � 
�
��
 ��

�� 
 �

�� � ��
�� �� � �� 
 �� �

�
����������������

�

(69)

Likewise, we have the following inequalities:

� � �� (70)


� � 
�� (71)

� � �� (72)

� � �
��
 �
�� � ��
 �� � 
�� (73)

� � ��
 � 
 ��
 � � ���� ��
 ���

� 
� � �� � ��
 �� (74)


� � ���
 �� 
 ��
 ��
 � � ���� ��
 ���

� 
�� (75)

� � ����
��
�� � � ��
 �� 
 �
��

������ 
 �� �
 ��

� 
� � �� � ��
 �� (76)

Under the assumption of � 
 �� 
 �� � � � �, we
see that all the inequalities (55)-(61) are satisfied for
*�� 
 *��*

��
�� *��. Hence, it follows from Lemma 6

that *�� 
 *��*
��
�� *�� � �.

Consequently, it follows from (51)-(53) that * �
�. Therefore, using Lemma 3, we can conclude that
system (9) is robustly stabilizable.

6 Illustrative Examples

6.1 Design of Controller

An illustrative example is given here. Consider the
following system:

����� � ������ � ����������

�����������
 ������ � ������

���� � ������� (77)

where ����� � �������� 
������,

�� �

�
���

� � � �
� � � �
� � � �
� � � �

�
��� �

� �

�
���

� �
� �
� �
� �

�
��� � � �

�
���

� �
� �
� �
� �

�
��� �

������ �
�

�

�
���


����� �  !
��� 
�����
� � �  !
���
� � � �
� � � 
�����

�
��� �

������� �
�

�

�
���


������ �  !
���� 
������
� � �  !
����
� � � �
� � � 
������

�
��� �

For the above system, the locations of the time-
varying system parameters satisfy condition (33) of
Theorem 5. Consequently, we see that system (77) is
robustly stabilizable.

Note that the upper bounds of the time-varying
system parameters such that the following inequality
holds for all � � �� are given as follows:

��������
�� � ���������

�� � ���� (78)

where

��� "�

�
���

� � � �
� � � �
� � � �
� � � �

�
��� � (79)

We find that � � � and � � � from the structure of
���� �� as follows:

���� � ���� �� �

k �
 � � �
� ��

���
� � � �

� � � �
� � � �
� � � �

�
���

(80)

Using (35), we can choose the proper eigenvalues $ �

and %� so that & and ' constructed from such $� and
%� assure * � �.

Here, we set ,��	 � �� ���� �� and -��	 � �� ���� ��
as negative numbers shown below.

,� � 
���� ,� � 
���� ,� � 
��#� ,	 � 
����
-� � 
���� -� � 
���� -� � 
��#� -	 � 
����

(81)
� is chosen as a positive number that is much larger
than all the upper bounds of time-varying parameters:

� � ��� (82)
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We obtain the following eigenvalues:

$� � %� � ��� $� � %� � �����
$� � %� � ����� $	 � %	 � ���

(83)

" and  can be found from the relations between the
eigenvalues and coefficients of the characteristic equa-
tion ��������"�� and ������
 ���, respectively.
For the eigenvalues in (83), " and  are given as fol-
lows:

" �

�
���

� 
��

����# 
�

������ �

����� �

�
��� � (84)

 �

�
���

����� �
������ �
�����# �

� ��

�
��� � (85)

Let & and ' be constructed by $��	 � �� ���� �� and
%��	 � �� ���� �� in (83), respectively. Then, we can
calculate * and *�� as follows:

* �

�
�����������

.�� .�� .�� .�	 .�
 .�� .�� .�


.�� .�� .�� .�	 .�
 .�� .�� .�


.�� .�� .�� .�	 .�
 .�� .�� .�


.	� .	� .	� .		 .	
 .	� .	� .	


.
� .
� .
� .
	 .

 .
� .
� .



.�� .�� .�� .�	 .�
 .�� .�� .�


.�� .�� .�� .�	 .�
 .�� .�� .�


.
� .
� .
� .
	 .

 .
� .
� .



�
�����������
�

(86)
where

.�� � ��� .�� � 
����� ������ .�� � 
����� ������

.�	 � �� .�
 � 
���� .�� � 
����� .�� � 
�����

.�
 � 
���#�� .�� � ����� ������ .�� � �����

.�� � ����� ������ .�	 � �� .�
 � 
����� ���	�

.�� � 
����� ����� .�� � 
����� ���
�

.�
 � 
����� .�� � 
����� ������ .�� � ��

.�� � ����� .�	 � �� .�
 � 
�����

.�� � 
����� ���
� .�� � 
����� ���	�

.�
 � 
���$� .	� � �� .	� � �� .	� � �� .		 � ���

.	
 � �� .	� � 
����� ���	� .	� � 
�����

.	
 � 
���� .
� � 
���#� .
� � 
���#.
� � 
����

.
	 � �� .

 � ��� .
� � 
����� .
� � 
�����

.

 � 
���� .�� � 
����� ����� .�� � 
���$�

.�� � 
����� .�	 � 
����� .�
 � �� .�� � �����

.�� � 
������ .�
 � 
����� .�� � 
����� �����

.�� � 
���#� .�� � 
����� .�	 � 
����� .�
 � ��

.�� � 
����� ���	� .�� � ����� .�
 � 
#���

.
� � 
����� ���
� .
� � 
������ .
� � 
�����

.
	 � 
����� .

 � �� .
� � 
����� �����

.
� � 
����� ����� .

 � �#���

*�� �

�
�����������

/�� /�� /�� /�	 /�
 /�� /�� /�

/�� /�� /�� /�	 /�
 /�� /�� /�

/�� /�� /�� /�	 /�
 /�� /�� /�

/	� /	� /	� /		 /	
 /	� /	� /	

/
� /
� /
� /
	 /

 /
� /
� /


/�� /�� /�� /�	 /�
 /�� /�� /�

/�� /�� /�� /�	 /�
 /�� /�� /�

/
� /
� /
� /
	 /

 /
� /
� /



�
�����������
�

(87)
where

/�� � ����� /�� � ����� ��
� /�� � $���� ��	�
/�	 � ���#� ���� /�
 � �$��� /�� � ����
/�� � #��� /�
 � ����� ��
� /�� � ����� ���	�
/�� � ����� ���� /�� � ���� /�	 � ���#�
/�
 � ����� /�� � ��$�� /�� � ����� /�
 � ����
/�� � ����� ���	� /�� � ���$� ���� /�� � ����
/�	 � ����� /�
 � ���#� /�� � ����� /�� � �����
/�
 � ����� ���� /	� � ����� ����� /	� � �����
/	� � ���$� /		 � ������ /	
 � ��$#� ���	� /	� � �����
/	� � ����� /	
 � �#��� /
� � ����� /
� � ��#�� ��	�
/
� � ����� ���� /
	 � ���� /

 � ������ /
� � �#���
/
� � ����� /

 � ����� ��	� /�� � �����
/�� � #�$�� ��
� /�� � ����� ��
� /�	 � ���$� ����
/�
 � ����� /�� � ���� /�� � ����� ����
/�
 � ��$�� ��
� /�� � ����� /�� � ����� ��
�
/�� � ����� ��	� /�	 � ����� ���� /�
 � �����
/�� � ��#� /�� � ���� /�
 � ���#� ��
�
/
� � ����� ����� /
� � ����� /
� � ���$�
/
	 � ������ /

 � ��$#� ���
� /
� � ��$�� ���	�
/
� � #��$� ���	� /

 � ���$�

From (86) and (87), it is obvious that all off-diagonal
entries of * are non-positive and that * �� is a non-
negative matrix. Then it follows that * � �. There-
fore, system (77) is robustly stabilizable by construct-
ing the feedback gain " in (84) and the observer gain
in (85). In designing a stabilizing feedback gain, the
upper bounds of delays are assumed not to be known.
For that reason, the controller designed from the given
upper bounds of uncertain parameters is applicable for
any delays, however large they might be because the
stability condition used here is independent of time-
varying delays.

6.2 Network Configuration

Designing a network structure of information flow
arises in many systems including communication sys-
tems, formation moving (flying) systems, molecular
biological systems, genetic systems, etc. Consider
two network structures shown below. For simplic-
ity, each subject 0��	 � �� � � � � $� is governed by the
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state equation ��� � (�, where �� is the state variable
of 0� and (� is the input of information flow. Let
0� 
� 0� denote that ����� is employed in the in-
formation input (���� of 0� . Let 0� � � � ��0� denote
that 1������
 ����� is employed in the information in-
put (� , where 1�� is an uncertain parameter.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2X

3X

1X

5X 4X

7X

6X

Figure 1: Network1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2X

3X

1X

5X 4X

7X

6X

Figure 2: Network2

Network 1 (Figure 1) and Network 2 (Figure 2)
can be described by the following state equation:

����� � ������ � ������
 ����� �������
���� � �������

(88)

where

���� �

�
���������

�����
�����
�����
�	���
�
���
�����
�����

�
���������
� �� �

�
���������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
���������
�

� �

�
���������

� �
� �
� �
� �
� �
� �
� �

�
���������
� � �

�
���������

� �
� �
� �
� �
� �
� �
� �

�
���������
�

Therein, for Network 1 and Network 2, ��� is given
by (89) and (90), respectively.

��� �

�
���������

� � � � 2�
 � �
� � � � � � �
2�� � � � 2�
 � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � 2�
 � �

�
���������
� (89)

��� �

�
���������

� � � � � � �
� � � � � � �
2�� � � � 2�
 � �
� � � � � � �
2
� � � � � � �
� � � � � � �
� � � � 2�
 � �

�
���������
� (90)

It is seen from (89) and (90) that

��� in (89) � ���� ��� (91)

��� in (90) �� ���� �� for any �, �. (92)

Therefore, we see from (91) and (92) that Network 1
has a double triangular configuration, while Net-
work 2 doesnot have a double triangular configura-
tion. Consequently, we see from Theorem 5 that Net-
work 1 can be stabilized by means of linear memo-
ryless state feedback control however large the given
bounds of uncertain parameters and time delays might
be.

7 Conclusion
The stabilization problem of linear uncertain delay
systems using linear memoryless state feedback con-
trol was investigated in this paper. In particular, we
investigated the permissible locations of uncertain en-
tries and delays, both of which are allowed to take
unlimited large values for the stabilization. It was
shown that if uncertain entries enter the system ma-
trices in a way to form a particular geometric pattern
called a double triangular configuration, then the sys-
tem is stabilizable irrespectively of both the bounds of
uncertain parameters and delays. It was found that a
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double triangular configuration derived here consists
of both an up-low triangular form and a right-left tri-
angular form. Hence, it was seen that the allowable
uncertainty locations of a double triangular configura-
tion are more numerous than those of a triangular con-
figuration. The triangular configuration shown here
has a strong similarity to an antisymmetric stepwise
configuration by Wei [11]. To develop the conditions
obtained here into the ones of antisymmetric stepwise
configurations is a problem to be considered next.
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