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Abstract: - In this work, an approach for the bottom parameters estimation in oil wells is presented. It is based 
on neural networks and fuzzy logic, specifically on the neo-fuzzy-neuron model. We propose a neo-fuzzy 
system compose by two neo-fuzzy neurons. For validating the results, the estimation is applied in oil wells 
based on the artificial gas lift method, using variables of the head of the wells, particularly the gas and 
production pressures. 
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1 Introduction 
Hydrocarbons are produced from wells that 
penetrate geological formations rich on oil and gas. 
The wells are perforated in the oil and gas bearing 
zones. The hydrocarbons can flow to the surface if 
the reservoir pressure is enough to overcome the 
pressure from the flowing fluid column in the well 
and the pressures in the surface facilities. Detailed 
information on wells completion can be found in 
[2,4]. 

The possibility of installing devices for the 
bottom and surface variables measurement, allows 
identifying the real contribution of the reservoir in 
the production flow that comes from specific zones, 
in the production flow displacement on the well, and 
in the supervision and control at level of the head of 
the wells [4]. 

The majority of well completions (tubing 
mechanical arrangement) traditionally do not use 
bottom technology, which give quantity information 
about the reservoir. The use of this technology is 
highly expensive: its installation would require 
wells paralyzing, the useful life is very short, (minor 
to 5 years) and the maintenance costs are high. 
These are some of the reasons for which existing 

wells do not use that technology to measure the 
bottom variables.  

For these reasons, in this work we propose the 
estimation of the bottom pressure (PwfINF) using 
Artificial Intelligence techniques. Specifically, we 
use the neo-fuzzy neuron model [6, 13, 14, 15]. We 
propose a neo-fuzzy system compose by two neo-
fuzzy neurons. In general, neuro-fuzzy systems have 
been develop for control and supervision of 
industrial processes, and they have demonstrated to 
be very effective, particularly when the managing of 
the knowledge, or the decisions making, play an 
important factor [3, 6, 7, 8, 9, 10, 11, 12] 

The validation of bottom variables estimation 
will be realized through an index, which consists in 
calculating the differences between the following 
Pressures: the measured tubing production pressure 
(THP) and the estimated tubing production pressure 
(THPINF); if the result is minor that a β factor, it 
indicates that the bottom estimation (PwfINF) is 
correct. For this reason, we need to estimate this 
second variable (THPINF), and then to use it to 
estimate PwfINF. 

This approach has been used in PDVSA 
(Venezuelan Oil Company), specifically in gas lift 
oil wells. The gas lift method consist of injecting 
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gas to a pressure determined in the low part of the 
column of fluid of the tubing of the well, to different 
depths,  
 

 

2 Neo-Fuzzy Neuron Models 
Artificial neural networks consist of a system that 
tries to emulate the biological neural networks 
behavior concerning the learning and the 
generalization capabilities. With the purpose of 
taking advantage of artificial neural networks, and 
the capacity of handling vague information provided 
by the fuzzy logic models, a new structure, called 
neo-fuzzy neuron, has been proposed, which has 
demonstrated to give good results in the behavior 
representation of complex systems [5,6, 13, 14, 15].  

Neo-fuzzy neuron constitutes a tool that offers 
great advantages for modeling complex systems by 
the simplicity of its structure, consisting of a single 
neuron, which the difference enormously of the 
artificial neuronal networks, where several neurons 
are included, and can be numerous when the system 
to be modeled is very complex. Whereas in artificial 
neural networks it is necessary to change the 
number of layers, the number of neurons in each 
layer, and the activation function to find the 
structure that obtains a good adjustment to the 
modeled problem; in the neo-fuzzy neuron it is only 
necessary to change the number of fuzzy partitions 
in the input variables, allowing this way to find the 
most suitable structure with greater facility. 

The structure of the neo-fuzzy neuron is shown 
in fig. 1, where the synaptic weights are not constant 
but nonlinear functions of the inputs, represented by 
fuzzy logic models based on a collection of “If – 
Then” rules, that use an approximated reasoning in 
the inference process. This structure does not have 
an activation function, but it has a summing point, 
which generates the output, adding the fuzzy logic 
model outputs for each input [5, 13, 14, 15]. 
 

 
 
 

The input variables spaces are divided in several 
segments that will constitute the fuzzy subgroups of 
each variable. Each of these segments can be 
characterized by a triangular complementary 
membership function, as it is shown in Fig. 2. 

 

Fig. 2. Membership Functions 

 
The output synapses of each fuzzy logic model is 

obtained by means of an inference mechanism using 
fuzzyfication and defuzzyfication processes, as is 
shown in Fig. 3. 
 

 

 
 
As in conventional artificial neural networks, 

learning in a Neo-fuzzy neuron consists on synapse 
modification, in such a way that the errors between 
the desired outputs and the neuron outputs are 
minimized. Whereas in Neo-Fuzzy neurons the 
synapse is represented by a fuzzy logic model with a 
set of “If – Then” rules, whose consequent are 
constant weights, and for a single signal input two 
rules are always activated, the constant weights of 
each synapse that influence the output are two and 
these are due to modify to obtain the desired output. 
This way, the learning for a Neo fuzzy neuron 
consists of modifying two weights of each synapse, 
corresponding to the activated rules related to a 
specific input, until obtaining the desired output. 
This is made by means of a classical gradient 

 

Fig. 1. Neo-Fuzzy Neuron 

 

 

Fig. 3. Neo Fuzzy Neuron Synapse 
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descendent algorithm with the objective of 
minimizing the error between the desired outputs 
and the neuron outputs [7, 8, 9, 10, 11, 12] . 

The process of training consists of the 
presentation of each one of the patterns. Every 
pattern of input activates only two rules, as it will be 
observed late, which are the weights of every 
synapse that influence the exit, for this reason these 
must be modified to achieve the wished exit. The 
adjustment of weights is done according to the 
equation (1). During the training of a fuzzy neuron, 
several cycles of training must be executed, up to 
achieving a good adjustment of the model. 
Therefore, the learning for a fuzzy neuron consists 
in modifying one or two weight of every synapse, 
correspondent to the rules activated due to a specific 
input, up to achieving the desirable output. 

)()()1( TwTwTW ikikik ∆+=+               (1) 

The fuzzy neuron output “y” is given by the 
following equation: 
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Where f(x) is a classical defuzzyfication function 
[6, 13, 14, 15]. 
 

 

 

 

 

3 Production Process of an Oil Well 
One of the most important components in the well 
system is the reservoir. Unless accurate predictions 
can be made as to what will flow into the borehole 
from the reservoir, the performance of the system 
cannot be analyzed. The flow into the well depends 
on the bottom pressure in the well (Pwf), and the 
static pressure of the reservoir (Pws). The 
relationship between flow rate and these pressures 
occurring in the porous medium, can be very 
complex, and it depends on parameters such as rock 
properties, fluid properties, flow regime, fluid 
saturations in the rock, formation damages or 
stimulations, turbulence and drive mechanisms, etc. 
It also depends on the reservoir pressure itself and, 
depending on the drive mechanisms, this may 
decrease with the time or the cumulative production. 

The process of production in a well of oil or gas 
begins from the external radius of drainage in the 
reservoir to the tanks where the oil is stored. The 
Fig. 4 shows the complete system with four clearly 
identified components: the Reservoir, the 
Completion, the Well and the Flow Surface Line. In 
in the above mentioned process, the initial pressure 
is Pws, and the final pressure is the pressure of the 
separator on the station of flow, Psep.  

 

 
 

 

The movement of the fluids begins in the 
reservoir to a distance “re” of the well, where the 
pressure is Pws. The fluids travel across the porous 
medium up to coming to the face of the sand or 

radius of the hole, “rw,” where the pressure is Pwfs. 
In this area, the fluid loses energy in the measure 
that the medium is of low capacity of flow (Ko), 
there are restrictions in the proximity of the hole 
(damage, S) and the fluid offers resistance (mo). 

 

Fig. 4. Productive Process of a Well 
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The bigger it is the hole, better will be the 
communication between the reservoir and the well, 
increasing the index of productivity of the well. On 
having crossed the completions, the fluids enter to 
the bottom of the well with a pressure Pwf. Inside 
the well, the fluids ascend across the pipeline of 
production conquering the force of gravity and the 
friction in the internal walls of the pipeline. In the 
well head, the resultant pressure is identified as 
Pwh. 

The loss of energy in the shape of pressure 
across every component (see Fig.5), depends on the 
characteristics of the produced fluids, and specially, 
the transported flow, in such a way that the capacity 
of production of the system is equal to the balance 
between the capacity of energy input of the reservoir 
and the demand of energy of the installation to 
transport the fluids up to the surface. 

 
 

 
 
3.1 Gas Lift Methods 
Gas lift is a technology to produce oil and gas from 
wells with low reservoir pressure, by reducing the 
hydrostatic pressure in the tubing. Gas is injected 
into the tubing, as deep as possible, and mixes with 
the fluid from the reservoir (see Fig. 6). The gas 
reduces the density of the fluid in the tubing, which 
reduces the bottom pressure, Pwf, and thereby 
increases the production from the reservoir. The lift 
gas is routed from the surface to the annulus, the 
volume between the casing and the tubing. The gas 
inputs the tubing through a valve, an injection 
orifice. 

The dynamics of highly oscillatory flow in a gas 
lifted well can be described as follows: 
(1) Gas from the casing starts to flow into the 

tubing. As gas inputs the tubing the pressure in 
the tubing falls. This accelerates the inflow of 
gas. 

(2) The gas pushes the major part of the liquid out 
of the tubing. 

(3) Liquid in the tubing generates a blocking 
constraint in the injection orifice. Hence, the 
tubing gets filled with liquid and the annulus 
with gas. 

(4) When the pressure on the injection orifice 
overcomes the pressure on the tubing side, a 
new cycle starts. 

 
 

The Artificial Gas Lift (AGL) well behavior’s 
model (Fig.7) indicates that: when the gas injection 
rate increases, the production also increases until 
reaching its maximum value; but additional 
increases in the gas injection will cause a production 
diminution [3,5]. The curve shows under which 
conditions the well exhibits stable or highly 
oscillatory flow. It is important to note that the 
average production rate may be significantly lower 
with unstable (see the line "open loop production"), 
compared to stable well flow (see the line 
"theoretical production").   

 

 

 

Fig. 5. The loss of energy in a Systems of Production 

Fig. 6. The Artificial Gas Lift  

Fig. 7.  Artificial Gas Lift well behavior’s model   
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Large oscillations in the flow rate from the well 
cause lower total production, poor oil/water 
separation, limits in the production capacity, etc. A 
reduction of the oscillations increases the production 
capacity. 

Unstable operational conditions may occur in a 
gas lift well because the characteristics of the 
systems are such that small perturbations can 
degenerate into huge oscillations in the flow 
parameters. Unstable production may lead to 
periods of reduced, or even no production. 

At the highest gas injection rates, the pressure in 
the tubing is dominated by friction. If GOR (Gas Oil 
Ratio) rises, the tubing pressure will increase which 
will reduce the gas injection rate. This region 
therefore ensures stable production and explains 
why well stabilization by increased gas injection can 
be successful. 

At low gas injection rates however, the 
hydrostatic pressure gradient dominates the pressure 
in the tubing. A small increase in GOR results then 
in a lower tubing pressure, which leads to a higher 
gas injection rate from the annulus to the tubing 
through the gas lift valve. Since the gas rate is 
restricted by a gas injection choke at wellhead, the 
gas pressure in the annulus will be reduced. After a 
time, the gas rate into the production tubing will 
therefore be reduced, with resulting lower oil 
production rates.  

To illustrate the stability problem, a description 
of a heading cycle is given below (see fig. 6): 
(1) Starting with an annulus pressure that is lower 

than the bottom pressure, there is no gas flow 
through the gas lift valve into the tubing. 
Production rate and gas/liquid ratio is low. Gas 
is injected through the gas injection choke and 
annulus pressure builds up. 

(2) After some time, the annulus pressure exceeds 
bottom pressure, and gas is injected into the 
tubing through the gas lift valve. 

(3) The injected gas lightens the tubing gradient so 
that bottom pressure begins to decrease. 
Simultaneously, the production rate of the 
wellhead tubing pressure begins to increase. 

(4) Gas now flows from the annulus to the tubing at 
an increasing rate. Because insufficient gas can 
be supplied through the gas injection choke, 
annulus pressure decreases rapidly. 

(5) Oil and gas are produced through the production 
choke at high rate. Wellhead tubing pressure 
passes through a maximum and bottom pressure 
passes through a minimum. 

(6) With decreasing annulus pressure, gas flow 
through gas lift valve decreases. The gradient in 
the tubing becomes heavier and bottom pressure 

increases. The production rate and wellhead 
tubing pressure decreases again. 

(7) When bottom-hole pressure exceeds annulus 
pressure, gas injection into the tubing stops. 
With continued gas injection rate at the 
wellhead, annulus pressure starts to build again. 

Unstable production of gas lifted wells causes 
many drawbacks, and it implies safety aspects and 
shutdown risks. The total oil and gas productions 
must usually be less than the systems design 
capacity. 

For the implantation in field of the AGL method, 
it is needed an instrumentation arrangement and 
control [1,2]; for such task, we need the 
measurement and control of the following variables 
(see Fig. 8): Pressure of the Injected Gas (GLP), 
Differential Pressure of the Injected Gas (GLDP), 
Pressure of the Casing (CHP), Pressure of the 
Tubing of Production (THP). The measurement of 
the injected flow is carried out using the GLP and 
GLDP variables. The measurement of the pressure 
casing (CHP) allows knowing the pressure that the 
gas exercises in the casing, and (THP) the pressure 
exercised by the fluids in the pipeline and the 
pressure of the line of production (PLP). Other 
important variables are: the Gas flow of lift (FGL, 
expressed as "mpcgd"-thousands of gas cubic foot 
per day), the Rate of Production (Qprod, expressed 
as "BNPD"-barrels net of production per day). 

 

 
 
 

4 Neo Fuzzy System Application  
 
 
4.1 Study Case: Gas Lift Wells 
Fig. 9 shows the neo fuzzy structure proposed in this 
work. There are two neo-fuzzy neurons: the 
identified as ND1 will estimate THP with the 

Line of 
production 

Line of Injection Gas 

Fig. 8. Schematic design of the Well with the Extraction Gas Lift 
Method 
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variables of surface GLP, GLDP and CHP. The 
identified as ND2 will estimate the pressure of 
bottom, which will take as input the variables ND1 
(THPINF) and THP. Finally, to validate the estimated 
values of the bottom pressure (PwfINF), we propose 
an index, which consists of calculating the 
difference between THPINF and THPINF (|THP-
THPINF|); If it is minor to β, indicates that the value 
is correct, otherwise new values of bottom must be 
registered, due to the presence of an operational 
scenario of bottom different to that used to train the 
neo-fuzzy system. 

 

 

 

The well characteristics where the system was 
implemented are the following: It flows towards the 
Flow Station located at 5360,89 ft, and receives gas 
lift from the gas Manifold located at 508,53 ft far 
from it. It presents a 25 API crude Gravity, 6% of 
water Cut, and the bottom of the hole is at 3489ft. 
The valve is at 3184 ft (see Table 1). 
 

 

 

 

 

 

 
 
One of the most used techniques for optimizing 

the crude and gas production systems, considering 
its verified effectiveness, is the Nodal Analysis 
[1,2]. In order to optimize the Production system 
using this technique, it is necessary describing the 
production system, making emphasis in the required 

energy balance between the reservoir and the 
installed infrastructure, for establish the production 
capacity of the well. For this, it is necessary to 
construct a well model with the reservoir and 
production variables. 

Using the Nodal Analysis technique, at the well 
head, the energy balances were made with several 
gas injection flow rates, and for each one of the 
reservoir pressures. That gives the volume of 
production of the well and the pressure required in 
the well output for transporting it to the separator. 
The well shows level of production in the order of 
(250±5) BPND, with a gas injection of (0,5±0,1) 
mpcgd, the values have been obtained from the level 
of the flow station (see fig. 10). 
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In (Figs. 11 and 12) appear the records of the 
bottom and surface variables, which will be used 
like patterns in the training of the fuzzy neurons. In 
the Fig. 11 we present the profile of the tubing 
pressure (THP), obtained with the system of 
intelligent instrumentation implanted in field [1], 
where the behavior of the THP is observed that has 
a stable behavior, with oscillations minor to 5 % 
with regard to the value of reference (175 psi) 
obtained across the Model of Production of the Well 
[2]. 
 

PVT 

Oil Gravity (API) 25° 

Water Cutr (%) 6,02 

Depth Perforation (ft) 3489 

Temperatura (F) 60 

Valve (ft) 3184 

Fig. 9. Neo-fuzzy Scheme for the Surface Pressure (ND1) and  
Bottom Pressure (ND2) Estimation 

   

Fig. 10. Production Curve 

Table 1. Physical Properties of the Flow 
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On the other hand, at the level of the well surface 
we have installed a portable system “FGS” (optical 
fiber device that registers values of pressure and 
temperature at level of the hole bottom), which 
consists on an optical fiber, a laser source, an 
analyzer, and transmitters of temperature and 
pressure to the surface of the well. In the Fig. 12 we 
present the profile of pressure of bottom to a depth 
of 3400 ft. It is important to indicate that the "FGS" 
system was used to record temporarily the pressure 
of bottom, because the utilization of this device is 
very expensive. 
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4.2 Process of Training 
The first step is the sampling of the input and output 
variables in the same instant of time, for each group 
of samples to be used in the training of the neo-
fuzzy neurons. Later, we need to normalize the 
inputs and outputs (min, max) to carry out the fuzzy 
partition. We are used triangular functions of 
membership. The weights have been modified to 
achieve the desirable output, changing also the 

fuzzy partitions. Finally, the model was validated by 
values not used during the process of training (30% 
of the total pattern). 

For ND1, we propose a neo-fuzzy neuron of three 
inputs and one output, to estimate the tubing 
pressure (THPINF), where the variables of input are 
GLP, GLDP and CHP, and the output is THP (see 
Table 2).  

 
Table 2. Examples of Training Patterns for ND1 

For each input fuzzy variable we suppose three 
fuzzy values and initialize their weights with 
random values. The neo-fuzzy neuron has the 
structure showed in Fig. 13. 

 

 

Now, we give an example of fuzzification of the 
variable values. The calculation of the membership 
degrees for GLP =1705,88806 in each fuzzy set of 
this variable, denoted by 11µ , 12µ  y 13µ , is 
shown in Fig.14. These degrees of membership have 
the following values: ,608.011=µ  , ,392.012 =µ  

.013 =µ   

Pattern GLP GLDP CHP THP 

1 1705,88 9,57 1619,50 171,71 

2 1723,91 11,33 1624,37 174,12 

3 1720,50 10,49 1627,59 178,82 

Fig. 11. Tubing Pressure 

Fig. 12. Bottom Pressure of the well 

Fig. 13. Scheme of the first Neo Fuzzy Neuron 
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The calculation of the degrees of membership for 
GLDP = 9,57197762 and CHP = 1619,50378 in 
their respective fuzzy sets, give the following 
results: ,245.021 =µ  ,785.022 =µ  ;023 =µ  

5.031 =µ , 5.032 =µ  and .033 =µ  

Once obtained the values of the membership 
degrees, the synapse for the inputs are given by: 

1f (GLP) = 0.15 * 0,608 + 0.03* 0,392 + 0.05* 0 = 
0.10296 

2f (GLDP) = 0.13* 0.214 + 0.01* 0.785 + 0.19* 0 = 
0.0356 

3f (CHP) = 0.2 * 0.5 + 0.08* 0.6 + 0.5* 0.11*0 = 
0.14 

 Therefore, the output of ND1 for the input 
pattern 1 is given by: 

 
THP = 0.10296+0.0356+0.14=0.278 

When the first pattern have been presented, the 
system must update only the weights associated 
with the fuzzy sets in which the degrees of 
membership are different of zero. The update of the 
weights is done using the following equation: 

)()()()1( ijikdiiikik xyyTwTw µα −−=+    (4) 

In this way, the update for each weight with the 
pattern 1, and α= 0.5, is the following: 

=11w  0.15 − 0.5 * (0.278 − 171,71666)* 0.608 = 
52,267 

=12w  0.03 − 0.5 * (0.278 − 171,71666)* 0.392 = 
33,63 

=13w 0.05 − 0.5 * (0.278 − 171,71666) * 0 = 0,05 
=21w 0.13 − 0.5 * (0.278 − 171,71666) * 0,2145 = 

18,516 

=22w 0.01 − 0.5 * (0.278 − 171,71666) * 0,785 = 
42,901 

=23w  0,19 

=31w 0.2 − 0.5 * (0.278 − 171,71666)* 0.5 = 
43,059 

=32w 0.08 − 0.5 * (0.278 − 171,71666)* 0.5 = 
42,939 

=33w 0,11 -  0.5* (0.278-171,7166)* 0 =0,11 

The same procedure showed previously for the 
pattern 1, must be applied for the rest of the 
patterns, up to achieving a good fit. The number of 
training cycles is select by the user.  

We have followed a similar procedure to training 
the neo-fuzzy neuron ND2. In this case, we have 
used the Pwf measured using the "FGS" system. 
 
 
4.3 Obtained Results 
In the Table 3 and the Figures 15 and 16 are 
presented the results obtained for the estimation of 
the tubing and bottom pressures with our neo-fuzzy 
system.   

 
 

 

 

Inputs Output Training  
Pattern 

Test  
Pattern 

Quadratic 
Error  

GLP, 

GLDP, 
CHP 

(throught 

output 
ND1=> 

THPINF ), 

and THP 

PwfINF 

(ND2)  

 
3250 
(50%) 

 
3250 
(50%) 

 
0,087 

GLP, 

GLDP, 

CHP  

THPINF 

(ND1)  
350 
(50%) 

350 
(50%) 

0,59% 

Fig. 14. Fuzzification of GLDP 

 

Fig. 15.  Neo-Fuzzy Estimation of the Bottom Pressure 

Table 3. Patterns of training 
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The obtained results in both neo-fuzzy neurons 
are satisfactory. The estimation of the bottom and 
surface variables are correct (the average error for 
each estimated variable, with respect to the real 
values are 0.023 and 0.031, respectively), and the 
quadratic errors of the training-phase were low.  

The value of β is minor to 5 psi in the whole 
cycle of training, reflecting the efficiency of the 
surface estimation. 

 

 

4 Conclusions 
The system used in this work for variables 
estimation, is very interesting by its elaboration low-
cost. The current data acquisition systems and the 
databases historical contribute with the information 
that we need to build these system. 

The estimation of the bottom pressure using our 
system is effective due to follow the dynamic of the 
measured pressures. The importance of having the 
value of the bottom pressure at surface level is 
because it allows make decisions about the possible 
production of the well, determine its operational 
state, if the bottom of the well has presence of 
water, sediments, etc.  

The use of the Neo-Fuzzy System allows 
estimate the variables of bottom and surface, with a 
quadratic erro minor to 1 %, which indicates the 
efficiency of the system. 

The use of this system to other wells where their 
production method is different to the GAL Method, 
or in other reservoir, requires that the neo-fuzzy 
model be trained with the own operation conditions 
of the wells, to obtaining reliable results 
 
 
Acknowledgment 

This work has been supported in part by FONACIT 
under grant 2005000170, CDCHT-ULA under grant 
I-820-05-02-AA, and PCP Automation Integrated to 
Processes of Production No. 200500380. 

 

 

References: 

[1] Camargo E, Aguilar J, Rivas F, A Ríos, 
Instrumentación Inteligente para mejorar la 
producción en Pozos por levantamiento 
Artificial por Gas. Proceeding of the 8° 

Congreso Iberoamericano de Ingeniera 

Mecánica, Cusco, Perú. 2007. 
(http://www.pucp.edu.pe/congreso/cibim8/pdf/1
1/11-01.pdf) 

[2] Camargo E, Aguilar J, Rivas F, A Ríos, Aguilar 
Martin J., (2008). Nodal Analysis- based Design 
for Improving Gas Lift Wells Production. 
WSEAS Transactions on Information Science & 

Applications. Vol. 5, No. 5, 2008, pp. 706-715. 
[3] Eikrem, G. Foss, L. Imsland, H, and Golan, M. 

Stabilization of Gas lifted wells based on State 
Estimation, Proceeding of the IFAC 15th World 

Congress, Barcelona, Spain. Pp. 342-347, 2002. 
[4] Going, W.S, Thigpen, P.M, Anderson A.B. 

Intelligent Well Technology: Are We Ready for 
Closed Loop Control?. Proceeding of the SPE 

Annual Technical Conference and Exhibition. 

Society of Petroleum Engineers Inc., Paper 
number. SPE 99834, Amsterdam, The 
Netherlands, 2006. 

[5] Jansen, B. Dalsmo, L. Nokleberg, K. 
Kristiansen, and Lemetayer, P. Automatic 
control of unstable gas lifted wells. Proceeding 

of the SPE Annual Technical Conference and 

Exhibition. Society of Petroleum Engineers Inc., 
Paper number: SPE 56832, Houston, USA, 
1999. 

[6] Yamakawa, T. A neo Fuzzy Neuron and Its 
Applications to System Identification and 
Prediction of Chaotic Behavior. Proceeding of 

the Sixth International Conference on Tools with 

Artificial Intelligence, pp. 564 – 570, 1994. 
[7] Xia, W. Capretz, L. Ho D. A Neuro-Fuzzy 

Model for Function Point Calibration, WSEAS 

Transactions on Information Science & 

Applications, Vol. 5, No. 1, 2008, pp. 22-30 
[8] Singh, M. Srivastava, S. Gupta, J. Hanmandlu, 

M. Extraction of System Dynamics for a 
Nonlinear  System using Type-2 Fuzzy Sets 
based Neuro-Fuzzy Model, WSEAS Transactions 

on Computers, Vol. 6, No. 6, 2007, pp. 865-870. 
[9] Dumitrache, I. From Model-Based Strategies to 

Intelligent Control, WSEAS Transactions on 

Fig. 16. Neo-Fuzzy Estimation of the Tubing Pressure 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Edgar Camargo, Jose Aguilar, Addison Rios, 
Francklin Rivas, Joseph Aguilar-Martin

ISSN: 1991-8763 453 Issue 9, Volume 4, September 2009



Systems and Control, Vol. 3, No. 6, 2008, pp. 
569-575 

[10] Kuo, J. Chang, Z., Lee, J.Recurrent Fuzzy 
Neural-Based System by Using Direct Intelligent 
Control Approach, WSEAS Transactions on 

Systems and Control, Vol. 2, No. 7, 2007, pp. 
397-206 

[11] Wang, H. Chen, P. Fault Diagnosis for a 
Rolling Bearing used in a Reciprocating Machine 
by Adaptive Filtering Technique and Fuzzy 
Neural Network, WSEAS Transactions on 

Systems, Vol. 7, No. 1, 2008, pp. 1-6. 
[12] Narcis, C. Neural Networks Complemented 

with Genetic Algorithms and Fuzzy Systems for 
Predicting Nitrogenous Effluent Variables in 
Wastewater Treatment Plants, WSEAS 

Transactions on Systems, Vol. 7, No. 6, 2008, pp. 
695-705. 

[13] Lingras P., Comparison of neo-fuzzy and rough 
neural networks, Information Sciences Journal, 
Vol. 110 , No. 3-4, 1998, pp. 207 – 215. 

[14] Chaturvedi, K. Pandit, M. Srivastava L. 
Modified neo-fuzzy neuron-based approach for 
economic and environmental optimal power 
dispatch Applied Soft Computing, Vol. 8, No. 4, 
2008, pp. 1428-1438. 

[15] Kolodyazhniy, V. Bodyanskiy, Y. Otto, P. 
Universal Approximator Employing Neo-Fuzzy 
Neurons, Advances in Soft Computing, Vol. 33, 
2005, pp. 631-640. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Edgar Camargo, Jose Aguilar, Addison Rios, 
Francklin Rivas, Joseph Aguilar-Martin

ISSN: 1991-8763 454 Issue 9, Volume 4, September 2009




