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1 Introduction
An important technique in Data Mining is Formal
Concept Analysis [7, 18] which provides means to
process tables which elements are 0 or 1 depending
on an object verifies or not an attribute. When vague-
ness is introduced in the data we must replace classical
logic by fuzzy logic so, the truth degrees of the data
belong to L ⊂ [0, 1] instead of L = {0, 1}. Several
techniques deal with this kind of data composing the
Fuzzy Formal Concept Analysis. Another reason of
increment of complexity is when the dimensional data
is greater than 2. In our approach we have replaced
the usual 2-dimensional data table by a 3-dimensional
data table.

The paper is organized as follows: in Section 2 we
review the basic concepts of Formal Concept Analysis
for objects and features, fuzzy ternary relations, pro-
jections and cylindrical extensions, in Section 3 we in-
troduce the fuzzy Galois connections based on the a-
cuts of the fuzzy ternary relation that defines the flood
of vague data, in Section 4 we define fuzzy set clo-
sures and we demonstrate an isomorphism theorem,
in Section 5 we construct the lattice ordered-set struc-
ture, and, finally, an example is shown in Section 6.

2 Preliminaries
Fuzzy Formal Concept Analysis provides a frame-
work for designing hierarchies from relational infor-
mation systems which data are represented by a table
describing a fuzzy relation between a set of objects

and a set of attributes. Generalizing this framework
to entries described by 3-dimensional tables means to
suppose that the three sets involved are of different
nature.

2.1 A binary Fuzzy Formal Concept Analy-
sis approach

Given a set X we design by 2X the set of all the sub-
sets of X (it is also usual to design this set by ℘(X)).
Let X be a set of objects, Y a set of attributes and R
a binary relation between X and Y so R ⊂ X × Y ,
then the induced operators are mappings

↑ : 2X −→ 2Y and ↓ : 2Y −→ 2X such that

A↑ = {y : y ∈ Y ∧ ∀x ∈ A : (x, y) ∈ R}
B↓ = {x : x ∈ X ∧ ∀y ∈ B : (x, y) ∈ R}
A formal concept in (A, B,R) is a pair (A,B)

such that A↑ = B and B↓ = A. Therefore, a formal
concept is a pair (A,B) such that B is the set of all
attributes shared by all objects from A, and A is the
set of all objects sharing all the attributes from B.

For a formal concept (A,B), A is called an extent
(set of objects covered by (A,B)) and B is called an
intent (set of attributes covered by (A,B)).

We denote by B(X, Y, R) the set of all formal
concepts in (X, Y,R), i.e,

B(X, Y, I) = {(A,B) : A↑ = B ∧B↓ = A} (1)

The aim is to provide B(X,Y, R) by an order relation
≤ such that (B(X, Y,R),≤) be a lattice called con-
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cept lattice. The main definitions and theorems can be
consulted in [7] and [18].

The data information table can be understood as a
binary relation between objects and attributes, Wille’s
ideas and definitions have been extended to fuzzy
environment simply considering the data belonging
to the interval [0, 1] and considering the data ma-
trix as a fuzzy relation between objects and attributes
[8, 9, 11, 24]. There are many approaches related
to this work. Burusco and Fuentes-Gonzáles were
the first authors to generalize FCA to fuzzy formal
contexts [4], Belohlavek and Pollandt employed the
concept of resituated lattice [1, 2, 3, 16], Krajci and
Yahia proposed the called ”one-sided fuzzy approach”
[12, 20] and, finally, Duráková et al proposed a proce-
dure based on the a-cuts of the fuzzy relation [5].

Due to the fuzzy nature of the data we replace
R by a fuzzy relation designed by the same sym-
bol i.e. each pair of elements (x, y) has associated
a membership value µR(x, y) that represents the de-
gree to which an object x has an attribute y. In or-
der to simplify the notation we substitute the expres-
sion µR(x, y) by R(x, y). In these conditions the
formal context is represented by a table which ele-
ments belong to L ⊂ I = [0, 1] instead to be binary.
Columns and rows define fuzzy subsets of objects and
attributes. R can be understood as a fuzzy subset of
X × Y . We have already commented that many pro-
cedures are possible, we will follow our approach by
means the a-cuts of R defined by

aR = {(x, y) : (x, y) ∈ X × Y ∧R(x, y) ≥ a} (2)

The information contained in these sets is equivalent
to the information contained in R because

R(x, y) =
∨
{a : (x, y) ∈ aR} (3)

We define the extent and intent sets associated to the
a-cuts as follows

A↑a = {y : y ∈ Y ∧ ∀x ∈ A : (x, y) ∈ aR} (4)

B↓a = {x : x ∈ X ∧ ∀y ∈ B : (x, y) ∈ aR} (5)

Notice that this procedure is equivalent to define a
boolean matrix Ba = (bij) where bij = 1 if R(i, j) ≥
a and bij = 0 otherwise. The following properties
hold:

1. ∀a, b ∈ I a ≤ b then A↑a ⊃ A↑b and B↓a ⊃ B↓b

2. ∀A ∈ 2X then A ⊂ A↑a↓a

3. ∀B ∈ 2Y then B ⊂ B↓a↑a

Moreover, Formal Concept Analysis and rough
set theory are two related tools for analyzing infor-
mation tables. Combining their strategies and results
we achieve a more deepened way for dealing with
this kind of information [10, 19, 21]. Recently some
works have extended these new ideas to fuzzy data
[17]. This methodology have been applied to many
subjects as clustering [23, 6], information retrieval
[13] or applied sciences [14, 15, 22].

2.2 Fuzzy Ternary Relations

Let X = {x1, . . . , xn}, Y = {y1, . . . , ym} and
Z = {z1, . . . , zl} be three finite sets. Let R be a fuzzy
ternary relation between them with R(xi, yj , zk) =
αijk. The most useful representation of this kind of
relation consists in a finite set of 2-dimensional ma-
trices, one for each element of a prefixed set [11], for
instance if we select the set X we obtain




z1 z2 . . . zl

y1 α111 α112 . . . α11l

y2 α121 α122 . . . α12l
...

...
...

. . .
...

ym α1m1 α1m2 . . . α1ml




x1
...




z1 z2 . . . zl

y1 αn11 αn12 . . . αn1l

y2 αn21 αn22 . . . αn2l
...

...
...

. . .
...

ym αnm1 αnm2 . . . αnml




xn

Similarly to Equation 6 the a-cuts of R are de-
fined by

aR = {(x, y, z) : R(x, y, z) ≥ a} (6)

A practical example could be two sets of objects
and one set of attributes where an entry would rep-
resent the opinion given by one element of Z about
the truth degree in which an element of X verifies an
attribute of Y . Obviously, many other cases are possi-
ble.

Usually a scientific research problem depends on
several variables which induce us to ask about what
would happen if the number of variables was smaller
or greater. In our case we want to determine in which
way is modified a 3-dimensional matrix with the exit
of one variable and in which way is constructed a 3-
dimensional matrix with the entrance of a new vari-
able for a binary fuzzy relation. The mathematical
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objects that help to study these kind of problems are
projections, to decrease the number of variables; and
cylindrical extensions, to increase the number of vari-
ables [11]. These concepts are applicable to any n-
dimensional fuzzy relation but, obviously, we will
present them for 3-dimensional fuzzy relations.

Definition 1 Let X, Y, Z be three finite sets and R a
fuzzy relation defined in X × Y × Z. The projection
of R in X × Y ×Z upon X × Y is a fuzzy relation in
X × Y designed by R↓X × Y such that

R↓X × Y (x, y) = max
u>(x,y)

R(u) (7)

where u = (x′, y′, z′) and

(x′, y′, z′) > (x, y) iff x′ = x and y′ = y

Clearly, Equation (7) is equivalent to

R↓X × Y (x, y) = max
z∈Z

R(x, y, z)

Definition 2 Let X, Y, Z be three finite sets and R a
fuzzy relation in X × Y . The cylindrical extension
R ↑ X × Y × Z −X × Y of R is a fuzzy relation in
X × Y × Z such that

R ↑ X×Y ×Z−X×Y (x, y, z) = R(x′, y′) (8)

where (x′, y′) holds (x, y, z) > (x′, y′)

To relate projections and cylindric extensions by
means of their compositions can help in understand-
ing their meaning. Once again we simplify the nota-
tion defining

R ↓↑= (R ↓ X × Y ) ↑ (X × Y × Z −X × Y )

Where R is a fuzzy ternary relation defined in the
cartesian product of X , Y and Z, and

R ↑↓= (R ↑ X × Y × Z −X × Y ) ↓ X × Y

Where R is a fuzzy binary relation defined in the
cartesian product of X and Y .

Theorem 3 Let X, Y, Z be three finite sets. The fol-
lowing properties hold

(i) Let R a fuzzy relation in X × Y × Z then

R ↓↑ (x, y, z) ≥ R(x, y, z) (9)

(ii) Let R be a fuzzy relation defined in X × Y
then

R ↑↓ (x, y) = R(x, y) (10)

Proof:
(i) R ↓↑ (x, y, z) is a fuzzy ternary relation. For

any x, y, z and applying Definition 1 and Definition 2
we have

R ↓↑ (x, y, z) = R ↓ (x, y) =
= max

z′∈Z
R(x, y, z′) ≥ R(x, y, z)

(ii) It is trivial from Definition 1 and Definition 2.
ut

The second property is less relevant because the
value of the membership function does not vary.

3 Fuzzy Galois Connections
Our aim is to generalize the concept of fuzzy Galois
connection for binary fuzzy relations to fuzzy ternary
relations. Our development is based on the a-cuts of
R.

Definition 4 Let A,B, C be subsets of X,Y, Z and
∆, Γ, Θ subsets of X×Y, X×Z, Y ×Z respectively.
The fuzzy Galois connections are mappings defined by

A↑
X
a = {(y, z)| ∀x ∈ A (x, y, z) ∈ aR} (11)

B↑Y
a = {(x, z)| ∀y ∈ B (x, y, z) ∈ aR} (12)

C↑Z
a = {(x, y)| ∀z ∈ C (x, y, z) ∈ aR} (13)

∆↓X×Y
a = {z| ∀(x, y) ∈ ∆ (x, y, z) ∈ aR} (14)

Γ↓
X×Z
a = {y| ∀(x, z) ∈ Γ (x, y, z) ∈ aR} (15)

Θ↓Y×Z
a = {x| ∀(y, z) ∈ Θ (x, y, z) ∈ aR} (16)

Remark that the symbology of the Galois connec-
tions, projection and cylindrical extension are simi-
lar but there is not confusion because the Galois con-
nections are mappings between different sets and pro-
jections and cylindrical extensions are fuzzy relations.
Notice that

A↑
X
a ∈ 2Y×Z and Θ↓Y×Z

a ∈ 2X

B↑Y
a ∈ 2X×Z and Γ↓

X×Z
a ∈ 2Y

C↑Z
a ∈ 2X×Y and ∆↓X×Y

a ∈ 2Z

Therefore only the compositions between (11)
with (16), (12) with (15) and (13) with (14) are possi-
ble. From this point of view we obtain three pairs of
systems of 2-Galois connections namely,

{〈↑X
a , ↓Y×Z

a 〉|a ∈ L}

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Narcis Clara

ISSN: 1991-8763 425 Issue 9, Volume 4, September 2009



{〈↑Y
a , ↓X×Z

a 〉|a ∈ L}
{〈↑Z

a , ↓X×Y
a 〉|a ∈ L}

From now on and in order to simplify the notation
we will state the main results only for the first one,
being absolutely similar for the remaining pairs of 2-
Galois connections.

Lemma 5 For any a, b ∈ L, A,A1, A2 ∈ 2X and
Θ ∈ 2Y×Z then

(i) If a ≤ b then
A↑X

a ⊃ A↑X
b and Θ↓Y×Z

a ⊃ Θ↓Y×Z
b

(ii)The set {a ∈ L| (y, z) ∈ {x}↑X
a } contains a

greatest element.

(iii) (y, z) ∈ A↑X
a iff (y, z) ∈

⋂

x∈A

{x}↑X
a

(iv) A ⊂ A↑X
a ↓Y×Z

a

(v) A1 ⊂ A2 then A
↑X

a
2 ⊂ A

↑X
a

1

Proof:
From the fact that L is finite and from Equations

(6), (11) and (16) we have (i) and (ii). These state-
ments mean that {〈↑X

a , ↓Y×Z
a 〉} is L-nested.

(iii) If (y, z) ∈ A↑X
a then the corresponding re-

lational value is greater than a for any element of A

then (y, z) ∈
⋂

x∈A

{x}↑X
a , and viceversa.

(iv) A↑X
a ↓Y×Z

a =

= {x| ∀(y, z) ∈ A↑X
a (x, y, z) ∈ aR}) ⊃ A

because of Definition 1.

(v) A1 ⊂ A2 then
⋂

x∈A2

{x}↑X
a ⊂

⋂

x∈A1

{x}↑X
a and

from (iii) conclude A
↑X

a
2 ⊂ A

↑X
a

1 ut
Notice that in the same way (i), (ii), (iii), (iv) and

(v) are true replacing ↑X
a by ↓Y×Z

a .

4 Fuzzy Closures
Lemma 6 For any A ∈ 2X

A↑
X
a ↓Y×Z

a ↑X
a = A↑

X
a

Proof: We will prove it by proving both inclusions

(i) Combining (iv) and (v) of Lemma 5 we

get A↑X
a ↓Y×Z

a ↑X
a ⊂ A↑X

a .

(ii) On the other hand, suppose that exists

(y∗, z∗) ∈ A↑X
a but (y∗, z∗) /∈ A↑X

a ↓Y×Z
a ↑X

a

then exists x ∈ A↑X
a ↓Y×Z

a

such that R(x, y∗, z∗) < a.

As x ∈ A↑X
a ↓Y×Z

a then, for any

(y, z) ∈ A↑X
a it holds R(x, y, z) ≥ a

In particular for (y∗, z∗) ∈ A↑X
a

then R(x, y∗, z∗) ≥ a what is contradictory. ut

Lemma 7 Let A,B ∈ 2X then

If A ⊂ B then A↑X
a ↓Y×Z

a ⊂ B↑X
a ↓Y×Z

a

Proof: It is a consequence of applying two times
statement (v) of Lemma 5. ut

Lemma 8 The composition mapping

↑X
a ↓Y×Z

a : 2X → 2X

is called a fuzzy closure operator in the sense that
holds

(i) A ⊂ A↑X
a ↓Y×Z

a

(ii) A↑X
a ↓Y×Z

a (↑X
a ↓Y×Z

a ) = A↑X
a ↓Y×Z

a

Proof:
(i) Proved in Lemma 5.

(ii) From Lemma 5 and Lemma 7 we get
A↑X

a ↓Y×Z
a ⊂ A↑X

a ↓Y×Z
a (↑X

a ↓Y×Z
a )

On the other hand, from Lemma 5 and Lemma 6
we get

A↑X
a ↓Y×Z

a (↑X
a ↓Y×Z

a ) ⊂ A↑X
a ↓Y×Z

a ut

Definition 9

Ω(X, ↑X
a ↓Y×Z

a ) = {A| A = A↑
X
a ↓Y×Z

a } (17)

namely, is the fuzzy set closure by ↑X
a ↓Y×Z

a .

Theorem 10

Ω(X, ↑X
a ↓Y×Z

a ) =
⋃

Θ⊂Y×Z

Θ↓Y×Z
a (18)

and its dual formula

Ω(Y × Z, ↓Y×Z
a ↑X

a ) =
⋃

A⊂X

A↑
X
a (19)

Proof: We will prove both inclusions.

(i) If A ∈
⋃

Θ⊂Y×Z

Θ↓Y×Z
a then

Exists Θ ∈ 2Y×Z such that A = Θ↓Y×Z
a and ap-

plying Lemma 6 we get
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A↑X
a ↓Y×Z

a = A.
Therefore A is a closure by ↑X

a ↓Y×Z
a .

(ii) On the other hand,

If A ∈ Ω(X, ↑X
a ↓Y×Z

a ) then A = A↑X
a ↓Y×Z

a and
then A = (A↑X

a )↓
Y×Z
a . ut

This result allows us calculating the fuzzy set clo-
sure in a simple way.

Next result relates the fuzzy Galois connections
of a ternary fuzzy relation R and the composition of
projection and cylindrical extension R ↓↑. In order
to simplify the notation we design by A∗↑X

a the fuzzy
Galois connections with respect R ↓↑.

Theorem 11 For any A ∈ 2X

A↑
X
a ⊂ A∗↑

X
a (20)

Proof: It is a consequence of applying Equations 6, 9
and 11. ut
Theorem 12

Ω(Y × Z, ↓Y×Z
a ↑X

a ) ' Ω(X, ↑X
a ↓Y×Z

a ) (21)

Where ' means a bijective map.

Proof: The bijective map is defined by

Ω(Y × Z, ↓Y×Z
a ↑X

a ) → Ω(X, ↑X
a ↓Y×Z

a )
A↑X

a → (A↑X
a )↓

Y×Z
a

(22)

This map is well defined due to Theorem 10.

Injective

If (A↑
X
a

1 )↓
Y×Z
a = (A↑

X
a

2 )↓
Y×Z
a then

(A↑
X
a

1 )↓
Y×Z
a ↑X

a = (A↑
X
a

2 )↓
Y×Z
a ↑X

a

and applying Lemma 6 we have

A
↑X

a
1 = A

↑X
a

2 .

Surjective

For any A ∈ Ω(X, ↑X
a ↓Y×Z

a ) exists Θ ∈ 2Y×Z

such that
A = Θ↓Y×Z

a , then, applying Lemma 6

Θ↓Y×Z
a ↑X

a ↓Y×Z
a = A, and, finally

A = (Θ↓Y×Z
a ↑X

a )↓
Y×Z
a

Where, obviously,

Θ↓Y×Z
a ↑X

a ∈ Ω(Y × Z, ↓Y×Z
a ↑X

a ). ut
This theorem is an important result because allow

us to associate in an unique way elements of different
closures.

5 Lattice ordered-set

A partial ordered set (or poset) is a set taken together
with a partial order on it. Formally, a partial ordered
set is defined as an ordered pair P = (A,≤), where A
is called the ground set of P and ≤ is the partial order
of P .

The infimum is the greatest lower bound of a set
S. The supremum is the least upper bound of a set S.

A Lattice ordered-set is a poset in which each
two-element subset {a, b} has an infimum, denoted
inf{a, b}, and a supremum, denoted sup{a, b}.

A lattice (L,∧,∨) can be obtained from a a
lattice-ordered poset (L,≤) by defining

a ∧ b = inf{a, b} and a ∨ b = sup{a, b}

In our case and due to the results of Section 4 a struc-
ture of lattice can be given to the cartesian product of
the fuzzy closures, namely

Ω(Y × Z, ↓Y×Z
a ↑X

a )× Ω(X, ↑X
a ↓Y×Z)

as follows

(A1, Θ1) ≤1 (A2,Θ2) iff
iff A1 ⊂ A2 and Θ2 ⊂ Θ1

(23)

or its dual

(A1, Θ1) ≤2 (A2,Θ2) iff
iff A2 ⊂ A1 and Θ1 ⊂ Θ2

(24)

Notice that for any other system of 2-Galois connec-
tions we would obtain another lattice. Therefore we
can get three systems of lattices depending on the a-
cut of the fuzzy relation R.

6 Example

Let X , Y and Z be three finite sets with cardinals
|X| = 3, |Y | = 2 and |Z| = 3. We represent their
elements by X = {x1, x2, x3}, Y = {y1, y2} and
Z = {z1, z2, z3}. Let R be a ternary fuzzy relation
represented by three 2-dimensional matrices everyone
for each element of X as follows
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( z1 z2 z3

y1 0.7 0.4 0.6
y2 0.3 0.8 0.7

)

x1

( z1 z2 z3

y1 0.5 0.9 0.8
y2 0.7 0.6 0.4

)

x2

( z1 z2 z3

y1 0.7 0.3 0.9
y2 1 0.6 0.2

)

x3

In order to obtain the closure we need to calculate
A↑X

a ↓Y×Z
and Θ↓Y×Z

a ↑X
a for each element of X

and Y × Z.

For instance, if 0.6 < a ≤ 0.7

{x1, x2}↑X
a ↓Y×Z

a = {x1, x2, x3} and
{(y1, z1), (y2, z1)} ↓Y×Z

a ↑X
a =

= {(y1, z1), (y1, z3), (y2, z1), (y2, z2)}
and so on.

From Equations (18) and (19) we obtain

Ω(X, ↑X
a ↓Y×Z) =

= {∅, {x1}, {x2}, {x3}, {x1, x3}, {x2, x3},
{x1, x2, x3}}

Ω(Y × Z, ↓Y×Z
a ↑X

a ) =
= {∅, {(y2, z2), (y1, z3)},
{(y1, z1), (y1, z3), (y2, z2)}, {(y1, z3), (y2, z1), (y2, z2)},
{(y1, z1), (y2, z1), (y2, z2), (y1, z3)},
{(y1, z1), (y1, z3), (y2, z2), (y2, z3},
{(y1, z2), (y1, z3), (y2, z1), (y2, z2)}, F ×G}

From Equation (22) we obtain the following bi-
jective application between the previous two sets of
closures which will give us the lattice structure.

f1 : Ω(E, g1) −→ Ω(F ×G, g23)

∅ −→ F ×G

{x1} −→ {(y1, z1), (y1, z3), (y2, z2), (y2, z3)}
{x2} −→ {(y1, z2), (y1, z3), (y2, z1), (y2, z2)}
{x3} −→ {(y1, z1), (y2, z1), (y2, z2), (y1, z3)}
{x1, x3} −→ {(y1, z1), (y1, z3), (y2, z2)}
{x2, x3} −→ {(y1, z3), (y2, z1), (y2, z2)}
{x1, x2, x3} −→ {(y2, z2), (y1, z3)}

Pairs consisting of one element and its image will be
the nodes of the lattice defined by orderings of Equa-
tions (23) and (24).

6.1 Set of lattices for R depending on the a-
cuts

The lattice for the different values of the a-cuts are
represented in Fig. 1,. . .,9. Notice that in any node
of the net there is a pair of two sets. The first one is
a subset of X and the second one a subset of Y × Z
which are image and anti-image for the isomorphism
between the two closures. In order to simplify the no-
tation we introduce the symbol Fi = (Ai,Θi), being
Ai the image of Θi by the isomorphism (22). As we
have already discussed we could obtain two more lat-
tices for the other two isomorphisms.

For instance, for 0.6 < a ≤ 0.7,
A1 = ∅, A2 = {x1}, A3 = {x2},
A4 = {x3}, A5 = {x1, x3}, A6 = {x2, x3},
A7 = {x1, x2, x3}, Θ1 = Y × Z,
Θ2 = {(y1, z1), (y1, z3), (y2, z2), (y2, z3)},
Θ3 = {(y1, z2), (y1, z3), (y2, z1), (y2, z2)},
Θ4 = {(y1, z1), (y2, z1), (y2, z2), (y1, z3)},
Θ5 = {(y1, z1), (y1, z3), (y2, z2)},
Θ6 = {(y1, z3), (y2, z1), (y2, z2)},
Θ7 = {(y2, z2), (y1, z3)},

Moreover, we introduce the notation £a2
a1

for the
lattice with the a-cut verifying a1 < a ≤ a2. Now we
present the lattice structure in function on the value of
the a-cut.

Lattice £0.2
0

A1 = X , Θ1 = Y × Z
The lattice reduces to a unique element F1 and is

represented in Figure 1.
v

F1

Figure 1: Lattice £0.2
0

Lattice £0.3
0.2

A1 = {x1, x2}, Θ1 = Y × Z,
A2 = {x1, x2, x3},
Θ2 = {(y1, z1), (y1, z2), (y2, z1), (y2, z2), (y1, z3)}
The lattice is represented in Figure 2.

v
F1

v
F2

Figure 2: Lattice £0.3
0.2
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Lattice £0.4
0.3

A1 = {x2},
Θ1 = Y × Z
A2 = {x1, x2},
Θ2 = {(y1, z1), (y1, z2), (y1, z3), (y2, z2), (y2, z3)}
A3 = {x2, x3},
Θ3 = {(y1, z1), (y1, z3), (y2, z1), (y2, z2)}
A4 = {x1, x2, x3},
Θ4 = {(y1, z1), (y2, z2), (y1, z3)}
The lattice is represented in Figure 3. Notice that

at this level we loose the property of total order.

v
F1

@
@

@
vF2 ¡

¡
¡

v
F4

¡
¡

¡
vF3@

@
@

Figure 3: Lattice £0.4
0.3

Lattice £0.5
0.4

A1 = ∅,
Θ1 = Y × Z
A2 = {x1}
Θ2 = {(y1, z1), (y1, z3), (y2, z2), (y2, z3)}
A3 = {x2}
Θ3 = {(y1, z1), (y1, z2), (y1, z3), (y2, z1), (y2, z2)}
A4 = {x2, x3}
Θ4 = {(y1, z1), (y1, z3), (y2, z1), (y2, z2)}
A5 = {x1, x2, x3}
Θ5 = {(y1, z1), (y1, z3), (y2, z2)}
The lattice is represented in Figure 4.

v
F1

@
@

@
vF2

v
F4

¡
¡

¡
v

¢
¢
¢
¢
¢¢
vF3

A
A
A
A
A

F5

Figure 4: Lattice £0.5
0.4

Lattice £0.6
0.5

This case has been described at the beginning of
the section. The lattice is represented in Figure 5.

F1

@
@

@
@

@
@

F2

¡
¡

¡
¡

¡
¡

F3

v

F4

v

F5 v F6

v
¡

¡
¡

¡
¡

¡

@
@

@
@

@
@

v

F7v

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

v

Figure 5: Lattice £0.6
0.5

Lattice £0.7
0.6

A1 = ∅,
Θ1 = Θ1 = Y × Z
A2 = {x1}
Θ2 = {(y1, z1), (y2, z2), (y2, z3)}
A3 = {x2}
Θ3 = {(y1, z2), (y1, z3), (y2, z1)}
A4 = {x3}
Θ4 = {(y1, z1), (y1, z3), (y2, z1)}
A5 = {x1, x3},
Θ5 = {(y1, z1)}
A6 = {x2, x3},
Θ6 = {(y1, z3), (y2, z1)}
A7 = {x1, x2, x3},
Θ7 = ∅
The lattice is represented in Figure 6.

Lattice £0.8
0.7

A1 = ∅,
Θ1 = Y × Z
A2 = {x1},
Θ2 = {(y2, z2)}
A3 = {x2},
Θ3 = {(y1, z2), (y1, z3)}
A4 = {x3}
Θ4 = {(y1, z3), (y2, z1)}
A5 = {x2, x3},
Θ5 = {(y1, z3)}
A6 = {x1, x2, x3},
Θ6 = ∅
The lattice is represented in Figure 7.

Lattice £0.9
0.8
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F1
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@
@

@
@

F2

¡
¡

¡
¡

¡
¡
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v

F4

v

F5 v F6

v
¡

¡
¡

¡
¡

¡
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@

@
@

@
@

v

F7v
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@

@
@

@
@

¡
¡

¡
¡

¡
¡

v

Figure 6: Lattice £0.7
0.6

A1 = ∅,
Θ1 = Y × Z
A2 = {x2},
Θ2 = {(y1, z2)}
A3 = {x3},
Θ3 = {(y1, z3), (y2, z1)}
A4 = {x1, x2, x3},
Θ4 = ∅
The lattice is represented in Figure 8.

Lattice £1
0.9

A1 = ∅,
Θ1 = Y × Z
A2 = {x3},
Θ2 = {(y2, z1)}
A3 = {x1, x2, x3},
Θ3 = ∅
The lattice is represented in Figure 9.

6.2 Set of lattices for R ↓ depending on the
a-cuts

We determine R ↓ (X × Y ), projection of R above
X × Y using Equation 7, for instance

R ↓ (X × Y )(x1, y1) =

= max{R(x1, y1, z1), R(x1, y1, z2), R(x1, y1, z3)} =

= max{0.7, 0.4, 0.6} = 0.7
In the same way we achieve all the other values

of the membership function; at the end of the process

F1

¡
¡

¡
¡

¡
¡

F3

v

F4

v

@
@

@
@

@
@

@
@

@@
F5 v

F6

¡
¡

¡
¡

¡
¡

v

F7v

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

v

Figure 7: Lattice £0.8
0.7

v
F1

@
@

@
vF2 ¡

¡
¡

v
F4

¡
¡

¡
vF3@

@
@

Figure 8: Lattice £0.9
0.8

we get the matrix




y1 y2

x1 0.7 0.8
x2 0.9 0.7
x3 0.9 1




For this binary fuzzy relation we obtain

Lattice £ ↓0.7
0

A1 = X , Θ1 = Y
The lattice is represented in Figure 10.

Lattice £ ↓0.8
0.7

A1 = X ,
Θ1 = ∅
A2 = {x1, x3},
Θ2 = {y2}
A3 = {x2, x3},
Θ3 = {y1}
A4 = {x3},
Θ4 = {y1, y2}
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v
F1

vF2

v
F3

Figure 9: Lattice £1
0.9

v
F1

Figure 10: Lattice £ ↓0.7
0

The lattice is represented in Figure 11.

Lattice £ ↓0.9
0.8

A1 = X ,
Θ1 = ∅
A2 = {x2, x3},
Θ2{y1}
A3 = {x3},
Θ3 = {y1, y2}
The lattice is represented in Figure 12.

Lattice £ ↓1
0.9

A1 = X ,
Θ1 = ∅
A2 = {x3},
Θ2 = {y2}
A3 = ∅,
Θ3 = {y1, y2}
The lattice is represented in Figure 13.

6.3 Set of lattices for R ↓↑ depending on the
a-cuts

Calculating the cylindrical extension in X×Y ×Z of
the previous fuzzy relation , we get

R ↓↑ (xi, yj , zk) = R ↓ (xi, yk)

The new tridimensional matrix is:

v
F1

@
@

@
vF2 ¡

¡
¡

v
F4

¡
¡

¡
vF3@

@
@

Figure 11: Lattice £ ↓0.8
0.7

v
F1

vF2

v
F3

Figure 12: Lattice £ ↓0.9
0.8

v
F1

vF2

v
F3

Figure 13: Lattice £ ↓1
0.9
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( z1 z2 z3

y1 0.7 0.7 0.7
y2 0.8 0.8 0.8

)

x1

( z1 z2 z3

y1 0.9 0.9 0.9
y2 0.7 0.7 0.7

)

x2

( z1 z2 z3

y1 0.9 0.9 0.9
y2 1 1 1

)

x3
As is a tridimensional matrix we will make the

same study that for the original tridimensional rela-
tion.

Lattice £ ↓↑0.7
0

A1 = X , Θ1 = Y × Z
The lattice is represented in Figure 14.

Lattice £ ↓↑0.8
0.7

A1 = {x3},
Θ1 = Y × Z
A2 = {x1, x3}
Θ2 = {(y2, z1), (y2, z2), (y2, z3)}
A3 = {x2, x3}
Θ3 = {(y1, z1), (y1, z2), (y1, z3)}
A4 = X ,
Θ4 = ∅
The lattice is represented in Figure 15.

Lattice £ ↓↑0.9
0.8

A1 = {x3},
Θ1 = Y × Z
A2 = {x2, x3}
Θ2 = {(y1, z1), (y1, z2), (y1, z3)}
A3 = X ,
Θ3 = ∅
The lattice is represented in Figure 16.

Lattice £ ↓↑1
0.9

A1 = ∅,
Θ1 = Y × Z
A2 = {x3}
Θ2 = {(y2, z1), (y2, z2), (y2, z3)}
A3 = X ,
Θ3 = ∅
The lattice is represented in Figure 17.

7 Conclusion
The results explained in the previous sections show
that in the domain of Formal Concept Analysis the
main definitions and results for binary 2-dimensional
dada can be translate to fuzzy 3-dimensional data in

v
F1

Figure 14: Lattice £ ↓↑0.7
0

v
F1

@
@

@
vF2 ¡

¡
¡

v
F4

¡
¡

¡
vF3@

@
@

Figure 15: Lattice £ ↓↑0.8
0.7

v
F1

vF2

v
F3

Figure 16: Lattice £ ↓↑0.9
0.8

v
F1

vF2

v
F3

Figure 17: Lattice £ ↓↑1
0.9
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function of the a-cuts obtaining similar results. More-
over, it is possible to reduce the number of variables
by means of projecting in a subspace and increase the
number by means of the cylindrical extension. Com-
bining these operations we loose information as ex-
pected.
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