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Abstract: - The object of this paper is the oscillatory stable regime of a particular nonlinear system. This particular 
nonlinear system includes a relay, and its linear part is characterized by a transfer function with two time constants. In the 
beginning, the paper shows a method that can be used in the calculus of the parameters for the limit stable cycle, which is 
appropriated for these nonlinear systems. After that, the method is particularized for two different commutation lows of 
the relay nonlinearity: relay with hysteresis and relay with delay time. The different commutation laws induced, for the 
same linear parts, different shapes and parameters for the oscillatory stable regimes proper to assembly nonlinear system. 
These differences are presented in a case study. 
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1   Introduction 
The systems that include linear and nonlinear 
parts, in assembly, are nonlinear systems. The 
figure 1 shows a typical structure for these 
nonlinear systems. 
 

NH   ε   yr   + 
   _ 

)(sHL    u

 
Fig.1. A typical nonlinear system   

 
The previous structure uses the feedback 

principle, with a unitary reaction. The controlled 
process (or plant) is described by a linear transfer 
function, , which also includes the linear 
parts of the actuator. The regulator functionality and 
the nonlinear actuator characteristic are described 
by a nonlinear function, . The error signal, 

)(sH L

NH ε , is 
the difference between the system input (or 
reference), r , and system output, y . Based on the 
error signal, the nonlinear parts generates the 
command , that are the input of the plant.  u

Following, we will consider that the kind of 
the nonlinearity is a real relay, with delay time and 

hysteresis. This is the model of certain actuators, 
frequently included in many industrial and civilian 
applications, even in advanced equipments: liquid 
alimentation parts, air or gas conditioning devices. 
The main function of theses nonlinear systems is to 
maintain the values of any system parameters, in 
specified ranges [1].       

Usually, these systems work with a constant 
input values. According to the system input level, 
the response of those systems bring to a punctually 
stationary state or to an oscillatory stable regime. 
The oscillatory stable regime is exclusively induced 
by the system nonlinearity. The characteristics of 
oscillatory stable regime, if it appears, can be 
analytically expressed [2], [3], [4], [8], and in other 
situations can be obtained only by simulations.  

The relay model is proper for the actuators that 
work in maximal regime. An ideal relay model of 
the system nonlinearity can induce a very fast 
oscillatory regime, which increases the actuators 
stress and wearing. Nevertheless, in many automatic 
systems, is not preferred the ideal relay work for the 
nonlinear part. The relay model can be deliberately 
depreciated, using delays or hysteresis 
characteristics, in order to increase the systems 
oscillatory regime periods. In this way, the 
commutations frequency of the actuators can be 
reduced, the actuators wearing decreases and the 
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lifetime increases.  
This paper proposes a calculus model for the 

parameters of the oscillatory stable regime proper 
to the nonlinear systems that include non-ideal 
relay nonlinearity. The relay model used includes a 
delay time and a hysteresis characteristic. 
Separately, the case of relay with hysteresis 
characteristic and the case of a relay with delay 
time was treated in [4] and [8].  

 
2 The study model 
Further down, we will consider a nonlinear system 
with the structure showed in the figure 1.  

For the system nonlinearity, described by a 
nonlinear function , we will consider a relay 
symmetrical characteristic with unitary gain: 

NH

 1)( ==ε cttu ,                       (1) 

and the real gains of actuators are including in the 
gain, K , of the linear controlled process model.  

The pattern of the linear controlled process (or 
plant) has two real time constants, without 
integrator elements, and it is modeled by a linear 
strictly stable transfer function, : )(sH L

,
)1()1(

)(
21 +⋅⋅+⋅

=
TsTs

KsH L            (2) 

where: 

120 TT << .                       (3) 

The nonlinear function  can be presented 
in an analytically form, in order to emphasize the 
effect of the relay delay time : 

NH

τ

( ) ( )()( 1 τ−ε=ε tHtH NN ) .              (4) 

         In the relation (4)  is the relay with 
hysteresis characteristic. This characteristic, 
presented in figure 2, will be considered 
symmetrical and its hysteresis bandwidth will be 
considered  (in order to simplify the next 
assumptions). 

)(1 εNH

02 εK
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Fig. 2. The nonlinear characteristic ( )ε1NH  

 
Using the previously assumptions, the system 

can be presented as in the figure 3.  
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The nonlinear function 
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Fig. 3. The initial study model 

 

In order to simplify the following 
considerations, we will use an equivalent structure 
of this system. This structure is presented in the 
figure 4.  

In the figure (4) we can remark that, the 
central parts of the equivalent structure are a 
simplified nonlinear system. This simplified 
nonlinear system has a unitary linear part with 
unitary gain, and for the equivalent relay the 
hysteresis bandwidth is . 02ε

 

the central parts of the equivalent system 

+ 
 
  _ 

 ε
( )( )11

1
21 ++ sTsT
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Fig. 4. The equivalent model  
 

The following considerations will refer to a 
nonlinear system like the central parts of the 
equivalent system, presented in figure 4.  
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Fig. 5. The study model 
 

The study system is presented in the figure 5, 
and for this system, the transfer function   is: )(sH L

)1()1(
1)(

21 +⋅⋅+⋅
=

TsTs
sH L .           (2’) 
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The differences between the initial system and 
the study model consist in the scales of its inputs 
and outputs and the hysteresis relay bandwidth. 
The dynamics of internal parameters for the two 
systems will have identically shapes at different 
scales.  

 

3 The conditions for apparition of the 
oscillatory stable regime  
All the following considerations will be based on 
the assumption that the system input are constant. 
Only in this case we can speak about a stationary 
regime. 

Starting to the structural representation of the 
study model, we can emphasize an important 
aspect: because the linear part of study system is 
strictly stable, when the error signal is constant, the 
system output tends to a limit value: 

)()( ε=→=ε signyty stct .           (5) 

If the system input level is high enough or low 
enough, for any initial condition, the error signal 
will not change its sign. In all cases, the system 
outputs are limited, and we can conclude that the 
assembly nonlinear system is globally stable, “in 
great”.  

In any initial conditions, for reduced values of 
references [4], [8], the error signal can change its 
sign, the system evolution tends to an oscillatory 
stable regime, and its outputs tend alternately 
toward values 1 or -1. In these cases, we can 
conclude that the system is punctually instable, “in 
small”. We are interested to evaluate the 
parameters of the stable oscillatory regime, 
because it emphasizes the effectiveness of this sort 
of automatic system. The principal parameter of 
the oscillatory stable regime is the oscillations 
period.  

The apparition of the oscillatory stable regime is 
possible if the reference module achieves the next 
condition: 

0lim 1)( ε−=< rtr .                 (6) 

The previous condition is applicable and for the 
systems presented in figure 3 and it do not depend on 
the delay time. 

 
 
 

4 The oscillatory stable regime study 
method  
Further, we will use a particularization for the 
phases-plane method (the phases plane will be 
noted PF). Will consider the linear system part as 
a parallel connection of two order-one elements, as 
it is presented in figure 6.  

)1()1(
1

21 +⋅+ sTsT

 + 

 _ 

 1y  

 2y

11

1
+⋅Ts

K

12

2
+⋅Ts

K

 
 

Fig. 6. The equivalent parallel connection  
 

The gains of the two order one elements, 
noted  and , are the following: 1k 2k

( )
( )⎩

⎨
⎧

−=
−=

.
,

2122

2111
TTTk

TTTk
                  (7) 

The gains are positive and fulfill the condition 
121 =− kk

2k
. This is the reason to express the gain 

 trough . The state variables associated to 
each element of connection are noted  and .  

1k

1y 2y

 If the plant input has a constant value  1=u , 
the evolutions of the state variables can be 
calculated [6], [7], depending on the initial 
conditions,  and the time, t: ),( 2010 yy
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( )⎪⎩

⎪
⎨
⎧

+⋅−=

+⋅−=
−

−

.)(

;)(

2
/

2202

1
/

1101
2

1

kekyty

kekyty
Tt

Tt
        (8) 

In the case 1−=u , the evolutions of the state 
variables are described by equations: 

( )
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Based on (8), we will obtain, in PF, the 
equations of trajectories, which are supra-unitary 
power curves : )1/( 21 >TT

⎪
⎪
⎪

⎩
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   (9) 
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In the case , the trajectories converge to 
an accumulation point, , placed in the first 
quadrant and noted PAP. The figure 7 presents this 
point and this trajectory curves family.  

1=u
),( 21 kk

 

1y

2y  

2k  

1k  

PAP 

 
 

Fig. 7 The PAP add the family of trajectory curves 
in case of 1=u  

 
If , all trajectories tend to another 

accumulation point, , placed in the third 
quadrant and noted PAN.  

1−=u
( 21, kk −− )

The points PAP and PAN and the two family 
of trajectory curves are symmetrically positions 
and shapes in the PF plane.  

If the conditions (6) are achieved, the system 
state trajectory tends to a stable limit cycle, CLS,  
this situation are presented in the figure 8. 

 

1y

2y

PAP

PAN 
CLS 

 
 

Fig. 8 The stable limit cycle 
 

Starting from any arbitrary initial state of the 
system , after some steps, the state 
system trajectory bring the CLS. In order to find 
the parameters of the oscillatory stable regime, will 
use the next figure. 

),( 2010 yy
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Fig. 9 The main points of the stable limit cycle 
 

The main points of the CLS, presented in the 
previous figure are: 
- the commutations points, PCP and PCN. In 

these points, the nonlinear part of system 
effectively commutes. The coordinates of this 
point are: ),( 2 , for the PCP and 

),  for the PCN; 
1 cpcp yy

( 21 cncn yy

-  the hysteresis commutations points, PHP and 
PHN. In these points, the conditions for 
nonlinear part commutation are achieved, 
excepting the delay. The coordinates of this 
point are: ),( 2 , for the PCP and 

),  for the PCN. 
1 pp yy εε

( 21 nn yy εε

Using the hysteresis characteristic, for the 
PHP and PHN points we can obtain two relations 
between its coordinates: 

           (10) 
⎪⎩

⎪
⎨
⎧

ε+−=
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εε

εε
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Using the state trajectories equations, we can 
obtain other relations: 
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and: 
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Based on the equations (8) and the delay time, 
it results another other relations: 

( )
( )⎪⎩
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⎨
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By adding of relations (10), (11), (12) and 
(13), we obtain a nonlinear equation system, with 
eight equations: 
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The solving of the nonlinear equation system  
(14) permit to obtain the elements of the CLS. The 
main parameters are the coordinates of PCP and 
PCN,  and , and the times 
between the two commutations. We will use  the 
notations: 

),( 21 cpcp yy ),( 21 cncn yy

 - , the time of transition between PCP and PHN; nt
- , the time of transition between PCN and PHP. pt

The previous two times can be calculate using 
the relations: 

⎪
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.               (15) 

Because the times of transitions between the 
points PHP and PCP and between the points PHN 
and PCN are , the CLS period, τ T , will be: 

τ++= 2pn ttT                         (16) 

 

or: 
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5 The calculus of output system 
characteristics 
The equations of system (14), completed with (15) 
and (16) permit to find out the main parameters of 
the system oscillatory stable regime. Additionally 
to all that were presented, we need to determine 
the system output characteristics: the mean value, 
the extreme values and the output bandwidth. 

The outputs mean value can be calculated 
using an integral relation: 

( )∫ ⋅−⋅=
T

dttyty
T

y
0

21 )()(1 .     (18) 

Using the CLS arcs equations, after same 
calculus and transformations we obtain a short result: 

T
tt

y np −
= .                          (19) 

 For the calculus of the extreme output values, 
we will begin with same observations: 
- the slope of a tangent of the CLS arc which 

converge to the PAP from the point PCN, can be 
express such as: 

11

22
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yk
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dy
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−
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⋅= ;               (20) 

     and after some transformation: 

( )
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/1
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2 k
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cn

cn yk
yk

yk
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dy
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−⋅
−

−
⋅= . (21) 

In the previous relations  are the 
coordinate of the tangency point. Because the 
value  is positive, it is obviously that the 
tangent slope continuously decreases; this 
conclusion will be also obtained for the other 
CLS arc; 

),( 21 yy

2k

- the extremes system output values are 
characterized  by a extremes values of the 
difference 21 yy − ; 

- for the points where CLS cross the line between 
the points PAP and PAN, the coordinates 
satisfied the condition: 
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1
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2 y

T
Ty

k
ky ⋅=⋅= ,               (22) 

and the slope of the tangent of the CLS are unitary: 

1
1

2
1

1

2
2 =⇔=

dy
dyy

T
Ty .               (23) 

Using the previous observations, we can 
conclude that the extremes output values 
correspond to the points where CLS cross the line 
between the points PAP and PAN. The figure 10 
presents theses crossing points. 
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Fig. 10 The points of the CLS where the system 
output has the extreme values  

 

We will use the notation  and  for the 

values of the variable  which corresponds to 
 and , the system output extreme 

values. Using the last conclusion and the CLS 
parameters, we will obtain the following relations 
for the calculus of the values  and : 
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    (24) 

The maximum value of the system output will be: 

11max / kyy p= ,                     (25) 

and the minimum of the system output: 

11min / kyy n= ,                     (26) 

Finally, the output bandwidth can be 
calculated by using the relation: 

111 /)( kyyy np −=Δ .             (27) 

The relations (15), (16), (19), (24), (25), (26) 
and (27) will complete the system equations (14). 
In this way, we obtain a complete equations 
system, which can be used for the calculus of the 
CLS parameters and of the oscillatory stable 
regime parameters. 

The complete equations system is too 
complex and nonlinear. The solving of the 
complete equation system is possible, using an 
iterative algorithm. This algorithm reproduces the 
system evolution toward the CLS. 

 
 
 

6 The calculus algorithm  
In order to find all the parameters of CLS and of the 
oscillatory stable regime, the next steps will be 
passed: 

a. choose an arbitrary value y1εp; 
b. calculate the value y2εp, based on (10): 

; 012 ε−−= εε ryy pp  

c. calculate the values y1cp and  y2cp using the state 
variable evolution: 
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d. calculate the value tn, like solution of equation: 
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e. calculate the values y1cn and  y2cn: 
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f. calculate the value tp, like solution of equation:  
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g. calculate the values y1cp and  y2cp: 
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h. if the differences between the successive values of   
y1cp and  y2cp are not acceptable go to step d; 

i. calculate the CLS period: 

τ++= 2pn ttT , 

j. calculate the output parameters: 

⎪
⎪
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n

p
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, 

k. STOP. 

The presented algorithm strongly converges (the 
steps d-h) to the solution; the next example 
emphasizes this fact. 

 

Example 1. The calculus of CLS parameters by using 
the above presented algorithm, in case of a nonlinear 
system parameterized by the next values: T1=5s, 
T2=3s, ε0=0.15, τ=0.2s.  

For the reference, we will consider the values: 
r1=0, r2=0.22, r3=0.5, and the results are presented 
in the next tables. 

 
 

Table 1. The results in case .1rr =  
parameters Iteration 1 Iteration 2 Iteration 3

y1εp 2.5 -- -- 
y2εp  2.3 -- -- 
y1cp 2.5 1.38436 1.38232 
y2cp  2.26098 1.16743 1.16544 
tn+τ 7.55779 6.07892 6.07591 
y1cn -1.42976 -1.38241 -1.38232
y2cn  -1.21193 -1.16552 -1.16543
tp+τ 6.14576 6.07603 6.07590 
y1cp 1.38436 1.38232 1.38232 
y2cp  1.16743 1.16544 1.16543 
Δy1cp 1.11564 0.00204 0.0000 
Δy2cp  1.09355 0.00199 0.00001 

T   12.15181
 
 
 
 
 
 
 

Table 2. The results in case .   2rr =
parameters Iteration 1 Iteration 2 Iteration 3

y1εp 2.5 -- -- 
y2εp  2.08 -- -- 
y1cp 2.5 1.73626 1.73499 
y2cp  2.05171 1.30310 1.30185 
tn+τ 6.03762 5.06660 5.06489 
y1cn -1.04949 -1.00763 -1.00757 
y2cn  -1.04846 -1.00744 -1.00737 
tp+τ 7.53171 7.46407 7.46397 
y1cp 1.73626 1.73499 1.73499 
y2cp  1.30310 1.30185 1.30185 
Δy1cp 0.76364 0.00127 0.00000 
Δy2cp  0.74861 0.00125 0.00000 

T   12.52886
 
 
Table 3. The results in case  .3rr =

parameters Iteration 1 Iteration 2 Iteration 3
y1εp 2.5   
y2εp  1.8   
y1cp 2.5 2.14188 2.14164 
y2cp  1.78536 1.43434 1.43410 
tn+τ 4.49866 4.07684 4.07655 
y1cn -0.52670 -0.50677 -0.50676
y2cn  -0.80237 -0.78284 -0.78283
tp+τ 10.52189 10.48547 10.48545
y1cp 2.14188 2.14164 2.14164 
y2cp  1.43434 1.43410 1.43410 
Δy1cp 0.35812 0.00024 0.00000 
Δy2cp  0.35102 0.00024 0.00000 

T   14.562 
 
7 A case study 
In this example we will consider a nonlinear 
system, with the structure presented in figure 11.  
 

The Nonlinear part 
τ The Linear part 

R  Y  

)13)(15(
5)(

++
=

ss
sH

 U  + 
   _

 
 

Fig. 11 Example of a nonlinear system 

The parameters of the linear part are: T1=5s, 
T2=3

 

s and the gain KL=5. The stationary output value 
of the nonlinear part is U = 2. 
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We will use the presented algorithm to 
determinate the characteristics of its oscillatory 
stable regime, for any values of the delay τ and of 
the input hysteresis bandwidth, ΔH.  

In order to apply the presented calculus 
method, we will use an equivalent system, as in 
figure 12.  

 
R   Y  

)13)(15(
1)(

++
=

ss
sH u  

 + 
 _  

τ  
r  

K
1  K

y

 
 

Fig. 12 The equivalent shape for the exemplified 
nonlinear system 

 
The open loop gain for the initial system is:  

10=⋅= stL UKK . 

The central part of the equivalent system 
fulfills the conditions of the study model. The 
interval of hysteresis bandwidth values for the 
equivalent system is: 

K
HΔ

=ε02 . 

For the central part of the equivalent system, 
the reference r and the output y represent normed 
values: 

./   ,/ KYyKRr ==  

If the parameters of the output of the 
equivalent system central part y are y , ,  
and , the parameters of the initial system 
output Y  will be: 

yΔ miny

maxy

yKY ⋅= ,  ,  yKY Δ⋅=Δ

minmin yKY ⋅= , . maxmax yKY ⋅=

The oscillatory regime appears if the next 
condition is achieved: 

01 ε−<r . 

For the initial system, the previous condition 
becomes: 

2
HKR Δ

−< . 

 
The gains of the two elements, which 

decompose the linear parts of the equivalent 
system, are: 

5.22/51 ==k , . 5.12/32 ==k

Based on the presented algorithm, in any 
possible cases ( )0,ετ , for differed reference values 
it was obtained the parameters of the CLS and of 
the oscillatory stable regime. The next tables and 
figures present the results. 
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Fig. 13 The oscillatory stable regime period 
depending on relay delay time for a null input 
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Fig. 14 The oscillatory stable regime period 
depending on relay input bandwidth for a null input 

 
Table 4. The period of the oscillatory stable regime 

for a null input 
   ε0 
  0.01 0.02 0.035 0.05 0.075 0.10

0.1 4.62 5.52 6.51 7.30 8.38 9.30
0.2 5.32 6.11 7.02 7.75 8.78 9.67
0.4 6.57 7.19 7.96 8.62 9.56 10.39
0.7 8.14 8.62 9.26 9.82 10.66 11.42
1.0 9.50 9.90 10.44 10.94 11.70 12.40

τ[s]

1.5 11.46 11.78 12.23 12.65 13.32 13.95
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Table 5. The output bandwidth, Δy[%], of the 
oscillatory stable regime for a null input 
    ε0 

  0.01 0.02 0.035 0.05 0.075 0.10
0.1 8.7 12.3 16.8 20.8 26.9 32.5
0.2 11.4 14.9 19.3 23.3 29.3 34.8
0.4 17.0 20.2 24.4 28.3 34.1 39.5
0.7 25.5 28.3 32.2 35.8 41.3 46.5
1.0 33.7 36.3 39.8 43.2 48.4 53.4

τ[s] 

1.5 46.8 49.0 52.1 55.2 59.9 64.5
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Fig. 15 The oscillatory stable regime period 
depending on the input 
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Fig. 16 The output and the output bandwidth 
depending on the input 

 
 
 
 
 

8 Conclusions 
For the type of nonlinear systems taken into 
consideration, the paper offers certain instruments 
useful for evaluating the performances of the limit 
stable cycle which characterize its working.  

Compared with the use of the numerical 
simulation methods, the use of the calculus 
relations is more advantageous, being able to offer 
a more comprehensive view on the limits of these 
automatic structures. 

Regarding to the results, some conclusions 
have to be underlined: 

- the period of the oscillatory regime growing 
with the delay and with the hysteresis relay 
bandwidth; 

- the most reduced periods of the oscillatory 
regime correspond to a null references; 

- the mean output of value deviates from 
reference; this deviation can be considered linear 
and it can be eventually compensated using a gain 
correction in the reaction loop; 

- for the delay values comparable with the 
major time constant of the system and for high 
values of hysteresis relay bandwidth, the system’s 
performances deteriorate considerably;  

- the output bandwidths has a very low 
variation with the input increase, but it increase 
with the delay and with the hysteresis relay 
bandwidth. 
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