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Abstract: Stochastic jump processes, especially birth-and-death processes, are widely used in the queuing theory,
computer networks and information transmission. The state of such process describes the instant length of the
queues (numbers of packets at different edges to be transmitted through the net). If the birth and death rates are
big, trajectories of such processes are close to the trajectories of deterministic dynamic systems. Therefore, if
we consider the related optimal control problems, we expect that the optimal control strategy in the deterministic
(‘fluid’) model will be nearly optimal in the underlying stochastic model. In the current paper, a new technique
for calculating the accuracy of this approximation is described. In a nutshell, instead of the study of trajectories,
we investigate the corresponding dynamic programming equations. It should be emphasized that we deal also
with multiple-dimensional lattices, so that the results are applicable to complex communicating systems of queues.
Other areas of application are population dynamics, mathematical epidemiology, and inventory systems.

Key–Words: Birth-and-death process, Continuous time Markov chain, Fluid model, Optimal control, Queuing
system, Dynamic programming,µC-rule, Inventory

1 Introduction

The fluid approximation is a powerful tool for investi-
gating Markovian models with local transitions, like
birth-and-death processes. Justification of the fluid
approximation in different settings can be found in
[8, 10, 23, 24, 28]. It should be emphasized that birth-
and-death processes are widely used in the queuing
theory. The corresponding fluid approximations are
helpful for establishing stability of complex queuing
networks [8, 9, 11]. Another area of applications is
manufacturing: see e.g. [5, 22, 26, 35], where the fluid
approximation was used for the analysis of supply-
demand or production-inventory systems. Compli-
cated optimal control problems for stochastic pro-
cesses can be satisfactorily solved after one replaces
the model with its fluid limit. This approach was
demonstrated in [2, 4, 7, 12, 13, 30], where meaning-
ful examples on controlled queuing networks and epi-
demics can be found. Note that in [12], the authors
considered a discrete time Markov chain; the under-
lying lattice was multiple-dimensional in [4, 12, 28].
We emphasize that very often the fluid model is used,
without justification, for the study of real life pro-
cesses that are of the birth-and-death type. In princi-
ple, that justification could be based on the trajectory-
wise convergence proved in [8, 10, 23, 24]. This

method allows to prove the convergence of the Bell-
man functions: see [28], where a specific discounted
multiple-dimensional model was investigated. An-
other approach based on algebraic equations of the
dynamic programming type was demostrated in [31].
Since in the controlled framework we are interested in
the performance functional, the latter approach seems
more appropriate, and we develop it in the present pa-
per. The main advantage is that it makes possible to
provide the accuracy of the approximation, in terms
of the objective functional. There is a number of re-
cent papers dealing with the connection of the fluid
optimization problem and the underlying stochastic
model: see [4] and references therein. In the current
article, we present a new promising approach to this
question.

In Section 2, the ideas are demonstrated in the
framework of one-dimensional process. Section 3 is
devoted to the special multiple-dimensional problem
of optimal scheduling of a multiclass queue, similar
to [15, 20, 21, 27, 33]. For such models, theµC-rule
is known to be optimal for many versions of the prob-
lem: discounted case, fixed time horizon, long-run
average loss and so on. (See [27].) The asymptotic
optimality of theµC-strategy under the ‘heavy traf-
fic’ conditions was established in [25]. Note that the
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exact formulae for the Bellman function were usually
not presented. Investigation undertaken in [15, 20, 21]
shows that such expressions are very cumbersome. In
this connection, formula (17) below gives a simple ap-
proximation to the Bellman function, along with the
estimate of the error which goes to zero when the scal-
ing parametern increases. Finally, in Section 4, we
apply the theory developed to inventory problems.

2 One-dimensional lattice
Following the standard practice (see e.g. [16]), the
controlled birth-and-death processYt is defined by the
following elements:
S = {0, 1, . . .} is the state space,
A is the action space (arbitrary Borel),
Q = [qi,j(a)] is the tri-diagonal matrix of transition
rates;qi,j = 0 if |i − j| > 1;

qi,i+1(a) =

{

Λi(a) ≥ 0, if i > 0;
0, if i = 0;

qi,i−1(a) =

{

Mi(a) > 0, if i > 0;
0, if i = 0;

qii(a) = −qi,i+1(a) − qi,i−1(a);

G(i, a) is the (real, measurable) loss rate;G(0, a) ≡
0.

A control strategyΦ is a mapping fromS to
A. We restrict ourselves to stationary nonrandomised
strategies because, under rather general conditions,
they are sufficient for solving optimisation problems.

The optimal control problem under consideration
looks like follows:

WΦ(i) = EΦ
i

[∫ ∞

0
G(Ys,Φ(Ys))ds

]

→ inf
Φ

. (1)

HereEΦ
i is the expectation on the space of trajectories

{Ys}s≥0 starting fromY0 = i and absorbing at zero,
wrt probability measure generated by strategyΦ. The
rigorous mathematical constructions can be found in
[19, 29]. The Bellman equation for problem (1) looks
like follows:

inf
a∈A

{G(i, a) + Λi(a)V (i + 1) + Mi(a)V (i − 1)

−[Λi(a) + Mi(a)]V (i)} = 0, if i > 0; V (0) = 0.

In fact, we shall consider a sequence of described
models, so that all their parametersnΛ, nM and nG,
aswell as objectivenWΦ will be indexed withn =
1, 2, . . . Namely, we assume that measurable functions
λ(y, a), µ(y, a), andg(y, a) are fixed fory > 0, a ∈

A, such thatµ(y, a) > λ(y, a); λ(0, a) = µ(0, a) =
g(0, a) ≡ 0; and

nΛi(a) = nλ(i/n, a), nMi(a) = nµ(i/n, a),
nG(i, a) = g(i/n, a).

(2)
This is the standard fluid scaling: see [10, 23, 24, 28].
Now one can introduce the (fluid) absorbing optimal
control problem

dy

dτ
= λ(y, a) − µ(y, a);

∫ ∞

0
g(y, a)dτ → inf

a(·)
,

(3)
where the infimum is taken over all control strate-
giesa(·). Usually, the class of (measurable) feedback
strategiesa(t) = ϕ(y(t)), y(t) > 0, is sufficient, and
the (nearly) optimal strategy can be obtained using the
dynamic programming approach, that is, after solving
Bellman equation

infa∈A

{

dv
dy [λ(y, a) − µ(y, a)] + g(y, a)

}

= 0,

v(0) = 0.
(4)

We aim to show that if a feedback strategyϕ∗(y)
is (nearly) optimal for problem (3), then strategy
Φ∗(i) = ϕ∗(i/n) will be nearly optimal for (1), if
n is big.

In what follows, we assume that the processesYt

andy(τ) have a positive trend to zero, functionsλ and
µ grow not too fast withy, and the loss rateg grows
not too fast withy, comparing withλ andµ. Namely,
we impose the following conditions on the data:

Conditions 1 (a) For all y > 0 anda ∈ A,

λ(y, a) ≥ 0, µ(y, a) > 0,

inf
a∈A,y>0

µ(y, a)

λ(y, a)
≥ η̃ ∈ (1,∞).

(b) There exist constantsη1 ∈ (1, η̃) and η2 ∈ (1, η̃
η1

)

such that

sup
a∈A,y>0

|g(y, a)|

[λ(y, a) + µ(y, a)]ηy
1

≤ C1 < ∞;

sup
a∈A,y>0

λ(y, a) + µ(y, a)

ηy
2

≤ C2 < ∞.

Under Conditions 1, the controlled processYs is
regular (non-explosive) for any control strategy.

Definition 1 A feedback control strategyϕ(y) in the
fluid problem (3) will be callednormal if there ex-
ist finite intervals (y0 = 0, y1), (y1, y2), . . . with
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limj→∞ yj = ∞, such that, on each such interval,
function

g(y, ϕ(y))

µ(y, ϕ(y)) − λ(y, ϕ(y))
(5)

is Lipschitz continuous.

Conditions 2There exist finite inter-
vals (y′0 = 0, y′1), (y

′
1, y

′
2), . . . with

limj→∞ y′j = ∞, such that, on each such inter-
val, infy∈(y′

j
,y′

j+1
),a∈A[µ(y, a) + λ(y, a)] ≥ δ > 0,

and functionsµ, λ andg are Lipschitz continuous wrt
y for each fixeda ∈ A, and the Lipschitz constants
are a-independent (but can be different for different
intervals).

Theorem 1Suppose Conditions 1 and 2 are satisfied.
Then∀ŷ > 0, ∀ε > 0 there exists a normal feedback
control strategyϕ∗ in problem (3) on interval(0, ŷ],
such that, for ally ∈ (0, ŷ], inequality

v(y) ≤ vϕ∗

(y) ≤ v(y) + εŷ (6)

holds, i.e. strategyϕ∗ is εŷ-optimal.
For stationary nonrandomised strategyΦ∗(i) =

ϕ∗(i/n) : S → A, functions nWΦ∗

and vϕ∗

are
close to each other:

sup
0≤i≤ŷn

∣

∣

∣

nWΦ∗

(i) − vϕ∗

(i/n)
∣

∣

∣ ≤ ε̂(n).

Here

ε̂(n) =
K1

n
+

K2

η̃n
+ K3(η

1/n
1 − 1),

K1 =
η̃ + 1

η̃ − 1
[D(ŷ + 1) + 3C1Lηŷ+1

1 ];

K2 =
η̃ + 1

η̃ − 1
C1

[

1 +
2(η̃ + 1)

(η̃ − 1) ln η1

]

ηŷ+1
1 η̃2

η̃ − η1
;

K3 =

(

η̃ + 1

η̃ − 1

)2 3C1Lηŷ+1
1

ln η1
.

The values ofD and L come from the strategyϕ∗;
namely L is such thatyL < ŷ + 1 ≤ yL + 1 (see
Definition 1) andD is the common Lipschitz constant
of function (5) withϕ = ϕ∗ on all intervals(yj, yj+1),
j = 0, 1, . . . , L.

For all large enoughn, strategyΦ∗ is nearly opti-
mal for all initial statesY0 ∈ [0, ŷn] in the stochastic
problem (1). Namely,

sup
0≤i≤ŷn

∣

∣

∣

∣

nWΦ∗

(i) − inf
Φ

nWΦ(i)

∣

∣

∣

∣

≤ δ + 2ε̂(n), (7)

where

δ =
ε(ŷ + 1)(η̃ + 1)

η̃ − 1
.

The proof will be published in [32].
Example.Consider the M/M/1 queueing system

with the controlled input streamnλ(j/n, a) = n(d0+
d1a), d0, d1 > 0, d0 + d1 < 1, a ∈ A = [0, 1];
the service intensitynµ(j/n, a) = n is constant. As
usual,n is a fixed large enough parameter. The ini-
tial state isi > 0, and we observe the trajectory up to
the absorption at zero. One can consider this model
as a verstion of call admission control. The server
always accepts the jobs from one stream with inten-
sity nd0, but can chose any probabilitya of accepting
jobs from another stream, intensitynd1. Suppose we
are interested in the total expected throughput (to be
maximised), as well as the total expected queue length
(to be minimised). Therefore,nG(i, a) = i/n − Ra,
whereR > 0 is a given constant (Lagrange multi-
plier), and one has to solve problem (1). The corre-
sponding fluid model is defined by

λ(y, a) = d0 +d1a, µ(y, a) = 1, g(y, a) = y−Ra.

Note that Conditions 1 and 2 are satisfied.
The Bellman equation (4) can be explicitly

solved:

v(y) =















Ry−y2/2
d0+d1−1 , if 0 ≤ y ≤ y∗;

y2−(y∗)2

2(1−d0) − Ry∗−(y∗)2/2
1−d0−d1

, if y > y∗,

where

y∗
△
=

R(1 − d0)

d1
.

Feedback control strategy

ϕ∗(y)
△
=

{

1, if 0 < y ≤ y∗;
0, if y > y∗

is normal and optimal for the problem (3), andε = 0
in formula (6).

Let us fixd0 = 0.25; d1 = 0.5; R = 1. One can
take η̃ = 4/3, η1 = 7/6, η2 = 15/14, C1 = 2.23,
C2 = 1.75. For the normal strategyϕ∗, we have
y∗ = 1.5, L = 1, D = 4. Now, after choosing
ŷ = 5, we haveK1 = 286, K2 = 38500, K3 = 5360,
and for n = 100, 000 we obtainε̂ = 0.022 in The-
orem 1, which is small enough being compared with
v(y) ∈ [0, 14] wheny ∈ [0, ŷ]. It should be empha-
sized that this estimate of the accuracy of the fluid ap-
proximation is very rough.

3 Multiple-dimensional lattice: µC-
rule

Suppose there arem > 1 types of jobs to be served
by a single server. Arrival and service rates for type
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j equalnλj andnµj, where, like previously,n is the
scaling parameter. We shall consider the Markovian
case when all the service and inter-arrival times are
exponential; we assume also that there is infinite space
for waiting. The holding cost of one typej job equals
Cj/n per time unit. At any moment, the server should
chose a job for service from the queue: that is, the ac-
tion a = j ∈ {1, 2, . . . ,m} means that a typej job is
under service. Note that we consider the preemptive
service times. The goal is to minimize the total hold-
ing cost up to the absorption at the zero state (empty
queue).

Mathematical problem looks as follows.
S = {(i1, i2, . . . , im)} is the state space;ij ≥ 0

equals the number of jobs of typej in the system.
A = {1, 2, . . . ,m} is the action space.
If Y = (Y1, Y2, . . . , Ym) is the current state, then

only the following transitions can occur:
- one job of type j arrives; transition
rate to the new state Y ′ = (Y1, Y2,
. . . , Yj + 1, . . . , Ym) equalsnλj; j = 1, 2, . . . m;
- if Yj > 0 and a = j then the service can
be completed; transition rate to the new state
Y ′ = (Y1, Y2, . . . , Yj − 1, . . . , Ym) equalsnµj.
StateY = 0 is absorbing.

In what follows, we accept thata 6= j in case
Yj = 0: there is no reason to serve a dummy job.

Finally, G(Y, a) = 1
n

∑m
j=1 CjYj , and we study

problem (1). Of course, initial state(i1, i2, . . . , im)
and the processYs are now multiple-dimensional;
the objective to be minimized is denoted as
nWΦ(i1, i2, . . . , im).

Conditions 3
m
∑

j=1

λj

µj
< 1, i.e. this queueing system is

stable.

The corresponding fluid model is described by the
following equations

dy

dτ
= f(y, a), (8)

wherey ∈ IRm
+ , a ∈ A, and, fory 6= 0,

fj(y, a) =

{

λj , if j 6= a, or if yj = 0,
λj − µj, if j = a andyj > 0.

If y = 0 thenf(y, a) = 0.
Performance functional:

F =

∫ ∞

0
g(y)dτ → inf

a(·)
, (9)

whereg(y) =
∑m

j=1 Cjyj.

Without loss of generality, further we assume that

µ1C1 ≥ µ2C2 ≥ . . . ≥ µmCm

and introduce function

v(y1, y2, . . . , ym)
△
= vm(y1, y2, . . . , ym)

defined by the (recursive) formulae

v1(y1) =
C1y

2
1

2(µ1 − λ1)
;

T1(y1) =
y1

µ1 − λ1
;

vk+1(y1, y2, . . . , yk+1) = vk(y1, y2, . . . , yk)

+Ck+1

[

yk+1Tk(y1, y2, . . . , yk)

+
λk+1T

2
k (y1, y2, . . . , yk)

2

+
(yk+1 + λk+1Tk(y1, y2, . . . , yk))

2

2(ηk+1 − λk+1)

]

;

Tk+1(y1, y2, . . . , yk+1) = Tk(y1, y2, . . . , yk)

+
yk+1 + λk+1Tk(y1, y2, . . . , yk)

ηk+1−λk+1
.

(10)
Here

ηk+1
△
= µk+1

(

1 −
λ1

µ1
− . . . −

λk

µk

)

is the effective service rate ofk + 1 type jobs under
the feedbackµC-strategy

a = ϕ∗(y)
△
= (k + 1)

×I{y1 = 0, y2 = 0, . . . , yk = 0, yk+1 > 0},
(11)

whereI stands for the indicator function. This strat-
egy allows to serve typek+1 jobs only if there are no
jobs of types1, 2, . . . , k. Functionvk coincides with
the Bellman function in case there are only the firstk
types of jobs,Tk is the corresponding time until ab-
sorbtion at zero.

One can check, using the induction argument, that

Tk =
k
∑

i=1

yi

(ηk − λk)
·

k−1
∏

j=i

ηj+1

ηj − λj

=
k
∑

i=1

yi

µi



1 −
k
∑

j=1

λj

µj





.
(12)

Actually, the µC-strategy is optimal in the
stochastic problem (1): this follows from Proposition
3.1 in [27]. The goal of the current section is to study
the fluid model (8),(9) and to compare it with problem
(1): see Theorem 2.
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Lemma 1 Under Condition 3, functionv satisfies the
dynamic programming equation

min
a∈A







g(y) +
m
∑

j=1

∂v

∂yj
fj(y, a)







= g(y) +
m
∑

j=1

∂v

∂yj
fj(y, ϕ∗(y)) = 0;

v(0) = 0,

(13)

and hence theµC-strategyϕ∗ is optimal in the fluid
model (8), (9).

Remark 1Lemma 1 is consistent with [3], where the
case of a finite fixed time horizon was studied. Note
that the total time until absorption,Tm does not
depend on the priorities allocation. For the fixed
time intervalTm, the minimal value of the objective

FTm =

∫ Tm

0
g(y)dτ is provided by theµC-strategy

[3]. Hence it is also optimal in terms of functional
(9).

Function v (called Bellman function) coincides
with the objective functional (9) if the process (8)
starts from statey and is governed by theµC-strategy
(11). We know the exact formula forv, but it can be
derived also from equation (13):

g(y) +
m
∑

j=1

∂v

∂yj
fj(y, ϕ∗(y)) = 0, v(0) = 0. (14)

From the latter point of view, dynamics (8) is incon-
venient: ify1 = 0 then this component remains zero,
but the dynamics on that hyper-plane is non-standard
(called sliding mode):

f1(y) = λ1 > 0, if y1 = 0,

and
f1(y) = λ1 − µ1 < 0 if y1 > 0.

It would be better to describe this dynamics in another
way, so that solution to (14) does not change and can
be built using standard methods of partial differential
equations.

When looking for continuously differentiable so-
lutions to (14), we notice that (14) holds also in the
limiting case wheny1 → 0, so that, e.g. ify2 > 0 we
have two equations wheny1 = 0:

C2y2 + . . . + Cmym +
∂v

∂y1
λ1 +

∂v

∂y2
(λ2 − µ2)

+
∂v

∂y3
λ3 + . . . +

∂v

∂ym
λm = 0

and

C2y2 + . . . + Cmym +
∂v

∂y1
(λ1 − µ1) +

∂v

∂y2
λ2

+
∂v

∂y3
λ3 + . . . +

∂v

∂ym
λm = 0.

It is convenient to havedy1

dt = 0 (coefficient at ∂v
∂y1

)
wheny1 = 0, so that we write down the correspond-
ing convex combination:

C2y2 + . . . + Cmym

+
∂v

∂y1

[(

1 −
λ1

µ1

)

λ1 +
λ1

µ1
(λ1 − µ1)

]

+
∂v

∂y2

[(

1 −
λ1

µ1

)

(λ2 − µ2) +
λ1

µ1
· λ2

]

+
∂v

∂y3
λ3 + . . . +

∂v

∂ym
λm = 0.

As a result, we obtain the effective service rate for
type 2 jobs:η2 = µ2

(

1 − λ1

µ1

)

. This reasoning ap-
plies to types3, . . . ,m, so that functionsfj are re-
placed with

f̃j(y, ϕ∗(y))

=



















0, if j = 1 andy1 = 0;
λ1 − µ1, if j = 1 andy1 > 0;

λj − µj

(

1 − λ1

µ1

)

, if ϕ∗(y) = j > 1;

λj, if j > 1 andϕ∗(j) 6= j.

If we know functionv on the planey1 = 0, then we
can calculate it (analytically or numerically) for all
y ≥ 0 using the characteristics method for equation

g(y) +
m
∑

j=1

∂v

∂yj
f̃j(y, ϕ∗(y)) = 0, v(0) = 0.

In order to build functionv on the planey1 = 0,
weperform the same operation for the second compo-
nenty2 and so on. Eventually, we deal with equations

dyj

dτ

=











0, if y1 = . . . = yj = 0;
λj − ηj , if yj > 0, but y1 = . . . = yj−1 = 0;
λj , otherwise.

Now one can build functionv firstly on the line
y1 = . . . = ym−1 = 0, having initial condition
v(0) = 0. After that, functionv is constructed se-
quentially on hyper-planes{y1 = . . . = ym−2 = 0},
{y1 = . . . = ym−3 = 0}, . . . , {y1 = 0}, and finally
for all y1 > 0.
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Of course, in this particular model we will finish
with the same functionv(·) given above. But the rea-
soning presented can be useful in other situations, if
one has to compute the performance functional for a
given control strategy leading to a sliding mode.

Lemma 2 In the stochastic model described above,
under control strategy

Φ∗(Y )
△
= ϕ∗(Y/n), (15)

starting from the initial state(i1, i2, . . . , im), the ex-
pected time to absorbtion at stateY = 0 equals

nU(i1, i2, . . . , im) =
m
∑

j=1

ij
n(ηj − λj)

m
∏

l=j+1

ηl

ηl − λl
.

(16)

We see thatnU(i1, . . . , im) = Tm

(

i1
n , . . . , im

n

)

.
Actually, Tm is the fluid approximation tonU , and,
under very general conditions, the accuracy of that
approximation is proportional to the maximum of the
second derivative of the fluid functional. (See [31],
where the one-dimensional case was investigated in
depth.) Thus, the coincidencenU(·) = Tm(·) is not
surprising because functionTm is linear.

Theorem 2For the feedbackµC-strategyΦ∗, for any
vector ŷ ∈ IRm

+ , the following inequality holds:

sup
0≤(i1,i2,...,im)≤ŷn

∣

∣

∣

nWΦ∗

(i1, i2, . . . , im)

−v(i1/n, i2/n, . . . , im/n)|

≤
mD

n

(

max
1≤j≤m

max{λj , µj − λj}

)

×
m
∑

j=1

ŷj

ηj − λj

m
∏

l=j+1

ηl

ηl − λl
,

(17)

where D = max1≤j≤m

∣

∣

∣

∣

∂2v
∂y2

j

∣

∣

∣

∣

is a constant since

function v is quadratic; vector inequalities are
component-wise.

As was already mentioned, theµC-strategy (11)
is optimal in problem (1); it is also optimal for the
stochastic discounted problem and, consequently, for
the long-run average loss. (Consider the limit as the
discount factor goes to zero.) One can study the fluid
discounted model and provide the asymptotic formula
for the accuracy, similar to (17). The following exam-
ple shows that theµC-strategy is not necessarily op-
timal if there is finite space for waiting. Takem = 2

and suppose there cannot be more than one job of each
type in the system. Assume for simplicity thatµ1 =
µ2 = µ. There are only four states in this stochastic
system: (i1, i2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, and
the decision should be made only in state(1, 1). The
Bellman equation looks like follows

min{C1 + C2 + µV (0, 1) − µV (1, 1);
{C1 + C2 + µV (1, 0) − µV (1, 1)} = 0.

(18)

The first (second) line corresponds to the priority
given to the first (second) type. Additional equations:

C1 + λ2V (1, 1) + µV (0, 0) − (λ2 + µ)V (1, 0) = 0;

C2 + λ1V (1, 1) + µV (0, 0) − (λ1 + µ)V (0, 1) = 0;

V (0, 0) = 0.

As usual, we assume thatµC1 ≥ µC2.
One can check that ifC1−C2 ≥ (C1 +C2)

λ1−λ2

µ
then theµC-strategy is optimal: the first expression in
(18) is smaller and

V (0, 1) =
µC2 + λ1(C1 + C2)

µ2
;

V (1, 0) =
µ2C1 + 2µλ2C2 + µλ2C1 + λ1λ2(C1 + C2)

µ2(λ2 + µ)
;

V (1, 1) =
λ1(C1 + C2) + 2µC2 + µC1

µ2
.

But if C1 − C2 < (C1 + C2)
λ1−λ2

µ then theµC-
strategy is not optimal: the second expression in (18)
is smaller and

V (0, 1) =
µ2C2 + 2µλ1C1 + µλ1C2 + λ1λ2(C1 + C2)

µ2(λ1 + µ)
;

V (1, 0) =
µC1 + λ2(C1 + C2)

µ2
;

V (1, 1) =
λ2(C1 + C2) + 2µC1 + µC2

µ2
.

In caseλ1 ≫ λ2, it is worth serving the sec-
ond type job (even ifC1µ > C2µ) because after that,
while serving the first type, it is unlikely that a job of
type 2 will arrive, and we can quickly reach the ab-
sorbing zero state.

Let us have a quick look at the following long-
run average modification of the stochastic model. Af-
ter reaching the zero state, theYt process can jump
to states (1, 0, . . . , 0), (0, 1, . . . , 0),...,(0, 0, . . . , 1)

with probabilitiesλ1/
(

∑m
j=1 λj

)

, λ2/
(

∑m
j=1 λj

)

,...,
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λm/
(

∑m
j=1 λj

)

. Therefore, under a stationary con-
trol strategyΦ, the expected total loss, between the
two consecutive visits to the zero state, equals

[λ1
nWΦ(1, 0, . . . , 0) + λ2

nWΦ(0, 1, . . . , 0)

+ . . . + λm
nWΦ(0, 0, . . . , 1)]

/

m
∑

j=1

λj .

(19)
DenotingnUΦ(i1, i2, . . . , im) the expected time to hit
zero starting from state(i1, i2, . . . , im) 6= 0, we see
that the expected time interval, between the two con-
secutive visits to zero, equals

[λ1
nUΦ(1, 0, . . . , 0) + λ2

nUΦ(0, 1, . . . , 0)

+ . . . + λm
nUΦ(0, 0, . . . , 1)]

/

m
∑

j=1

λj .
(20)

Lemma 3 For any stationary control strategyΦ ex-
pression (20) coincides with

m
∑

j=1

λj

µj

n



1 −
m
∑

j=1

λj

µj





m
∑

j=1

λj

. (21)

The processYt is regenerative [34]. Therefore,
the long-run average loss coincides with the ratio of
(19) to the regeneration period

T =

m
∑

j=1

λj

µj

n



1 −
m
∑

j=1

λj

µj





m
∑

j=1

λj

+
1

n
m
∑

j=1

λk

=
1

n





m
∑

j=1

λk







1 −
m
∑

j=1

λj

µj





.

The second summand is the expected length of the idle
period. Therefore, a stationary control strategy is opti-
mal in the absorbing case if and only if it is optimal in
the model with long-run average loss. Note, we deal
with the unichain model, so that stationary strategies
form a sufficient class, and a strategy is optimal iff
it is optimal for any initial condition. Since theµC-
strategy is optimal in problem (1), it provides also the
minimum to the long-run average loss.

Controlled fluid models of general communica-
tion networks with linear holding cost

∑m
j=1 CjYj

were studied in [13]. Optimality of theµC-strategy
established in the above Lemma 1 is consistent with

the more general result [13]: there exists a finite col-
lection of polyhedral cones, covering the total state
spaceIRm

+ , such that the value of the optimal feed-
back control strategy is constant inside each of those
cones. At the same time, the optimal fluid strategy,
translated back to the underlying stochastic network
using formula (15), can be far not optimal: see [14],
where a simple example of a tandem queue was dis-
cussed. In such queues, theµC-strategy can also be
not optimal, as it was shown in [17].

4 Applications to the inventory the-
ory

Optimization methods are widely used for solving real
li fe problems in reliability [18], inventory theory [6]
and so on. We start with a rather general fluid model
of an inventory system, which is a particular case of
the model studied in [5]. If the inventory level isy ≥ 0
then the demand rate isµ(y) > 0, so that

dy

dτ
= −µ(y).

At the momentτ∗ wheny(τ∗) reaches zero, the cycle
is over andy(τ∗ + 0) = z > 0, i.e. the replenishment
is instantaneous, the set-up cost beingK. Holding
y units results in the costg(y) per time unit. If we
take into account also the profit, then one has to adjust
functiong by subtractingc(y)µ(y), wherec(y) is the
profit from selling one unit. We are interested in min-
imizing the (long-run) total cost per unit time (tcu):

tcu(z) = lim
T→∞

1

T

{

∫ T

0
g(y(τ))dτ + K

[

T

Tc

]

}

=

[∫ z

0

g(y)

µ(y)
dy + K

]/

Tc → inf
z>0

.

Here
[

T
Tc

]

is the integer part,Tc is the length of the
cycle, that is the solution to equation

∫ Tc

0
µ(y(τ))dτ = z, i.e. Tc =

∫ z

0

dy

µ(y)
.

The best possible valuez∗ is called economic order
quantity (eoq).

All the introduced integrals are well defined under
the following conditions.

Conditions 4 (a) There exist constantsC1, C2, andδ
such that

δ ≤ µ(y) ≤ C1, |g(y)| ≤ C2.

(b) Functionsg(y) andµ(y) are Lipschitz contin-
uous with Lipschitz constantsC3 andC4 correspond-
ingly.
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The corresponding stochastic model looks like
follows. The product is measured and demanded
in (small) units, so that the state spaceS =
{0, 1, 2, . . . , Z = [nz]}; the square brackets stay for
the integer part;n is the (big) scaling parameter. The
random processYs under consideration represents the
number of units of product in stock at time moments.
Transition rates equalqi,i−1 = nµ(i/n), if i ≥ 1, and
q0,Z = nλ: the lead time is exponential with parame-
ter nλ. All the remainder valuesqi,j 6=i are zero. The
loss rate is

nG(i) = g(i/n) + K nµ(1/n)I{i = 1}.

(The last term corresponds to the expected set-up cost
at the moment whenYs = 0.) Performance func-
tional:

nTCU(Z) = lim
T→∞

1

T
Ei

[

∫ T

0

nG(Ys)ds

]

→ inf
Z>0

.

(22)
Like previously, we shall estimate the difference
| nTCU([nz]) − tcu(z)| and prove that eoqz∗ pro-
vides a nearly optimal value[nz∗] to Z.

Theorem 3Suppose the order sizez > 0 is fixed and
Conditions 4 hold fory ∈ [0, z]. Then

| nTCU([nz]) − tcu(z)|

≤

[

(

C2 +
Kδ

z
+

C2δ

znλ

)

(

zC4 + δ +
δ2

λ

)

+z(C2C4 + C1C3) + C2δ +
δ2

λ

]

×
C2

1

n(z − 1/n)δ3
.

(23)

We see that the righthand side of (23) decreases
whenz grows up. So, it is convenient to estimate the
lower boundaries for eoqz∗ and for EOQZ∗, solu-
tion to (22). Further, we assume that functiong is
non-negative. Clearly, if it is bounded from below, we
can increase it by an appropriate constant, so that the
values ofz∗ andZ∗ will not change.

The derivative

d tcu(z)

dz
<

1

T 2
c

{

C2

δ2
z −

K

C1

}

is negative for allz < δ2K
C1C2

. Similarly, the difference

(

Z+1
∑

i=1

g(i/n)

nµ(i/n)
+ K +

g(0)

nλ

)/(

Z+1
∑

i=1

1

nµ(i/n)
+

1

nλ

)

−

(

Z
∑

i=1

g(i/n)

nµ(i/n)
+ K +

g(0)

nλ

)/(

Z
∑

i=1

1

nµ(i/n)
+

1

nλ

)

<
C2(Z + δ/λ)

δ2
−

Kn

C1

is negative ifZn < δ2K
C1C2

− δ
nλ . Therefore, we can

omit from consideration the values ofz andZ/n be-
low δ2K

C1C2
− δ

nλ and formulate the following statement.

Corollary 1 If g(z) > 0 andN is such a number that
δ2K
C1C2

− δ
Nλ − 1

N > 0, then, for alln ≥ N , for all

z ≥ δ2K
C1C2

− δ
nλ , the following inequality holds

| nTCU([nz]) − tcu(z)| ≤
E

n

where

E =
C3

1C2Nλ

(δ2KNλ − δC1C2 − C1C2λ)δ3

×

{(

C2 +
KδC1C2Nλ

δ2KNλ − δC1C2

)

×

(

C4 ·
δ2KNλ − δC1C2

C1C2Nλ
+ δ +

δ2

λ

)

+
δ2KNλ − δC1C2

C1C2Nλ
(C2C4 + C1C3) + C2δ +

δ2

λ

}

We see that, if we find the eoqz∗ then, forn ≥ N ,
∣

∣

∣

∣

nTCU([nz∗]) − inf
Z

nTCU(Z)

∣

∣

∣

∣

≤
2E

n
.

Note that it is usually much easier to findz∗ than
the EOQZ∗ for the stochastic model, and if we accept
the value of[nz∗] then, for bign, nTCU([nz∗]) will
be close to the best possible.

In the classical case, whenµ(y) ≡ D andg(y) =
hy, we obtain:

tcu(z) =
KD

z
+

hz

2

and

nTCU(Z) =
λ(hZ2 + hz + 2n2DK)

2(λnZ + nD)
.

Under fixedn andZ, formulae

P (0) =
1

nλ

/





Z
∑

j=1

1

nµ(j/n)
+

1

nλ
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P (i) =
1

nµ(i/n)

/





Z
∑

j=1

1

nµ(j/n)
+

1

nλ



 ,

i = 1, 2, . . . , Z

provide the stationary distribution for the jump ran-
dom processYs.

At the same time, in the fluid model the invariant
probability density is given by expression

p(y) =
1

µ(y)

/∫ z

0

du

µ(u)
.

We see that, ifZ = [nz], then

|P (0)| ≤
C1

n(z − 1/n)λ

and, fori = 1, 2, . . . , [nz],
∣

∣

∣

∣

∣

P (i) −

∫ i/n

(i−1)/n
p(u)du

∣

∣

∣

∣

∣

≤
1





[nz]
∑

j=1

1

nµ(j/n)
+

1

nλ





(∫ z

0

du

µ(u)

)

×







1

nµ(i/n)

∣

∣

∣

∣

∣

∣

∫ z

0

du

µ(u)
−

[nz]
∑

j=1

1

nµ(j/n)
−

1

nλ

∣

∣

∣

∣

∣

∣

+





[nz]
∑

j=1

1

nµ(j/n)
+

1

nλ





∣

∣

∣

∣

∣

1

nµ(i/n)
−

∫ i/n

(i−1)/n

du

µ(u)

∣

∣

∣

∣

∣







≤
C2

1

(

2zC4 + δ + δ2

λ

)

z(z − 1/n)n2δ3
.

Therefore, again, ifn is large, one can very pre-
cisely estimate the distributionP based on the density
p for the fluid model.

5 Conclusion
The convergance of trajectories of jump processes
with local transitions to those of the corresponding
‘fluid’ dynamic systems was previously proved based
on the Law of Large Numbers (see e.g. [23]). In the
present work, we provide the rate of that convergence
in terms of the objective functionals, in the framework
of controlled models, and present the explicit formu-
lae for the error term, based only on the initial data.
Meaningful examples show that the theory developed

can be applied to many real life situations. Another
field of applications is population dynamics and math-
ematical epidemiology, which is not touched in the
current article.
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Appendix
Proof of Lemma 1.According to Remark 1, the

ϕ∗ strategy is optimal in problem (8), (9), but the form
of the Bellman function was not provided in [3]. Thus
we present the brief plan how to prove equation (13).

In the proofs below, we repeatidly apply the in-
duction method and use formulae (10), along with
equalities

∂Tm

∂ym
=

1

ηm − λm
;

∂vm

∂ym
= CmTm−1 +

Cm(ym + λmTm−1)

ηm − λm
;

(24)

µiηi+1 − µi+1ηi + µi+1λi = 0, i = 1, 2, . . . ,m.
(25)

(HereT0
△
= 0.)

(a) Firstly, we prove inequality

∆ = µm
∂vm+1

∂ym
− µm+1

∂vm+1

∂ym+1
≥ 0 (26)

for an arbitrarym ≥ 1. As a result, we can be sure
that actiona = m (in the model withm + 1 types of
jobs) is better thana = m+1 if ym > 0. In particular,
if m = 1, this is the proof of the left equation in (13).

One can show that

∆ = µmCmTm−1 +
µmCm(ym + λmTm−1)

ηm − λm

−Cm+1µm+1Tm +
µmCm+1λm+1Tm

ηm − λm

+
µmCm+1λ

2
m+1Tm

(ηm+1 − λm+1)(ηm − λm)

−
µm+1Cm+1λm+1Tm

ηm+1 − λm+1
= B1ym + B2Tm−1

andB1, B2 ≥ 0.
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(b) Secondly, we prove that, for eachi =
1, 2, . . . ,m − 1,

µi
∂vm+1

∂yi
− µi+1

∂vm+1

∂yi+1
= µi

∂vm

∂yi
− µi+1

∂vm

∂yi+1
(27)

(for an arbitrarym > 1). As a result, we can be sure
that if actiona = i was better thana = i + 1 (if
yi > 0) in the model withm types of jobs, then it
remains better in the model with(m+1) types of jobs.
According to (a), we will establish the left equality in
(13) for any value ofm ≥ 2.

Clearly, the difference between the lefthand and
the righthand sides of (27) equals

{

Cm+1ym+1 + Cm+1λm+1Tm

+
Cm+1λm+1

ηm+1 − λm+1
(ym+1 + λm+1Tm)

}

×

{

µi
∂Tm

∂yi
− µi+1

∂Tm

∂yi+1

}

.

But

µi
∂Tm

∂yi
− µi+1

∂Tm

∂yi+1
= 0.

(c) Before proceeding to the proof of
the righthand equality (13), we compare
vm(0, . . . , 0, yj+1, . . . , ym) andvm−j(yj+1, . . . , ym).
Starting with with j = 1 and using the induction
argument (wrtm), one can see that

vm(0, y2, . . . , ym) = v1
m−1(y2, . . . , ym), (28)

where functionv1
m−1(·) is the same asvm−1(·) if

we replace its parametersµ2, . . . , µm with µ2 −
λ1

µ1
µ2, . . . , µm − λ1

µ1
µm correspondingly. As a result,

wehave

vm(0, . . . , 0, yj+1, . . . , ym) = vj
m−j(yj+1, . . . , ym),

(29)
where functionvj

m−j(·) is the same asvm−j(·) if we
replace its parametersµj+1, . . . , µm with the effective
service rates

µj+1 −
λ1

µ1
µj+1 − . . . −

λj

µj
µj+1; . . . ;

µm −
λ1

µ1
µm − . . . −

λj

µj
µm.

(d) Next, one can prove equality

m
∑

j=1

∂Tm

∂yj
fj(y, ϕ∗(y)) = −1 (30)

by induction (if y 6= 0). In fact, (30) holds for any
priorities allocation, not only for theϕ∗ strategy.

(e) To establish the righthand equality in (13), we
start with the casey1 > 0 and prove (by induction wrt
m and using (30) ) that

g(y) +
m
∑

j=1

∂vm

∂yj
fj(y, ϕ∗(y)) = 0.

(f) Now supposey1 = . . . = yi = 0, yi+1 > 0
(i ≥ 1). According to (29) and item (e),

∂vm(0, . . . , 0, yi+1, . . . , ym)

∂yi+1

[

λi+1

−

(

µi+1 −
λ1

µ1
µi+1 − . . . −

λi

µi
µi+1

)]

+
m
∑

j=i+1

∂vm(0, . . . , 0, yi+1, . . . , ym)

∂yj
λj = 0.

(31)
We intend to prove that∀m ≥ 2 ∀i < m ∀k ≤ i

∂vm

∂yk

∣

∣

∣

∣

y1=...=yi=0

µk =
∂vm

∂yi+1

∣

∣

∣

∣

y1=...=yi=0

µi+1.

(32)
Using induction (wrtm) and (27), we see that (32)
holds fori = k = 1.

Suppose1 < i < m.
If k = i then, using (29), we see that

∂vm

∂yi

∣

∣

∣

∣

y1=...=yi=0

µi

(

1 −
λ1

µ1
− . . . −

λi−1

µi−1

)

=
∂vi−1

m−i+1

∂yi

∣

∣

∣

∣

∣

yi=0

µi

(

1 −
λ1

µ1
− . . . −

λi−1

µi−1

)

=
∂vi−1

m−i+1

∂yi+1

∣

∣

∣

∣

∣

yi=0

µi+1

(

1 −
λ1

µ1
− . . . −

λi−1

µi−1

)

;

thus (32) holds fork = i.
Exactly in the same way we considerk = i − 1

and conclude that

∂vm

∂yi−1

∣

∣

∣

∣

y1=...=yi−1=0

µi−1

(

1 −
λ1

µ1
− . . . −

λi−2

µi−2

)

=
∂vm

∂yi

∣

∣

∣

∣

y1=...=yi−1=0

µi

(

1 −
λ1

µ1
− . . . −

λi−2

µi−2

)

.

In particular, ifyi = 0 then

∂vm

∂yi−1

∣

∣

∣

∣

y1=...=yi=0

µi−1 =
∂vm

∂yi

∣

∣

∣

∣

y1=...=yi=0

µi

=
∂vm

∂yi+1

∣

∣

∣

∣

y1=...=yi=0

µi+1.
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Arguing similarly, we see that (32) holds for anyk =
i, i − 1, . . . , 1.

Now we can replace

∂vm(0, . . . , 0, yi+1, . . . , ym)

∂yi+1

(

λk

µk
µi+1

)

with
∂vm

∂yk
λk, so that (31) transforms to equation

∂vm

∂y1
λ1 + . . . +

∂vm

∂yi
λi +

∂vm

∂yi+1
(λi+1 − µi+1)

+
m
∑

j=i+2

∂vm

∂yj
λj = 0

which is valid if y1 = . . . = yi = 0, yi+1 > 0.
The righthand equality in (13) is proved.
Proof of Lemma 2. Function nU(·) coincides

with the minimal non-negative solution to equation


µΦ∗ +
m
∑

j=1

λj





nU(i1, . . . , im) =
1

n

+µΦ∗
nU(i1, . . . , iΦ∗ − 1, . . . , im)

+
m
∑

j=1

λj
nU(i1, . . . , ij + 1, . . . , im),

(33)

whereΦ∗ = Φ∗(i1, . . . , im).
Note that function on the righthand side of

(16) is linear wrt (i1, . . . , im) and coincides with

Tm

(

i1
n , . . . , im

n

)

. If we substitute it in the righthand
side of (33), we obtain

1

n
+



µΦ∗ +
m
∑

j=1

λj



Tm

(

i1
n

, . . . ,
im
n

)

+
1

n





m
∑

j=1

∂Tm

∂yj
fj

(

i1
n

, . . . ,
im
n

,Φ∗

)



 .

Note that fj

(

i1
n , . . . , im

n ,Φ∗
)

= fj(y, ϕ∗(y)) for

y1 = i1
n , . . . , ym = im

n . Hence, according to (30), the
expression obtained coincides with the lefthand side
of (33).

Equation (33) has other non-negative solutions,
but all of them have the formnU(·) + F (i1, . . . , im),
whereF (·) solves the homogeneous version of (33)
and henceF (·) is either a (non-negative) constant,
or grows exponentially with some of its arguments
i1, . . . , im.

Proof of Theorem 2.According to the Dynkin
formula

nWΦ∗

(i1, i2, . . . , ym)

= EΦ∗

(i1,i2,...,im)

[∫ ∞

0
G(Yt,Φ

∗(Yt/n))dt

]

= v(i1/n, i2/n, . . . , im/n)

+EΦ∗

(i1,i2,...,im)





∫ ∞

0







m
∑

j=1

Cj
Ytj

n

+
m
∑

j=1

nλjv(Yt1/n, Yt2/n, . . . , (Ytj+1)/n, . . . , Ytm/n)

+nµΦ∗(Yt)v(Yt1/n, Yt2/n, . . . , (YtΦ∗(Yt)−1)/n, . . . , Ytm/n)

−





m
∑

j=1

nλj + nµΦ∗(Yt)





× v(Yt1/n, Yt2/n, . . . , Ytm/n)







I{Yt 6= 0}dt



 .

Therefore,

nWΦ∗

(i1, i2, . . . , ym) ≤ v(i1/n, i2/n, . . . , im/n)

+EΦ∗

(i1,i2,...,im)





∫ ∞

0
I{Yt 6= 0}dt







g(Yt/n)

+
m
∑

j=1

∂v

∂yj
(Yt/n)fj(Yt/n, ϕ∗(Yt/n))











+EΦ∗

(i1,i2,...,im)

[∫ ∞

0

mD

n
I{Yt 6= 0}dt

×

(

max
1≤j≤m

fj(Yt/n, ϕ∗(Yt/n))

)]

= v(i1/n, i2/n, . . . , im/n)

+
mD

n

(

max
1≤j≤m

max{λj , µj − λj}

)

nU(i1, i2, . . . , im).

Similarly,

nWΦ∗

(i1, i2, . . . , ym) ≥ v(i1/n, i2/n, . . . , im/n)

−
mD

n

(

max
1≤j≤m

max{λj , µj − λj}

)

nU(i1, i2, . . . , im).

Proof of Lemma 3.Suppose, control strategyΦ∗

given by (15) is applied. Using (16), we see that ex-
pression in square brackets in (20) equals

1

n

[

λ1

µ1 − λ1

m
∏

l=2

ηl

ηl − λl
+

λ2

η2 − λ2

m
∏

l=3

ηl

ηl − λl
+

. . . +
λm

ηm − λm

]

= Fm.
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Clearly,F1 = λ1

n(µ1−λ1)
=

λ1
µ1

n

(

1−
λ1
µ1

) . Suppose

Fm =

∑m
j=1

λj

µj

n
(

1 −
∑m

j=1
λj

µj

)

and considerm + 1:

Fm+1 = Fm
ηm+1

ηm+1 − λm+1
+

λm+1

n(ηm+1 − λm+1)
=

1

n

×





∑m
j=1

λj

µj

1 −
∑m

j=1
λj

µj

·
µm+1

(

1 −
∑m

j=1
λj

µj

)

µm+1

(

1 −
∑m

j=1
λj

µj

)

− λm+1

+
λm+1

µm+1

(

1 −
∑m

j=1
λj

µj

)

− λm+1





=
1

n
·

µm+1
∑m

j=1
λj

µj
+ λm+1

µm+1

(

1 −
∑m

j=1
λj

µj

)

− λm+1

=

∑m+1
j=1

λj

µj

n
(

1 −
∑m+1

j=1
λj

µj

) .

We have proved Lemma for control strategyΦ∗.
Since (21) is independent of the order of the jobs
types, it holds for any priorities system, i.e. for any
stationary non-randomized strategy, and what is im-
portant, it does not depend on the strategy. Hence it is
valid also for any stationary control strategyΦ.

Proof of Theorem 3.We already have the explicit
formula fortcu(z). It is well known that nTCU(Z)
can be obtained by solving the following equations
wrt nTCU(Z) and functionV [36]:

nTCU(Z) = g(0) + nλ[V (Z) − V (0)];

nTCU(Z) = g(1/n) + K nµ(1/n)

+nµ(1/n)[V (0) − V (1)];

nTCU(Z) = g(2/n) + nµ(2/n)[V (1) − V (2)];

. . . = . . . ;

nTCU(Z) = g(Z/n)

+nµ(Z/n)[V (Z − 1) − V (Z)].

Now it is clear that

nTCU(Z) =

∑Z
i=1

g(i/n)
nµ(i/n) + K + g(0)

nλ
∑Z

i=1
1

nµ(i/n) + 1
nλ

.

Below, we regularly use the obvious inequality
∣

∣

∣

∣

a

b
−

c

d

∣

∣

∣

∣

≤
|a||d − b| + |b||a − c|

|bd|
.

For instance, functiong(y)/µ(y) is Lipschitz with
constant C2C4+C1C3

δ2 , function 1/µ(y) is Lipschitz
with constantC4

δ2 .
Now

| nTCU([nz]) − tcu(z)|

≤
1





[nz]
∑

i=1

1

nµ(i/n)
+

1

nλ





∫ z

0

dy

µ(y)

×







∣

∣

∣

∣

∣

∣

[nz]
∑

i=1

g(i/n)

nµ(i/n)
+ K +

g(0)

nλ

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

∫ z

0

dy

µ(y)
−

[nz]
∑

i=1

1

nµ(i/n)
−

1

nλ

∣

∣

∣

∣

∣

∣

+





[nz]
∑

i=1

1

nµ(i/n)
+

1

nλ





∣

∣

∣

∣

∣

∣

[nz]
∑

i=1

g(i/n)

nµ(i/n)
+

g(0)

nλ
−

∫ z

0

g(y)dy

µ(y)

∣

∣

∣

∣

∣

∣







≤
C2

1

(z − 1/n)z

{(

zC2

δ
+ K +

C2

nλ

)

(

zC4

δ2n
+

1

δn
+

1

nλ

)

+
z

δ

(

z(C2C4 + C1C3)

δ2n
+

C2

δn
+

1

nλ

)}

.
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