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Abstract:- This paper focuses on minimizing makespan of identical-machines scheduling problems with mold 
constraints. In this kind of problems, jobs are non-preemptive with mold constraints and several identical 
machines are available. Feasible solutions are randomly generated and evolved by the proposed approach and an 
adjustment operator is designed to fill up the empty time slot due to the mold constraint. The proposed approach 
can also be easily extended to solve the same problem but with the fitness function of the total complete time.  
Experiments with and without the adjustment operator are made to analyze the performance of the proposed 
approach. Experimental results show that the adjustment operator does increase the performance of the 
scheduling. 
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1   Introduction 

Scheduling is an important process widely used 
in manufacturing, production, management, 
computer science, and among others. There are many 
kinds of scheduling problems in the literature. One of 
them is the identical-machine scheduling problem, in 
which scheduling jobs in identical machines 
[1][2][3][4][5][6][7] is considered. In this kind of 
problems, jobs are usually assumed to be 
non-preemptive with their own processing time and 
several identical machines are available to process 
the jobs. Scheduling jobs in identical machines for 
minimizing the makespan was proved as NP-hard 
[8]. 

The problem addressed in the paper is a special 
case of the above identical-machine scheduling 
problem. The problem to be solved assumes each job 
needs to use one particular mold to perform its work 
in addition to the above constraints. Different jobs 
may need different or the same molds. There is only 
one mold for each kind. The purpose is to minimize 
the makespan of the whole schedule. 

The above problem is hard to solve, such that 
evolutionary computation is used here in order to find 
a feasible solution. Besides, a scheduling may need to 
be adjusted to fill up the empty time slot due to mold 

constraint. Experiments were also made to analyze 
the performance of the proposed algorithm. 

The remainder of this paper is organized as 
follows. Related scheduling algorithms are briefly 
reviewed in Section 2. The proposed scheduling 
algorithm for identical machines with mold 
constraints is proposed Section 3. The experiments 
conducted to make the comparative analysis for the 
proposed algorithm are presented in Section 4. An 
extension to total completion time is stated in Section 
5. Finally, conclusion is given in Section 6. 

 
 

2   Related Works 
In the past, many researches have studied the 

identical parallel-machine scheduling. Park and Kim 
[1] presented a local search heuristic, which 
combined simulated annealing and tabu search, to 
solve this problem with ready times and due dates. 
Lee and Pinedo combined a heuristic and the 
simulated annealing method to schedule jobs with 
sequence-dependent setup times of machines [2]. 
Armentano and Yamashita [4] introduced the tabu 
search approach for scheduling to minimize mean 
tardiness. Jeong and Kim [7] considered 
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earliness-tardiness penalties and space limits and 
proposed a heuristic algorithm. 

As to using genetic algorithms to solve this kind 
of problems, Funda and Gunduz considered 
scheduling with earliness and tardiness penalties [3]. 
Cheng et.al used genetic algorithms to solve the 
scheduling in identical machines with minimum 
tardiness [5]. Liu and Wu [6] studied a genetic 
algorithm to find nearly minimal makespan on 
identical parallel machines. Low and Yeh [9] 
proposed a genetic-algorithm-based heuristic for 
scheduling problems with setup, processing and 
removal times. Allahverdi [10] surveyed papers on 
scheduling problems with setup times or costs.  

Several studies discussed scheduling with mold 
constraints. For example, Chen and Wang proposed a 
heuristic algorithm to solve scheduling with mold 
constraints [11]. Chen and Wu then proposed their 
algorithm based on threshold-accepting methods, 
tabu lists, and scheduling-improvement procedure 
[12]. Hong et al. considered some related constraints 
(e.g. processing time, due date and mold constraint) 
on unrelated parallel machines and proposed some 
heuristic algorithms [13].  

As mentioned above, the scheduling problem on 
identical machines is NP-hard. No algorithms can 
find the optimal solution in polynomial time. In this 
paper, we propose a GA-based approach to find a 
nearly optimal makespan of  the scheduling problem 
with mold constraints on identical machines. 
 
 
3   The Proposed Scheduling Algorithm 

In this section, a GA-based algorithm is 
proposed to solve the above scheduling problem in 
which jobs are non-preemptive and several identical 
machines are available. Besides, there are a set of 
different molds and each job needs to use one mold to 
perform its work. Different jobs may need the same 
or different molds. Each job has its processing time. 
When a mold is installed on a machine, some set up 
time is needed. The purpose is to make the makespan 
minimum.   

Assume there are ten jobs (job 1 to job 10) and 
two machines (machine A and B) for scheduling. 
Table 1 shows the processing time of each job. There 
are four different molds and each job needs a mold. 
The problem is to find a schedule with the makespan 
minimum. The proposed approach is based on the 
genetic algorithms with several heuristic procedures 
designed as well to find appropriate solutions. The 
assumptions and the notation used in the proposed 
approach are first described below. 

 

3.1 Assumptions and Notation 
The assumptions made in this paper are stated as 

follows.  
‧ Each job has its own processing time and 

suitable mold. 
‧ Each job can be executed on one of the identical 

parallel machines with one mold. 
‧ Each mold can only be loaded on one machine 

at a time. 
‧ Each mold needs some set-up time to be 

equipped on a machine. 
‧ Each job is non-preemptive. 
 
The notation used in the paper is listed as follows. 

n: the number of jobs; 
k: the number of identical machines; 
h: the number of molds; 
ji: the i-th job; 
mi: the i-th machine; 
cj: the complete time of the j-th job; 
S: the set-up time 

 
 
3.2 Chromosome Representation 

It is important to encode a possible solution into 
a chromosome representation for genetic algorithms 
to work. In this paper, a feasible schedule is a 
possible solution. Several encoding approaches were 
proposed in the past [3][5][6]. The encoding scheme 
adopted in this paper is based on Funda and Gunduz’s 
work [3]. That is, each gene includes both a job code 
and a machine code, representing the job is 
performed on the machine. For a problem with n jobs, 
a chromosome is thus composed of n genes. The 
encoding scheme can be represented by Figure 1, in 
which the i-th gene, jui-mvi, represents that job jui is 
executed on machine mvi.  

For any two different values of i and j, jui and juj 
must be different since the scheduling problem 
considered here is non-preemptive. mvi and mvj may, 
however, be the same since several jobs can be 
performed on a machine at different time. An 
example is given below to demonstrate the encoding 
scheme of a schedule. 

 Assume there are ten jobs (jobs 1 to 10) and two 
machines (machines A and B) for scheduling. The 
chromosome shown in Figure 2 represents job 3 is 
performed on machine B, job 4 is performed on 
machine A, and so on.  

When the representation is used to represent a 
schedule, the jobs performed on the same machine 
are aggregated together according to their original 
order in the chromosome. For the above example, the 
scheduling results are shown in Figure 3. 
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Table 1: The processing time and the required mold of each job 

Job 1 2 3 4 5 6 7 8 9 10 
Processing 

time 6 12 9 19 15 12 11 13 16 12 

Mold 1 3 2 2 4 3 3 1 4 2 
 

 
Fig.1: The encoding scheme 

 

 
Fig.2: An example for the representation of a chromosome 

 

 
Fig.3: The jobs aggregated together on the same machine 

 

 
Fig.4: Job 4 is postponed until Job 3 is finished 

 

Besides, in our problem, each job needs a mold 
to finish its task. Different jobs on different machines 
may use the same mold. Because this paper assumes 
there is only one piece for each type of mold, the 
latter job appearing in the original order of the 
chromosome will be postponed until the former job is 
finished if they use the same mold on different 
machines at the same time period. Take the schedule 
in Figure 3 as an example. If job 3 on machine B and 
job 4 on machine A use the same mold, then job 4 will 
be postponed until job 3 is finished. The results are 
shown in Figure 4. 

In this case, some jobs on machine A may be 
moved forward to the empty time slot from the 
postponement for improving the scheduling 

performance. This can be done by the proposed 
adjustment operator, which will be described later. 
The adopted encoding scheme is then simple, but can 
represent the complicated scheduling results. 

According to the proposed representation, each 
chromosome consists of a sequence of job-machine 
pairs. This representation then allows genetic 
operators (defined later) to search for appropriate 
scheduling solutions. 

 
 

3.3 Initial Population 
A genetic algorithm requires a population of 

feasible solutions to be initialized and then updated 
during the evolution process. According to the above 
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encoding scheme, each chromosome can be mapped 
to its only corresponding feasible schedule as long as 
no two jobs in the chromosome have the same job ID. 
That is, any job can only appear once in the 
chromosome. Each individual in the initial 
population can then be randomly generated with the 
above constraint. 
 
 
3.4 Initial Population 

The jobs in the machine with the empty time slot 
are then checked in sequence. A job is moved 
forward if the mold constraint is not violated and its 
processing time plus setup time (if needed) is less 
than the time interval of the slot. After the job is 
moved, the original time slot may still have space and 
the moved job also causes an empty time slot. The 
other jobs are then processed repeated to reduce the 

empty time intervals in the slots. Take the schedule in 
Figure 5 as an example. It is nearly the same as 
Figure 3 except with length representing the set-up (S) 
time and the processing time of the jobs. 

From Figure 5, it can be seen that job 4 and job 3 
use the same mold. Job 4 is then postponed with a 
empty time slot generated as shown in Figure 6. Job 
10 also needs to use mold 2 and thus cannot be 
moved forward. Job 8 cannot be moved forward since 
its processing time is larger than the time interval of 
the empty slot.  The sum of the processing time and 
the set-up time of job 1 is less than the interval. It is 
then moved forward. 

After job 1 has been moved, the original time 
interval for job 1 becomes empty in Figure 7. Job 6 is 
then moved forward to the time slot. The final results 
are shown in Figure 8. 

 

 
Fig.5: Jobs 3 and 4 use the same mold in the same time period 

 

 
Fig.6:  Job 1 is moved forward 

 

 
Fig.7: Job 6 is moved forward to the time slot 
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Fig.8: The final results after job 6 is moved forward 

 
 

3.5 Fitness and Selection 
A fitness function must be designed and used to 

evaluate the performance (fitness) of each individual 
chromosome in the population. Besides, in order to 
develop a good schedule from an initial population, 
the genetic algorithm selects parent schedules with 
high fitness values for mating. In this paper, since the 
purpose is to minimum the makespan of the whole 
schedule, the following formula is adopted as the 
fitness function: 

),...,,,max( 21 ncccf =  

where cj is the completion time of job j and n is the 
number of jobs. 

For example, assume there are ten jobs to be 
scheduled on two machines (A and B) and each job 
has its processing time and processing time as shown 
in Table 1. Also assume the set-up time for all the 
molds are the same and equal to 3. For the schedule in 
Figure 9, its fitness value is calculated as follows: 
 

),..,,,max( 21 ncccf =  
= max(6, 38, 12, 34, 72, 74, 26, 62, 57, 46) 
= 74 

3.6 The Crossover Operators 
Crossover and mutation operators are very 

important to the success of specific GA applications. 
In this paper, the combined order and position-based 
crossover (OPX) is used [14]. 

The OPX crossover operator randomly selects 
some gene positions from the first parent and then 
copies the jobs to the same positions of the offspring. 
It then removes the selected jobs from the second 
parent and then copies in sequence the remaining 
jobs in the second parent to the offspring. The same 
action is repeated for the two parents with their roles 
interchanged. An example is given below to 
demonstrate the OPX crossover operation. 

Assume the two parent chromosomes C1 and C2 
are selected for crossover. Assume the first, the 
fourth, the seventh and the ninth positions are 
selected. The jobs in these positions of C1 are then 
copied into the offspring in Figure 10. Then, the 
remaining jobs in C2 are then copied in sequence into 
the offspring in Figure 11. After that, C1 and C2 are 
interchanged and another offspring is generated. 
Thus two selected parents will generate two offspring. 
The results are shown in Figure 12. 

 
Fig.9: The final scheduling result in the example 
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Fig.10: The OPX crossover operation according to the first parent 

 

 
Fig.11: The offspring generated from the OPX crossover operation 

 

 
Fig.12: Two selected parents generate two offspring 

 

 
Fig.13: An example of the swap mutation operation 

 
 
3.7 The Mutation Operator 

In this paper, the swap mutation [14] is used for 
increasing the diversity of the chromosome. The 
swap mutation is first introduced below. It randomly 
selects two genes from a chromosome and then 
swaps them. If the two genes are processed on the 
same machine, their execution orders are then 
changed. If the two genes are processed on different 
machines, then both their orders and machines are 
changed. A new schedule is thus generated by the 
operator. An example is given below to demonstrate 
the swap mutation operation. 

 Assume the chromosome C1 of Figure 13 is 
selected for mutation. The first and the seventh 
positions are selected for swapping. Job 3 executed 
on machine B is then exchanged with job 8 on 
machine A. The results are shown at the bottom of 
Figure 13. 

4 Experiments 
This section reports on experiments made to 

show the performance of the proposed GA-based 
algorithm for scheduling on identical machines with 
the mold constraints. They were respectively 
implemented by Dev C++ on an AMD Athlon XP 
3000+ PC. Three parameters were considered to 
define the problem. They were number of jobs, 
number of identical machines, and number of molds. 
In the experiments, the job numbers were set at 20, 30, 
40 and 50, the machine number was set at 9, and the 
mold number was set at 9. Each job is then randomly 
assigned a mold and its processing time.  

Some related parameters for the proposed 
GA-based scheduling algorithm are shown as follows. 
The population size was set at 50, the number of 
generations at 250, the crossover probability pc at 0.7, 
and the mutation probability pm at 0.05. 
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The results of the proposed GA-based 
scheduling algorithms with and without the 
adjustment operator were compared. The makespans 
of the two GA-based scheduling algorithms for 
different numbers of jobs are shown in Figure 14. 

From Figure 14, it is easily seen that the 
proposed algorithm with the adjustment operator got 
a better result than that without the adjustment 
operator. Next, the makespans of the two GA-based 
scheduling algorithms for different numbers of 
machines are shown in Figure 15. From Figure 15, it 
can also be easily seen that the proposed algorithm 

with the adjustment operator got a better result than 
that without the adjustment operator for any number 
of machines. Next, the makespans of the two 
GA-based scheduling algorithms for different 
numbers of molds are shown in Figure 16. From 
Figures 14 to 16, we find the adjustment operator can 
increase the performance of the proposed approach. 
The adjustment operator did reduce the processing 
time needed on the machines with the mold 
constraint to achieve the nearly minimum makespan.  

 

 

 
Fig.14: The makespans of the schedules by the two GA-based scheduling algorithms for different numbers 

of jobs 
 

 
Fig.15: The makespans of the schedules by the two GA-based scheduling algorithms for different numbers 

of machines 
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Fig.16. The makespans of the schedules by the two GA-based scheduling algorithms for different numbers 

of molds 
 
 

5 Extension 
The above scheme can be easily extended to 

solve the scheduling problem with minimizing the 
total completion time. The fitness function is then 
modified as follows.  

,
1
∑
=

=
n

j
jcf  

where cj is the completion time of job j and n is the 
number of jobs. 

Again, take the data in Table 1 and the schedule 
in Figure 9 as an example. Its fitness value for the 
total completion time is calculated as follows:  

427 =
46 + … + 12 + 38+ 6 =

1
∑
=

=
n

j
jcf

 

The experimental environments for minimizing 
the total completion time are similar to the above. 
The total completion time of the two GA-based 
scheduling algorithms for different numbers of jobs 
is shown in Figure 17. 

   

 
Fig.17: The total completion time of the schedules by the two GA-based scheduling algorithms for 

different numbers of jobs 
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Fig.18: The total completion time on each machine by the two GA-based scheduling algorithms for 50 

jobs 
 
 

The total completion time on each machine by 
the two GA-based scheduling algorithms for 50 jobs 
is shown in Fig. 18. It can be seen from the figure that 
the results by the adjustment operator will generate a 
more balanced load distribution among the machines 
than those without the adjustment operator. The 
adjustment operator thus plays an important role on 
the proposed approach. 

 
 

6 Conclusion 
In this paper, we have proposed a GA-based 

approach to solve the scheduling problem with the 
minimum makespan on identical machines with mold 
constraints. The adjustment operator has also been 
adopted in the proposed approach to increase the 
performance due to the mold constraints. 
Experimental results also show the effectiveness of 
the adjustment operator. The proposed approach can 
also be easily extended to solve the same problem but 
with the fitness function of the total complete time. 
Similar experiments results are obtained.  

In the future, we will consider attempt to solve 
the more scheduling problems on identical machine 
with mold constraint by using different search 
strategies.  
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