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Abstract: This contribution aims the problem about controller synthesis in H2 and H∞ for linear time
invariant systems (LTI), by means of the extended static feedback of the output. The method consists
of designing feedback gains for the injection of the output and its derivatives, which corresponds to the
control signal. Conditions for the existence of such controllers are established. The stabilization problem
is formulated in the context of linear matrix inequalities (LMI). Multiobjective Performance Indices are
also considered
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1 Introduction
The main goal of all control systems design is
its practical implantation. When it is treated the
control systems synthesis for the practical appli-
cation, always it is looked for the greater flex-
ibility and simplifying for implementation, [15].
From which the output feedback control has been
a topic of much interest of investigation.

As it is known, one of the controllers who of-
fer those characteristics are the constructed from
the state feedback, which have the disadvantage
that not always it is possible to have all the states.
On the other hand, the static output feedback
(SOF) allows all the kindness for an implemen-
tation without many exigencies. The major in-
convenient for the static output feedback control
synthesis is their conditions of existence of such
controllers [18]. The SOF problem is referred as:
given a LTI system, it is desired to find an output
feedback static gain that in closed loop the con-
trolled system exhibits particular behavior char-
acteristics; or in its defect, to determine the non-
existence of such gain [5]. Although several the-
oretical conditions for the existence of SOF con-
trollers are known, there exists the disadvantage
of practical algorithms for the solution without
majors’ requirements [16].

Notations: In what follows, I is an identity
matrix with an appropriate dimension, MT de-

notes the transpose of the matrix M , M > 0
means that the matrix M is positive definite,
M < 0 means that the matrix M is negative def-
inite. In the partitions of symmetrical matrices ?
denotes each of its symmetrical blocks.

1.1 Problem Formulation
Consider the LTI system defined by

ẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t) (1)

where A ∈ <n×n, B ∈ <n×m, and C ∈ <p×n.
The problem is described as: given the system
(1), with (A,B) stabilizable, it is desired to find
a control of the form

u(t) = Ky(t) (2)

where K ∈ <m×p is the static feedback gain for
constructing, in such a way that the system in
closed loop is stable. This means that if it exists
K, then the dynamic matrix of the closed loop
A+BKC must be stable.

Problem 1: Given the system (1), with
(A,B) stabilizable. It is desired to find K for
the control (2) in such a way that the matrix
A+BKC has all eigenvalues in the stable semi-
plane
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The choice of the gain K must allow satis-
fying the performance requirements according to
the control system design objectives. The first de-
tail to define is the existence of such static feed-
back gain. For it several results have been pre-
sented: [4, 5, 18, 3, 8]. The established con-
ditions do not indicate directly, the solution al-
gorithms. Thus, several methods for the algo-
rithmic solution of the SOF problem have ap-
peared: [2, 20, 7, 10]. All these solutions con-
tinue maintaining the problem of exigent require-
ments from the computational point of view, lim-
iting the practical application of the techniques of
SOF in industrial processes.

In order to maintain the idea of the SOF
problem, we consider a numerical example from
the following dynamic model:

ẋ(t) =

(
0 1
2 3

)
x(t) +

(
0
1

)
u(t);

y(t) =
(
1 0

)
x(t)

(3)

According to Problem 1, given the structural
conditions of the model, it is necessary to find K
to stabilize the system in closed loop. For this
particular case, it is not possible to stabilize this
system by SOF.

1.2 Preliminaries
In this section some preliminary facts are given,
in order to determine additional performance
conditions for linear systems. Consider the fol-
lowing continuous time linear system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(4)

where, x(t) ∈ <n are states, u(t) ∈ <m are con-
trol signals and y(t) ∈ <p are measurements.
Matrices A,B,C,D are well known and with
proper dimensions.

The H2-H∞ norms for that system can be
described as LMIs. It is known that more con-
servative results are obtained (for example, in the
case of polytopic uncertainty), when there exist
relationships between system matrix and the Lya-
punov matrix. For to solve that problem, a decou-
pling of the Lyapunov matrix and the system dy-
namic matrix must be obtained. Thus, there exist
some modifications to classical results of robust
control theory like improved versions to Bounded
Real Lemma [17, 9], or for H2 performance [1].

Next, some of these approaches are presented as
a basis for developments which will be presented
later in this paper.

Lemma 1.1 (RelaxedH2 performance)
Consider system (4) with D = 0. The following
statements, with P = P T > 0 are equivalent

i) A is stable and
∥∥C(sI− A)−1B

∥∥2

2
< µ.

ii) There exist P and Z, such that[
ATP + PA PB

BTP −µI

]
< 0,[

P CT

C Z

]
> 0, tr(Z) < 1 (5)

iii) There exist P,Z and G such that
−(G+GT ) GTA+ P
ATG+ P −P
BTG 0
G 0

GTB GT

0 0
−µI 0
0 −P

 < 0,

[
P CT

C Z

]
> 0, tr(Z) < 1 (6)

iv) There exist P,Z and G, such that −(G+GT ) GTA+ P +GT GTB
ATG+ P +G −2P 0

BTG 0 −µI

 < 0,

[
P CT

C Z

]
> 0, tr(Z) < 1 (7)

Proof
The equivalence between the three first state-
ments has been shown in theorem 3.3 of [1], it is
based on projection lemma and its reciprocal ver-
sion. The equivalence between 2 and 4 is shown
in [19]. �
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Remark 1.1 It is known that more conservative
results are obtained (for example, in the case
of polytopic uncertainty), when there exist re-
lationships between system matrix and the Lya-
punov matrix [12]. This result solves that prob-
lem, decoupling the Lyapunov matrix and the sys-
tem dynamic matrix. Additionally, statement 4 in
Lemma 1.1, provides a smaller representation of
theH2 performance condition given by [1]. Fur-
ther details on this lemma can be found in [19].

In the same fashion as in the case of H2

performance condition given before, there are
some attempts for the improvement of H∞ per-
formance, next one of them is shown.
Lemma 1.2 (RelaxedH∞ performance)
Consider system (4). The following statements,
with P = P T > 0 and matrix G are equivalent

i) A is stable and
∥∥C(sI− A)−1B +D

∥∥
∞ <

γ.

ii) There exist P , such thatATP + PA PB CT

BTP −γ2I DT

C D −I

 < 0. (8)

iii) There exist P and G such that, for τ � 1
−(G+GT ) GTA+ P + τGT

ATG+ P + τG −2τP
0 C

BTG 0

0 GTB
CT 0
−I D
DT −γ2I

 < 0. (9)

Proof
Conditions 1 and 2 are the well known Bounded
Real Lemma. Equivalence between 2 and 3 can
be seen in [19]. �

2 Static feedback control of
the Extended Output

Consider the system (1). An extended output is
defined by(

y(t)
ẏ(t)

)
=

(
Cx(t)

CAx(t) + CBu(t)

)
(10)

Thus, the control law by extended SOF is:

u(t) =
(
K0 K1

)(y(t)
ẏ(t)

)
(11)

where K0 and K1 are the feedback gains, to de-
termine, for the output and its derivatives. In this
case, the derivative the output is used in the same
context of the derivative action in the PID-type
controller. Thus, the control will be given by

u(t) = (I−K1CB)−1 (K0C +K1CA)x(t),
(12)

where I is the identity matrix. As it is possible to
be observed, the existence of the control depends
on the invertibility of the matrix I−K1CB, which
is a condition “less hard” than the established in
the Problem 1 of SOF. Thus, for the control by
static feedback of the extended output the follow-
ing problem can be established:

Problem 2: Given the system (1), with
(A,B) stabilizable. It is desired to find K0 y K1

for the control (12) in such a way that the ma-
trix A + B (I−K1CB)−1 (K0C +K1CA) has
all eigenvalues in the stable semi-plane.

Lemma 2.1 Be M = I − K1CB. There exists a
control by static feedback of the extended output
of the form

u(t) = M‡ (K0C +K1CA)x(t), (13)

if and only if M has generalized inverse (pseu-
doinverse Moore-Penrose), given by M‡.

Indeed, if MT is the transpose of M matrix, which
is assumed with complete rank by columns,
then the pseudoinverse Moore-Penrose matrix is
M‡ =

(
MT M

)−1 MT , which, if it exists, allows
to calculate the control law. This condition de-
bilitates and generalizes the established ones in
[11], allowing also to obtain a solution to the SOF
problem.

2.1 Example
In order to verify the effectiveness of the tech-
nique, it will be considered the dynamic model
given in (3). There, it is possible to stabilize the
system in closed loop by generalized SOF since
I−K1CB has inverse, then

u(t) =
(
k0 + k1 k1

)
x(t),
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and the dynamic matrix of closed loop is

Ac =

(
0 1

2 + k0 + k1 3 + k1

)
in such a way that with an appropriate selection
of k0 and k1 this system becomes stabilized. Un-
like the basic SOF (Problem 1), in this case the
stabilization can be obtained only using the ex-
tended output, that corresponds to the derivative
output.

3 LMI Formulation
Consider the problem of stabilization by feed-
back of the extended output in the context of
LMIs. That is, the system (1), to find K0 and
K1 in such a way that the system in closed loop is
stable in the sense of Lyapunov, which signifies
that the following BMI (bilinear matrix inequali-
ties) are satisfied:

AT
c P + PAc ≺ 0, P � 0; (14)

where Ac is the dynamic matrix of closed loop.

Theorem 3.1 Lets consider the system given by
(1) with the pair (A,B) stablizable. A control
by SOF extended of the form (13) exists, that sta-
bilizes the system in closed loop, if there exists
M‡ and the symmetrical matrix P � 0, and the
matrices Y , Z such that the following LMI is sat-
isfied

PAT +AP +BY +BZ + Y TBT +ZTBT ≺ 0
(15)

for which, the feedback gains are obtained from

K0 = V‡Y P−1CT
(
CCT

)−1
(16)

K1 = V‡ZP−1ATCT
(
CAATCT

)−1
(17)

where

V = I + ZP−1ATCT
(
CAATCT

)−1
B.

Proof
Indeed, if u(t) is of the form presented in (13),
then the dynamic matrix of the closed loop corre-
sponds to

Ac = A+BM‡ (K0C +K1CA) ,

then from the expression (14), with P = P−1, the
following matrix inequality is obtained

PAT + AP + PCTKT
0 (M‡)TBT +

PATCTKT
1 (M‡)TBT +BM‡K0CP+

BM‡K1CAP ≺ 0.

If

Y = M‡K0CP

Z = M‡K1CAP,

then

PAT + AP + (Y T + ZT )BT +B(Y + Z) ≺ 0,

that it is expressed in the LMI (15). Since

M‡K0 = Y P−1CT (CCT )−1

M‡K1 = ZP−1ATCT (CAATCT )−1,

and M = I−K1CB then

M‡ = I + ZP−1ATCT (CAATCT )−1B = V

therefore K0 and K1 are obtained from equations
(16) and (17), respectively. �

Remark 3.1 It is important to indicate that the
conditions for calculating K0 and K1 are equiv-
alent to the established in [11], but in this case
they are less restrictive for the types of systems
since that the stabilization can be obtained, by
means of the appropriated calculation of onlyK1,
whose design condition enlarges the class of sys-
tems, still more when are combined with the syn-
thesis of K0.

3.1 H2 Control
Consider the LTI system defined by

ẋ(t) = Ax(t) +Buu(t) +Bωω(t)
y(t) = Cx(t)

(18)

where ω(t) is a unknown disturbance.
Problem 3: Given the system (18), with

(A,Bu) stabilizable. Is is desired to find K0

and K1 for the control (12) in such a way that
the closed loop dynamic matrix Ac is stable and
that the norm-2 of the transfer function from
the disturbance to output is minimum, that is
‖ Hyω(s) ‖2< γ.
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Applying the control given by (12), then the
system in closed loop will be

ẋ(t) = Acx(t) + Bcω(t)
y(t) = Ccx(t)

(19)

Ac = A+BuM‡ (K0C +K1CA)

Bc = Bω +BuM‡K1CBω, Cc = C.

Thus, Hyω(s) corresponds to

Hyω(s) =

[
Ac Bc

Cc 0

]
= Cc(sI−Ac)

−1Bc (20)

Formulating the norm-2 as LMI, the follow-
ing result can be obtained [6]:

Lemma 3.1 Inequality ‖ Hyω(s) ‖2< γ is ful-
filled if, and only if, there exists a symmetrical
matrix X, X � 0, and a matrix Z such that[

AT
c X + XAc XBc

(◦)T −γI

]
< 0.

[
X CT

c

(◦)T Z

]
> 0, tr(Z) > 1. (21)

Theorem 3.2 Let’s consider the system given by
(18) with pair (A,Bu) stablizable. A control by
SOF extended of the form (13) exists, that stabi-
lizes the system in closed loop and ‖ Hyω(s) ‖2<
γ, if there exists M‡ and the symmetrical matrix
P � 0, the matrix Z, and the matrices X , Y , Z
such that the following LMIs are satisfied[
PAT + AP + Y TBT

u + ZTBT
u +BuY +BuZ

BT
ω +BT

ωX
T

Bω +XBω

−γI

]
≺ 0 (22)

[
P PCT

CP Z

]
> 0, tr(Z) > 1. (23)

for which, the feedback gains are obtained from

K0 = V‡Y P−1CT
(
CCT

)−1
(24)

K1 = V‡ZP−1ATCT
(
CAATCT

)−1
(25)

where

V = I +XCBu.

Proof
The demonstration is based on the application
of the norm-∞ as LMI, from which a congruent
transformation is used(

X−1 0
0 I

)
with P = X−1; and the following change of vari-
ables [13]:

X = M‡K1

Y = M‡K0CP

Z = M‡K1CAP.

Since M = I−K1CBu, is deduced that

M‡ = I + M‡K1CBu

= I +XCBu = V.

Then, K0 and K1 are obtained from the expres-
sions for Y and Z. �

In this case, the conditions are similar to the
presented in the solution of Problem 2 via LMI.
On the other hand, the systems to control by SOF
are extended.

3.2 RelaxedH2 Control
From Lemma 1.1, the following result can be ob-
tained

Theorem 3.3 Let’s consider the system given by
(18) with pair (A,Bu) stablizable. A control by
SOF extended of the form (13) exists, that stabi-
lizes the system in closed loop and ‖ Hyω(s) ‖2<
γ, if there exists M‡ and the symmetrical matrix
P � 0, the matrix Z and the matrices Y , Z such
that the following LMIs are satisfied

 −(G+GT )
AG+ CTY T + ATCTZT + P +G

BT
ωG+BT

ωC
TZT

GTA+ Y C + ZCA+ P +GT

−2P
0

GTBω + ZCBω

0
−γI

 ≺ 0 (26)
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[
P PCT

CP Z

]
> 0, tr (Z) > 1. (27)

for which, the feedback gains are obtained from

K0 = V‡B‡u(GT )−1Y (28)
K1 = V‡B‡u(GT )−1Z (29)

where

V = M‡ = I +B‡u(G
T )−1ZCBu.

Proof
The demonstration is analogous to the previous
case. �

3.3 H∞ Control
Consider the LTI system defined by (18). Then,
the following control problem can be stablished:

Problem 4: Given the system (18), with
(A,Bu) stabilizable. Is is desired to find K0

and K1 for the control (12) in such a way that
the closed loop dynamic matrix Ac is stable and
that the norm-∞ of the transfer function from
the disturbance to output is minimum, that is
‖ Hyω(s) ‖∞< µ.

Applying the control given by (12), then the
system in closed loop will be

ẋ(t) = Acx(t) + Bcω(t)
y(t) = Ccx(t)

(30)

Ac = A+BuM‡ (K0C +K1CA)

Bc = Bω +BuM‡K1CBω, Cc = C.

Thus, Hyω(s) corresponds to

Hyω(s) =

[
Ac Bc

Cc 0

]
= Cc(sI−Ac)

−1Bc (31)

Formulating the norm-∞ as LMI, the follow-
ing result can be obtained [6]:

Lemma 3.2 Inequality ‖ Hyω(s) ‖∞< µ is ful-
filled if, and only if a symmetrical matrix X,
X � 0, exists such thatAT

c X + XAc XBc CT
c

(◦)T −µI 0
(◦)T (◦)T −µI

 < 0. (32)

Theorem 3.4 Let’s consider the system given
by (18) with pair (A,Bu) stablizable. A con-
trol by SOF extended of the form (13) exists,
that stabilizes the system in closed loop and ‖
Hyω(s) ‖∞< µ, if there exists M‡ and the sym-
metrical matrix P � 0, and the matrices X , Y ,
Z such that the following LMI is satisfied PAT + AP + Y TBT

u + ZTBT
u +BuY +BuZ

BT
ω +BT

ωX
T

CP

Bω +XBω PCT

−µI 0
0 −µI

 ≺ 0 (33)

for which, the feedback gains are obtained from

K0 = V‡Y P−1CT
(
CCT

)−1
(34)

K1 = V‡ZP−1ATCT
(
CAATCT

)−1
(35)

where

V = I +XCBu.

Proof
The demonstration is based on the application
of the norm-∞ as LMI, from which a congruent
transformation is usedX−1 0 0

0 I 0
0 0 I


with P = X−1; and the following change of vari-
ables [13]:

X = M‡K1

Y = M‡K0CP

Z = M‡K1CAP.

Since M = I−K1CBu, is deduced that

M‡ = I + M‡K1CBu

= I +XCBu = V.

Then, K0 and K1 are obtained from the expres-
sions for Y and Z. �

In this case, the conditions are similar to the
presented in the solution of Problem 2 via LMI.
On the other hand, the systems to control by SOF
are extended.
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3.4 RelaxedH∞ Control
From Lemma 1.2, the following result can be ob-
tained

Theorem 3.5 Let’s consider the system given
by (18) with pair (A,Bu) stablizable. A con-
trol by SOF extended of the form (13) exists,
that stabilizes the system in closed loop and ‖
Hyω(s) ‖∞< µ, if there exists M‡, τ >> 1, and
the symmetrical matrix P � 0, and the matrices
Y , Z such that the following LMI is satisfied


−G−GT GTA+ Y C + ZCA+ P + τGT

? −2τP
? ?
? ?

0 GTBω + ZCBω

CT 0
−I 0
? −µ2I

 ≺ 0 (36)

for which, the feedback gains are obtained from

K0 = V‡B‡u(GT )−1Y (37)
K1 = V‡B‡u(GT )−1Z (38)

where

V = M‡ = I +B‡u(G
T )−1ZCBu.

Proof
The demonstration is analogous to the previous
case. �

From the results for H2 and H∞, a control
law that allows to satisfier multi-objective indices
can be obtained:

Corollary 4 Let’s consider the system given by
(18) with pair (A,Bu) stablizable. A control by
SOF extended of the form (13) exists, that stabi-
lizes the system in closed loop with ‖ Hyω(s) ‖2<
γ and ‖ Hyω(s) ‖∞< µ, if there exists M‡ and the
symmetrical matrix P � 0, the matrix Z, and the
matrices X , Y , Z such that the following LMIs
are satisfied

[
PAT + AP + Y TBT

u + ZTBT
u +BuY +BuZ

BT
ω +BT

ωX
T

Bω +XBω

−γI

]
≺ 0 (39)

[
P PCT

CP Z

]
> 0, tr(Z) > 1, (40)

and PAT + AP + Y TBT
u + ZTBT

u +BuY +BuZ
BT

ω +BT
ωX

T

CP

Bω +XBω PCT

−µI 0
0 −µI

 ≺ 0 (41)

for which, the feedback gains are obtained from

K0 = V‡Y P−1CT
(
CCT

)−1
(42)

K1 = V‡ZP−1ATCT
(
CAATCT

)−1
(43)

where

V = I +XCBu.

Of equal way, in order to reduce the con-
servatism, an extended version of the results in
H2 and H∞ can be presented, in order to satisfy
multi-objective performance indices. Thus, the
following result can be established:

Corollary 5 Let’s consider the system given by
(18) with pair (A,Bu) stablizable. A control by
SOF extended of the form (13) exists, that stabi-
lizes the system in closed loop with ‖ Hyω(s) ‖2<
γ and ‖ Hyω(s) ‖∞< µ, if there exists M‡ and the
symmetrical matrix P � 0, the matrix Z, and the
matrices X , Y , Z such that the following LMIs
are satisfied −(G+GT )

AG+ CTY T + ATCTZT + P +G
BT

ωG+BT
ωC

TZT

GTA+ Y C + ZCA+ P +GT

−2P
0

GTBω + ZCBω

0
−γI

 ≺ 0 (44)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Addison Rios-Bolivar, Francklin Rivas, Gloria Mousalli

ISSN: 1991-8763 292 Issue 7, Volume 4, July 2009



[
P PCT

CP Z

]
> 0, tr(Z) > 1. (45)

and
−G−GT GTA+ Y C + ZCA+ P + τGT

? −2τP
? ?
? ?

0 GTBω + ZCBω

CT 0
−I 0
? −µ2I

 ≺ 0 (46)

for which, the feedback gains are obtained from

K0 = V‡B‡u(GT )−1Y (47)
K1 = V‡B‡u(GT )−1Z (48)

where

V = M‡ = I +B‡u(G
T )−1ZCBu.

Remark 5.1 By other hand, it is possible to ob-
serve that there are conditions to obtain a total
disturbance rejection. Indeed, if K1 is selected in
such a way that

(I +BuM‡K1C) ∈ ker (Bω),

then the disturbance is rejected. Therefore, once
selectedK1, is possible to designK0 in such a way
that the dynamic matrix of closed loop is stable.
In addition, it is possible to design those gains in
order to satisfy multi-objective indices, [14]

On the other hand, it is possible to obtain
tracking or regulation of the output, again with a
suitable selection of K0, K1 and one gain on the
signal of reference to assure a null error between
the output and that signal to track.

6 Numerical evaluation
We consider the system given by [10]:

ẋ(t) =

0 1 0
0 0 1
0 13 0

x(t) +

0
0
1

u(t) +

0
0
1

ω(t)

y(t) =

[
0 5 −1
−1 −1 0

]
x(t)

Applying the results of the Theorem 3.4
then:

K0 = [−3.1825 4.5089],

K1 = [0.8959 10.6448]

thus, the dynamic matrix of closed loop is

Ac = =

 0 1 0
0 0 1

−3.8786 −23.7415 −2.5659

 ,

whose eigenvalues are

−0.1662; −1.1999± 4.6801.

The value µ obtained of the minimization of
the norm-∞ for the transfer function Hyω(s) has
been < 5. This way the stabilization of the sys-
tem in closed loop with an attenuation of the dis-
turbance is demonstrated.

For the simulation the diagram of the Figure
1 has been used.

Figure 1: Diagram for simulation.

The results are showed in the Figure 2 and
Figure 3, which corresponds to the control and
the controlled output. Like it can be noticed, the
outputs are stabilized around the zero, only af-
fected by the presence of the disturbance, which
is in the Figure 4.

7 Conclusions
From the output and its derivatives, the problem
of static output feedback control has been consid-
ered and solved, using both signals. The solution
allows extending the space of the systems that
can be stabilized by the traditional techniques of
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Figure 2: The control signal.

Figure 3: The controlled outputs.

static feedback of the output. The use of the out-
put derivatives is the same context of the deriva-
tive action in controller PID.

The conditions for the problem solution have
been studied, same that for the control in H2 and
H∞, using the description of those norms as lin-
ear matrix inequalities. The conditions are analo-
gous to the problems of static feedback of the out-
put already known. Multiobjective performance
indices have also been considered, where LMIs
extended have been considered, in order to re-
duce the conservatism.

Figure 4: The disturbance signal.
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