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Abstract: - In this paper a graphical technique is introduced for finding all continuous-time and discrete-time 
proportional integral derivative (PID) controllers that satisfy an H∞  sensitivity constraint of an arbitrary order 
transfer function with time delay. These problems can be solved by finding all achievable PID controllers that 
simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related 
complex polynomials. A key advantage of this procedure is that it only depends on the frequency response of the 
system. The delta operator is used to describe the controllers, because it not only possesses numerical properties 
superior to the discrete-time shift operator, but also converges to the continuous-time controller as the sampling 
period approaches zero. A unified approach allows us to use the same procedure for discrete-time and continuous-
time H∞  sensitivity design of PID controllers.  
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1 Introduction
Because of the extensive use of proportional integral 
derivative (PID) controllers in industry, there has been 
a significant effort to determine the set of all PID 
controllers that meet certain design goals. As the intent 
of this research is to develop design methods that can 
be applied in industry, these methods should possess 
several key attributes. First, they should be applicable 
to a broad set of plants. In order for the methods to be 
applicable in the process control industry, it is 
particularly important that they handle time-delays. 
Ideally, the design methods would be simple to 
understand and easy to implement. Methods that 
depend only on the frequency response of the system 
eliminate the need for a plant model, which may not be 
available in some applications. Finally, designs done 
directly in the digital domain allow for easy computer 
implementation.  

Not surprisingly, most of the early work in this area 
sought to find all continuous-time PID controllers that 
stabilized the nominal plant model. Much of the early 
work in this area was done by Bhattacharyya and 
colleagues and assumed knowledge of the system 
transfer function model [1], [2]. Many of these results 
depend on generalizations of the Hermite-Biehler 
theorem [3]. They developed results based on theorems 

by Pontryagin and a generalized Nyquist criterion [4]. 
The method introduced by Tan in [5] broke the 
numerator and denominator of the plant transfer 
function into even and odd parts. In [6], [7], and [8] a 
new method, which did not involve complex 
mathematical derivations, was used to solve the 
problem of stabilizing an arbitrary order transfer 
function, when only the frequency response of the 
plant transfer function was known.  

Beyond stability, investigators have also looked at 
performance and robustness. The authors in [5] and [7] 
found regions where the controllers were guaranteed to 
meet certain gain and phase margin requirements. PID 
controllers that also satisfy gain crossover, phase 
crossover, and bandwidth requirements for double 
integrator systems with delay were found in [9].  In 
[10] and [11], the parameters of PID controller were 
determined using a metaheuristic algorithm method. In 
[10], the metaheuristic algorithm method was used to 
adjust the PID parameters to meet the performance 
requirement for a pouring task. In [12], the authors 
used a fractional PID controller to meet the 
performance requirement for an active magnetic 
bearing system.  In this paper, an adaptive genetic 
algorithm was used to determine the PID controller 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tooran Emami, John M. Watkins

ISSN: 1991-8763 221 Issue 5, Volume 4, May 2009



parameters that optimized a multi-objective cost 
function. In [13], constrained pole assignment was 
used for design of PD controllers for a double 
integrator plant model with time delays or time 
constant.   

As these controllers must be implemented on real 
systems, design methods that deal with robustness are 
of particular importance. In [14] and [15], Saeki and 
colleagues looked at different methods for H∞  
controller design of PID controllers. Ho used a 
generalization of the Hermite-Biehler theorem for H∞  
PID design [16]. Tantaris, Keel, and Bhattacharyya 
looked at design of first-order controllers in [17]. 
Unfortunately, these methods that dealt with robustness 
did not work directly with systems with time-delay, 
which are prevalent in the process control industry.  In 
[18], Keel and Bhattacharyya did allow for time-delays 
in the nominal model when they investigated the 
stability problem for plants with no poles or zeros on 
the jω  axis and a known time delay. All of the 
methods in [1]-[18] are based in continuous-time 
systems. 

As more and more controllers are implemented as 
digital compensators, design method that work directly 
in the digital domain become more important. 
Unfortunately, most of the work in this area has 
concentrated on design of continuous-time PID 
controllers. In [19], the delta operator was used to 
obtain a unified approach for finding stability 
boundaries of PID controllers for arbitrary order 
transfer functions with time delay in the frequency 
domain. The delta operator was used to describe 
controllers in the discrete-time, because it not only 
provides numerical properties superior to the discrete-
time shift operator, but also converges to the 
continuous-time as the sampling period approaches 
zero [20], [21]. In [22], Suchomski used the delta 
operator to design robustly stable PID controllers for 
low order known system transfer functions. 

In [23], [24], [25], [26]  and [27] the authors of this 
paper developed techniques for finding all achievable 
continuous-time PID controllers that simultaneously 
stabilize the closed-loop system and satisfy an H∞  
sensitivity, complementary sensitivity, weighted 
sensitivity, robust stability constraint, or robust 
performance constraint. In this paper the goal is to 
define a unified approach for continuous-time and 
discrete-time sensitivity design of PID controllers. This 
method is applicable for single-input-single-output 

(SISO) proper transfer functions of any order with time 
delay. A unified approach using the delta operator 
allows us to use the same procedure for discrete-time 
and continuous-time H∞  sensitivity design. As this 
work builds upon the straight-forward development in 
[19], it does not require the plant transfer function 
model, but only the frequency response of the system. 
If the plant transfer function is known, we can apply 
the same procedures by first computing the frequency 
response. 

The remainder of this paper is organized as follows. 
The design methodology is introduced in Section 2.  A 
numerical example that demonstrates the application of 
this method is presented in Section 3. Finally, the 
results of this paper are summarized in Section 4. 

 
 

2 Design Methodology 
A SISO continuous-time plant transfer function with 
time delay τ  is defined as 

 
-( ) ( ) s

pG s G s e τ= .                                                (1) 

 
The equivalent model in the delta domain, when the 
output of plant is sampled and a zero-order hold is 
placed at the input, can be found from [20] as 
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where 0T  is the sampling period, T  is the generalized 
transform, and γ , as defined in [21], is given by 
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Consider the SISO system shown in Fig. 1, where 
( )pG γ  is the plant and ( )cG γ  is the PID controller. 

The reference input signal and the error signal are r  
and z , respectively. The output of the controlled plant 
is y . The PID controller is defined as 
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where pK , iK , and dK  are the proportional, integral, 

and derivative gains, respectively. The error signal that 
we want to minimize is defined as 

 
z r y= − .                                                           (5) 
 

       
Fig. 1   Block diagram of sensitivity function 

 
The transfer functions in Fig. 1 can be expressed in 

the frequency domain. The plant transfer function can 
be written in terms of its real and imaginary parts as 

 
( ) ( ) ( ),p e mG R j Iβ β β= +                              (6) 
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. The PID controller 

is defined in the frequency domain as  
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The deterministic values of pK , iK , and dK  for 

which the closed-loop characteristic polynomial is 
Hurwitz stable have been found in [19] (with a small 
difference in the parameterization of the PID 
controllers). In this paper, the problem is to find all 
PID controllers that stabilize the system and satisfy the 
sensitivity constraint 

 

0( ) ,S β γ
∞

≤                                                 (8) 

                                                                                                                    

where 1
( )

1 ( ) ( )p c

S
G G

β
β β

=
+

 is the sensitivity 

function and 0γ  is a positive real scalar. The complex 

function in (8) can be written in terms of its magnitude 
and phase angle as 

 
( )

0( ) j SS e ββ γ ω∠ ≤ ∀ .                            (9)   

 
If (9) holds, then for each value of β  

 

0( ) SjS e θβ γ≤ ,                                               (10) 
 

must be true for some [0,2 )Sθ π∈ , where 

( )S Sθ β= −∠ . Consequently, all PID controllers that 
satisfy (8) must lie at the intersection of all controllers 
that satisfy (10) for all [0,2 )Sθ π∈ [24]. 

To accomplish this, for each value of [0,2 )Sθ π∈ , 
we will find all PID controllers on the boundary of  
(10). It is easy to show from (10), that all the PID 
controllers on the boundary must satisfy  

 

0 0( , , , ) 0,SP Tω θ γ =                                       (11)                      
 

where 0 0
0

1
( , , , ) 1 ( ) ( ) Sj

S p cP T G G e θω θ γ β β
γ

= + − . 

Note that (11) reduces to the frequency response of the 
standard closed-loop characteristic polynomial as 

0γ → ∞ . Substituting (6), (7), and  

cos sinSj
S Se jθ θ θ= +   into (11), and solving for the 

real and imaginary parts yields  
 

,Rp p Ri i Rd d RX K X K X K Y+ + =                  (12)  

 
and                                                          
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This is a three-dimensional system in terms of the 
controller parameters pK , iK , and dK . The boundary 

of (11) can be found in the ( ,p iK K ) plane for a fixed 

value of dK . After setting dK  to the fixed value dK , 
(12) and (13)  can be rewritten as 
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Solving (14), for all 0ω ≠  and [0,2 )Sθ π∈ , gives the 
following equations: 
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and                                                                                                                           
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where 
2 2 2( ) ( ) ( )p e mG R Iβ β β= + . Setting 0ω =  in 

(14) , we obtain 
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and conclude that 0 0(0, , , )p SK Tθ γ  is arbitrary and 

0 0(0, , , ) 0i SK Tθ γ = , unless (0) (0) 0m eI R= = , 

which holds only when ( )pG s  has a zero at the origin. 

By letting 0 0T →  in (15) and (16), the  continuous- 
time sensitivity boundaries are found as  

 
( )
( )

0

0
0 2

( ) cos1
( ) sin

( , , , 0) ,
( )

e S

m S
p S

p

R

I
K

G j

ω θ γ

ω θγ
ω θ γ

ω

⎛ ⎞− +⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
=       

                                                                       (18) 
and 
 

( ) ( )( )

2
0

0
0

2

( , , , 0)

( ) sin ( ) cos

,
( )

i S d

e S m S

p

K K

R I

G j

ω θ γ ω
ω

ω θ ω θ γ
γ

ω

= +

− + −  

                                                                    (19) 
 

where 
2 2 2( ) ( ) ( )p e mG j R Iω ω ω= + , ( )eR ω , and 

( )mI ω  are the real and imaginary parts of the 
continuous-time plant transfer function, respectively.  
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The procedure can be repeated in the ( ,p dK K ) 

plane. After setting  iK  to a fixed value iK ,  (12) and  
(13) can be rewritten as  

 

.R Ri iRp Rd p

Ip Id d I Ii i
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⎡ ⎤⎡ ⎤ ⎡ ⎤ −⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                (20) 

 
Solving  (20) for all 0ω ≠ , [0,2 )Sθ π∈   gives the 

same expression as (15) for 0 0( , , , )p SK Tω θ γ  and the 

following equation for  0 0( , , , )d SK Tω θ γ , 
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                                                                          (21) 
 
At 0ω = ,  iK  must be equal to zero for a solution to 

exist. Furthermore, as (0) 0mI =  for all real plants, 

0 0(0, , , )d SK Tθ γ  is arbitrary and 
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Letting 0 0T →  in (15) and (21) gives the same 

expression as  (18)  for 0( , , , 0)p SK ω θ γ  and for the 

continuous-time sensitivity boundary of 

0( , , , 0)d SK ω θ γ  the following expression: 
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Lastly, the solution is found in the ( ,i dK K ) plane. 

After setting pK  to a fixed value of pK ,  (12) and  

(13) are rewritten as 
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Although the coefficient matrix is singular, a solution 
will exist in two cases. First, at  0ω =   

0 0(0, , , )d SK Tθ γ  is arbitrary and 0 0(0, , , ) 0i SK Tθ γ = , 

unless (0) (0) 0m eI R= = , which holds only when the 
plant has a zero at the origin. In such a case, a PID 
compensator should be avoided as the PID pole cancels 
the zero at the origin and the system becomes 
internally unstable. A second set of solutions occurs at 
any frequency iω , where 0 0( , , , )p i SK Tω θ γ  (from(15)) 

is equal to pK . At these frequencies, 

0 0( , , , )d i SK Tω θ γ  and 0 0( , , , )i i SK Tω θ γ  must satisfy 
the following straight line equation 
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Letting 0 0T →  in (25) we can get the following 
expression for the continuous-time case  
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3 Example 
In this section, a numerical example is used to 
demonstrate the application of this method. Consider 
the second-order plant transfer function from [7],  

 
0.60.25( 2)

( )
( 1)( 0.5)

s
p

s
G s e

s s
−− −

=
+ +

.                     (27) 

 
The goal is to find all discrete-time PID controllers 

that stabilize the closed-loop system and satisfy the 
H∞  sensitivity constraint in (8) for 0 2γ = , when  the 

sampling period is 0 0.1T =  seconds. Using (2), the 
discrete-time delta-domain equivalent  of the system in 
(27) is given by  
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                                                                     (28) 
 

Equations (15) and (16) are used in the ( ,p iK K ) 

plane for a fixed value of 0.2dK = . Equation (6) is 
used to find the real and imaginary parts of (28) in the 
frequency domain. As discussed previously, the PID 
stability boundary of the nominal system can be found 
by setting 0γ = ∞  in (15) and (16). All PID 

controllers that satisfy the H∞  sensitivity constraint in 

(8) are found by setting 0 2γ =  in (15) and (16) for 

[0,2 )Sθ π∈  and finding the intersection of all regions. 
The stability boundary and the region that satisfies 

the H∞ sensitivity constraint are shown in Fig. 2. The 
intersection of all regions inside the stability boundary 
of the ( ,p iK K ) plane is the H∞ sensitivity region for 

the discrete-time system. 
To verify the results, an arbitrary controller from 

this region is chosen, giving us the discrete-time PID 
controller as 

 
0.11 0.2

( ) 0.57 .
1 0.1

          

cG
γ

γ
γ γ

= + +
+                    (29) 

The Bode response of the sensitivity function is shown 
in Fig. 3. As can be seen, ( ) 1.25S β

∞
= , which is 

less than 0 2γ = . The design goal is met for the 
discrete-time system.  

The closed loop step response of the system with 
the PID controller in (29) is shown in Fig. 4. As can be 
seen, the closed-loop step response of the discrete-time 
system is stable and has no overshoot, a settling time of 
38.5  seconds and zero steady state error.  
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Fig. 2. Stability boundary and sensitivity region of discrete-

time system in the ( ,p iK K ) plane 
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Fig. 3    Magnitude of discrete-time sensitivity function 

frequency response 
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Step Response
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Fig. 4   Closed loop step response of discrete-time system 

 
In order to compare these results with the 

continuous-time PID controller, equations (18) and  
(19) are used in the ( ,p iK K ) plane for a fixed value of 

0.2dK = . The stability boundary and the region that 

satisfies the H∞  sensitivity constraint are shown in 
Fig. 5. The intersection of all regions inside the 
stability boundary of the ( ,p iK K ) plane is the H∞  

sensitivity region for the continuous-time system. 
Comparing Fig. 2 and Fig. 5, we can see that while 

the stability boundary and the H∞  sensitivity regions 
are similar for the discrete-time and continuous-time 
controllers, the continuous-time regions are larger.  
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Fig. 5   Stability boundary and sensitivity region of 

continuous-time system in the ( ,p iK K ) plane 

 
The second method uses (15) and (21) in the 

( ,p dK K ) plane for a fixed value of 0.1iK = . The 

PID controller is designed to satisfy the weighted 
sensitivity constraint with 0 2γ = . The region that 
satisfies the sensitivity constraint and the stability 
boundary is shown in Fig. 6. The intersection of all 
regions inside the stability boundary of the ( ,p dK K ) 

plane is the sensitivity region for the discrete-time 
system.  
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Fig. 6   Stability boundary and sensitivity region of discrete-

time system in the ( ,p dK K ) plane 

 
To verify the results, an arbitrary controller from 

this region is chosen, giving us the PID controller  
 

0.1 0.57
( ) 0.34

1 0.1cG γ
γ γ

= + +
+

.                      (30) 

 
The substitution of  (28) and (30) into (8) gives 

( ) 1.23S β
∞

= . As the magnitude of the sensitivity 

function is less than 2, the design goal is met for the 
discrete-time system.  

In order to compare these results with the 
continuous-time PID controller, equations (18) and  
(23) are used in the ( ,p dK K ) plane for a fixed value 

of 0.1iK = . The stability boundary and the region 

that satisfies the H∞  sensitivity constraint are shown 
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in Fig. 7. The intersection of all regions inside the 
stability boundary of the ( ,p dK K ) plane is the H∞  

sensitivity region for the continuous-time system. 
Comparing Fig. 6 and Fig. 7, we can see that while 

the stability boundary and the H∞  sensitivity regions 
are similar for the discrete-time and continuous-time 
controllers, the continuous-time regions are larger.  
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Fig. 7   Stability boundary and sensitivity region of   

continuous-time system in the ( ,p dK K ) plane 

 
The third method is applied in the ( ,i dK K ) plane 

for a fixed value of 0.5pK = . Plots of 

0( , , , )p SK Tω θ ∞  and 0 0( , , , )p SK Tω θ γ  (from (15)) for 

various values of [0,2 )Sθ π∈  are shown in Fig. 8 for 

the discrete-time system. For each curve, the iω  are 
the frequencies at which 

0 0( , , , ) 0.5p S pK T Kω θ γ = = . Each iω  is substituted 

into (25) to find the required boundaries. In addition, 
we have the boundary at  0 0(0, , , ) 0i SK Tθ γ =  for the 
discrete-time system.  
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Fig. 8   Plots of 0 0( , , , )p SK Tω θ γ  versus ω  used to find 

values of iω  for discrete-time system 
 

The region that satisfies the sensitivity constraint 
and the stability boundary is shown in Fig. 9.  The 
intersection of all regions inside the stability boundary 
of the ( ,i dK K ) plane is the H∞  sensitivity region for 

the discrete-time system.  
To verify the results, an arbitrary controller from 

this region is chosen, giving us the discrete-time PID 
controller  

 
0.690.24

( ) 0.5
1 0.1cG

γ
γ

γ γ
= + +

+
.                     (31) 

 
The substitution of (28) and (31) into (8) gives 

( ) 1.29S β
∞

= . As the magnitude of sensitivity 

function is less than 2, the design goal is met for the 
discrete-time system. 
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Fig. 9   Stability boundary and sensitivity region of discrete-

time system in the ( ,i dK K ) plane 

 
In order to compare these results with the 

continuous-time PID controller, plots of 
( , , , 0)p SK ω θ ∞  and 0( , , , 0)p SK ω θ γ  (from (18)) for 

various values of [0,2 )Sθ π∈ are shown in Fig. 10. For 

each curve, the iω  are the frequencies at which 

0( , , , 0) 0.5p S pK Kω θ γ = = . Each iω  is substituted 

into (26) to find the required boundaries. In addition, 
we have the boundary at  0(0, , , 0) 0i SK θ γ =  for the 
continuous-time system. The stability boundary and the 
region that satisfies the H∞  sensitivity constraint are 
shown in Fig. 11. The intersection of all regions inside 
the stability boundary of the ( ,i dK K ) plane is the H∞  

sensitivity region for the continuous-time system. 
Comparing Fig. 9 and Fig. 11, we can see that 

while the stability boundary and the H∞  sensitivity 
regions are similar for the discrete-time and 
continuous-time controllers, the continuous-time 
regions are larger. 
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Fig. 10   Plots of 0( , , , 0)p SK ω θ γ  versus ω  used to find 

values of  iω  for continuous -time system 
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Fig. 11   Stability boundary and sensitivity region of 

continuous-time system in the ( ,i dK K ) plane 

 
4 Conclusions  
A graphical technique was introduced for finding all 
achievable continuous-time or discrete-time PID 
controllers that satisfy an H∞  sensitivity constraint for 
an arbitrary-order transfer function with time delay. 
This method is simple to understand and requires only 
the frequency response of the plant. A numerical 
example with a time delay was presented to 
demonstrate the application of this method.  It was 
shown that the continuous-time and discrete-time 
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designs can be understood under a common framework 
through the delta operator. 
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