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Abstract: - The phenomena of de-synchronization, synchronization, and forced oscillation has been 
investigation using describing function theory for a two input and two output nonlinear system containing 
saturation-type nonlinearities and subjected to high-frequency deterministic signal for the purpose of limit cycle 
quenching. The analytical results have been compared with the results of digital simulation Matlab-Simulink 
for a typical example varying the nonlinear element. 
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1 Introduction 
Recognition of nonlinear self-oscillations or limit 
cycles in multidimensional nonlinear systems as 
they are indeed has had a long history, and is closely 
related to the system stability [1-23]. Engineers are 
continually involved in the design of system simply 
to ensure that it meets the performance criterion, 
which strictly excludes the existence of limit cycles 
[1], [3], [4], [6] and [8]. One of the important and 
interesting methods of extinguishing such limit 
cycle is by the employment of high-frequency signal 
to the nonlinear system input. The high-frequency 
signal is usually called dither. The use of dither to 
turn limit cycles off is referred to as signal 
stabilization. In many cases the introduction of an 
extra signal is less expensive than actually replacing 
the nonlinear element [9]. It has been extensively 
investigated by Olden-burger and his students [9], 
among the first to discover this phenomenon 
experimentally and subsequently, to provide 
analytical justification. However, these are for 
single-input and single-output (SISO) systems with 
both deterministic and random inputs. Other notable 
works on signal stabilization of SISO systems can 
be seen from the wealth of literatures [4], [6], [9], 
[13-16]. There are, however, a large number of 
practical industrial problems with two- or higher-
dimensional nonlinear control configurations [1], 
[4], [18], [19] and the analysis of signal stabilization 
there has a huge significance in its own right. 
Unfortunately, relatively small amount of work 

has been published on forced oscillation/signal 
stabilization of multidimensional systems and 
hence addressed here for a two-dimensional 
system subjected to a deterministic dither.  
     The describing function (DF) method provides a 
convenient tool and by virtue of its inherent approx-
imations leads to a significant reduction in the com-
plexity of analysis [1-10], [13-17], [22] and [23]. 
The dual input describing function (DIDF) is 
analogous to the conventional describing function as 
far as the manner of using is concerned. 
Investigation of signal stabilization via describing 
function theory can be executed in two stage process 
[20]. First, by use of DIDF theory, the dither and the 
original nonlinear element are replaced with an 
equivalent nonlinear element, whose form implicitly 
accounts for the presence of dither, but which no 
longer explicitly displays the dither signal. Second, 
the resulting system is made the object of a DF anal-
ysis to reveal the presence or absence of limit cycle 
[5], [9], [13-17] and [20].  
     The variation of amplitude and frequency of limit 
cycle with variation of forcing signal amplitude 
(phenomena of forced oscillations, synchronization 
and de-synchronization) has been analyzed. The 
exact magnitude of dither for which limit cycle is 
extinguished (i.e. synchronization) or induced (i.e. 
de-synchronization) has been found. The technique 
is derived from the basic concept of DIDF, 
incremental input describing function (IDF) and 
relationship between system variables. Apart from 
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directness of application, the method outlined has 
the notable advantage that it brings out the influence 
of individual system (effect of interaction/coupling) 
on the forced oscillation parameter, and can be 
applied to a higher-dimensional system [10] and 
[13]. This technique also forms the basis of 
computer algorithms for predicting limit cycle/ 
forced oscillation [10]. This rather simple in-
vestigation scheme has been illustrated through 
examples and comparison of results with digital 
simulation without loss of generality [13] and [21]. 
The system has also been simulated using 
MATLAB 7.0 for forced oscillation investigation. 
 
 
2 Important notations  
B        amplitude of high frequency external signal 
(dither) 
C1, C2    amplitude of outputs of the two subsystem  
G1, G2   transfer functions of linear elements  
N1, N2 describing functions (DF) of nonlinear 
elements 
N1i, N2i incremental input DFs of the nonlinear 
elements 
N1eq       two sinusoidal input DF (DIDF) of nonlinear    
            element N1 
N           the multitude of natural numbers 
Z           the multitude of whole numbers 
R            the multitude or real numbers 
X1, X2    amplitude of input to nonlinear elements 
X1’, X2

’    amplitude of input to nonlinear elements   
             when the system exhibits forced oscillations 
Y1, Y2    amplitude of output (fundamental) of  
             nonlinear elements 
U1, U2   inputs of the two subsystems 
ωf          frequency of high frequency external signal  
ωB         frequency of self oscillations (limit cycle) 
Subscripts 1 and 2, correspond to quantities of two 
subsystems S1 and S2, respectively 
 
 
3 Disconnection of nonlinear processes 
In a multivariable process, the multitude of input 
numbers is likely to affect the evolution of output 
numbers. The purpose of disconnection is to limit as 
much as possible the effect of one input on one 
output, thus allowing turning the process into a set 
of mono-variable systems that evolve separately, 
because the commands are not interactive. The 
functioning of this system requires a similar number 
of input and outputs, preferably equal.  
 
 
3.1 Disconnection using a regulator 
A simplified approach to this problem is if  

H(s)=C(sI-A)-1B is the transfer matrix of a process  
that corresponds to (A, B, C) it is sufficient (Fig.1) 
to place a regulator R(s) before the process so that 
the transfer matrix of the new process 
D(s)=H(s)R(s) is diagonal.  
 

 
Fig.1: Disconnection through insertion of a 

regulator. 
 
    Such a simple approach involves the following: 
- It is very likely that modal, unforeseeable or un 
controllable numbers may appear. This is very 
dangerous, especially if the numbers are unstable. 
We will avoid simplifying poles or unstable zeros 
between the functions of the H(s) and R(s) 
processes.   
- The degree of the numerator must be smaller or 
equal to the degree of the denominator.  
- When we have an inverted matrix H*(s), the right 
of the matrix defined by:  
  

1−=Ν∈∃ Is)s(H)s(H,l * ,                      (1) 
 

with the unit matrix I defined by , an 
obvious solution would be to consider: 

nnxℜℜ

 
R(s)=H*(s)D*(s),                           (2) 

 
where D*(s) is the chosen diagonal matrix.  
     This case, which is very rare in practice, requires 
finding the minimum degree inverted matrix of the 
right side of H(s). The solution we have reached 
from our first situation is not acceptable if by using 
it we will be introducing poles or unstable zeros. 
These situations bring out the fact that before we 
use such a disconnection method, we should find 
out the status reaction so we can assure the stability 
of our system. Therefore, the method has lost its 
advantage that allowed us to simplify the calculus of 
the regulator or command.  
 
 
3.2 Disconnection in linear processes 
We will consider the model described by these 
status equations: 
 

,Cxy
,BuAxx

=
+=&

              (3) 

 

where: , , , the  B and C 
matrixes have maximum degree and the y output can 

nx ℜ∈ my ℜ∈ mu ℜ∈
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be controlled, state that can be expressed through 
the condition: 
 

    class[CB, CAB,…, CAn-1B]=m.                 (4) 
 
The objective is to establish a reaction after 
     

u=Kx+Lv,                              (5) 
 
where, v is the new input vector, which disconnects 
the system, such that the input vi does not depend on 
the output  vi.  
    As a result, it is enough to determine the L and K 
matrixes, so that the transfer matrix of the HB(s) 
system is a diagonal: 
 
                  HB(s)=C[sI-(A+BK)]-1BL.               (6) 
 
     In practice, solving a matrix equation in L and K 
is not simple at all. If we note with Ci the i line of 
the controlled C matrix, the scalar output  yi can be 
stated by the condition: 
 

     class(CiB, CiAB,…, CiAn-1B)=1.               (7) 
 
Because the y output of the system is controlled, it 
is the same as yi. In other words, if condition (4) is 
verified, then for every i belonging to {1,…, m}, 
there is a di that belongs to {0,1,…, n-1}, such that: 

                           
.       (8) 00 =<α∈α∀≠ αBAC,dΝ,,BAC ii

d
i i

 
   In this case, a solution to our problem can be 
found by successively deriving relationships (3) and 
(5), thus obtaining for our i output the following 
equation system: 
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or writing the relationship for each output: 
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or as a matrix: 
 

y*=(A*+B*K)x+B*Lv.            (11) 
 
If the  B* has an invert matrix, then we will choose:   
 

 L=(B*)-1, K=-(B*)-1A*,                (12) 
 
That leads to the equation y*=v, or to the input-
output equation: 
 

           )s(V
s

)s(Y},m,...,{i idi i 1
11 +=∈∀ .          (13) 

 
If the matrix B* has an invert, then this is a 
necessary and sufficient decompression condition. 
However, we must see the structure of the curled 
system we obtained and verify if instable poles have 
been introduced. The previous study requires few 
comments: 
- The status reaction that leads to decompression is  
calculated having a certain model in mind. Thus the 
decompression is not that rigorous as it would be if 
we were to calculate having a précis model in mind.  
- The appearance of modal, stabile and unnoticeable 
values in our curled system can be disturbing, in 
which case there could be important differences 
between the transitory regime of the process and 
that of the model.  
- If we have modal, stabile and unnoticeable values, 
the simplified model that we obtain will not be 
accepted. One useful rule, that helps avoid big 
errors, requires that we determine the transfer matrix 
of the system and check to see if our calculus was 
made through simplification of the poles and 
instable zeros.  
- One general rule states that we must check the 
whether our curled system can be observed or not, 
and also check the stability of the unnoticeable part.  
- When we cannot measure all parts, we must use a 
status estimator, in which case we must make a 
stable reaction.       
 
 
3.3 Decompression for nonlinear processes 
The previous method can be generalized for the 
decompression of nonlinear processes, by making 
the process linear. The evolution is described using 
the following equation system: 

 

                             
( ) ( )
( )xhy

,uxGxfx
=

+=&
                    (14) 

 
where , , nn:f ℜ→ℜ nxmn:G ℜ→ℜ
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mn:h ℜ→ℜ , output values vector y is completed 
with fictive outputs, in order to have the same vector 
dimension just like the command vector.  
     Assuming that the functions f, G and h are 
continuous and derivable, our method is, just like 
for the linear model, to derive every output y, thus 
determining the command vector. We note with 
hT(x)=[h1(x),…,hm(x)] and with h0

i,x=hi,x  and for  
r≥ 1:  
 

                              (15) 
),x(G)x(h)x(G

),x(f)x(h)x(h
T

T

r
x,i

r
i

r
x,i

r
i

1

1

−

−

=

=

 

with di such that  and 

 the outputs are: 

01 ≠+ )x(G id
i

0=≤αΝ∈α∀ α+ )x(G,d, ii
                       

       (16) 

u)x(G)x(hy

),x(hy

...
),x(hy

),x(hy

iii

ii

dd
i

)d(
i

d
i

)d(
i

i
)(

i

ii

111

11

0

+++ +=

=

=

=

 
or by writing the relationship for every output as a 
matrix: 
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Relationship (17) can also be written as: 
 

                    y*=h*+G*u,                             (18) 
 
and if the matrix G* is irreversible, di indexes are 
invariant and we choose a reaction where: 
 

                    u=(G*(x))-1[v-h*(x)],                     (19) 
 
that will lead, just like in the linear case, to the 
relationship y*=v, where v is a new input of the 
system or: 

                                   
 ,                       (20) i

d
i vymi i =∈∀ + )1(},,...,1{

 
     The system we obtain will not only be  

decompressed but also linear. Moreover, besides the 
validity conditions we have already talked about 
(indexes di invariants and G*(x) irreversible), if the 
system we have made linear through decompression 
has a smaller dimension than in the beginning, then 
we must see if the unnoticeable part of the system is 
stabile. If it is not, the command will not be 
accepted, but it is possible for us to try another 
decompression using a different representation of 
the process (for example using different outputs or 
introducing question elements on the inputs). The 
main disadvantage of the method is that it is very 
hard to actualize the status estimators when almost 
all parts of the system cannot be measured.  
 
 
4 Signal stabilization 
In this section, we consider a two-dimensional non-
linear system configuration as represented in Fig.2 
with two inputs U1 and U2 and the two outputs C1 
and C2 and saturation as the only nonlinearities 
present in both the subsystems S1 and S2. This 
nonlinearity is not uncommon. For example, 
frequently the valves used as actuators in process 
control applications give rise to nonlinearity as a 
result of actuator saturation, where the limit 
corresponds to a fully open or closed valve. 
Actuator saturator may lead to a large "overshoot" 
inducing a limit cycle [22]. This particular system 
has been used earlier by the authors for prediction of 
limit cycle parameters [9-13]. The characteristics of 
nonlinear elements used in the examples considered 
are shown in Fig.3. It is a general class of two-
dimensional system developed by the author [11], 
[12] considering the coupling effect between 
subsystems and relationships between individual 
parameters of significance within the subsystem. 
The system claims to be more suitable for the 
analysis of limit cycle/signal stabilization. The 
system shown in Fig.2 exhibits a limit cycle in the 
autonomous state [8-13]. We now examine the 
possibility of quenching the limit cycle by injecting 
a high-frequency dither. The dither can be injected 
either at u1 or u2 or at both the inputs 
simultaneously. However, for the present 
investigation we confine attention to the case when 
the dither, Bsinωft, (ωf is at least 10 times greater 
than limit cycle frequency [19]) is injected at u1 only 
while u2 is kept unexcited from external sources. 
When the dither amplitude at u1 is gradually en-
hanced, the system would exhibit forced 
oscillations. The signals at various points in the 
system would then be composed of signals of 
frequency (ωf), signals of frequency of limit cycle 
(ωS) and the combination frequencies, k1ωf±k2ωS 
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where k1, along with k2 assume various integer 
values. However, with increase of the dither 
amplitude B, the frequency of limit cycle (ωS)  
would also gradually change [4], [9] and [14].  
 

 
Fig.2: A general 2x2 nonlinear systems. 

 

 
Fig.3: Characteristics of nonlinear elements used in 

Examples 1 and 2. 
 

For a certain amplitude of dither, synchronization 
would occur i.e., the limit cycle would vanish and 
the system would exhibit forced oscillations at the 
dither frequency of only [4], [9] and [20]. If 
subsequently the amplitude B is gradually reduced, a 
point may be reached at which the limit cycle would 
reappear and the system would exhibit forced 
oscillations once again. This phenomenon has been 
termed as de-synchronization [10]. The analysis of 
such oscillation even in a relatively simple two-
dimensional nonlinear system is exceedingly 
complex. This section presents analysis of these 
phenomena based on the following assumptions:  

(a) The external signal is impressed on system only 
at u1 (cf. Fig.2). 
(b) The linear elements composing various loops of 
the system possess low-pass characteristics (filter 
hypothesis) [1], [4], [9], [13-16] and [20]. 
    Because of the low-pass characteristics of the 
linear elements, the components of high-frequency 
signal at C1 and C2 would be very small. Hence, the 
component of the high-frequency signal at the input 
to the nonlinear element, N1, would be equal to the 
magnitude of the dither at u1. It may be noted that 
just prior to de-synchronization, the system would 
be exhibiting a forced harmonic oscillation, and 
consequently, this phenomenon which is relatively 
easier to analyze and is, therefore, considered first.  
 
    
4.1 De-synchronization 
Let the system in Fig.2 be subjected to a dither,  
Bsinωft, and consider the situation for a reasonably 
large B, when the limit cycle has been quenched 
and, consequently, the system is exhibiting a 
harmonic oscillation at dither frequency (ωf). Since 
the frequency of the dither is high, the magnitude of 
C1 and C2 can be assumed to be negligibly small. 
Hence, it follows that under these conditions, the 
inputs to the nonlinear elements N1 and N2 can be 
approximated, respectively, as (i) Bsinωft, and (ii) a 
vanishingly small signal. It has been shown in 
earlier works for SISO system [16-18], [20] that 
when B is gradually reduced the self-oscillations 
reappear at a point at which the forced oscillations 
become unstable and that this instability can be 
predicted by employing IDFs [4] and [20]. Hence, in 
two-dimensional case also the limiting values of B 
at which the self-oscillations reappear can be 
obtained by replacing the nonlinear elements N1 and 
N2 by their IDFs, N1i and N2i, for vanishingly small 
signals superposed on the finite amplitude signals of 
frequency ωf at their respective inputs. The 
linearised system is shown in Fig.4 and conditions 
for the stability limit can be obtained in a straight-
forward manner. 
 

 
Fig.4: Equivalent linearization for incremental 

signals for the system of Fig.2. 
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    The condition for self-oscillations to just reappear 
is thus obtained as 
 

( ) ( )( )
( )( ) 0

221
221111 =⎥

⎦

⎤
⎢
⎣

⎡

ω+
ω

+ω+
jGiN

jGiN
jGiN .     (21) 

 
As shown above, the magnitudes of the high-
frequency signals at the inputs to the nonlinear ele-
ments N1 and N2 are approximated by Bsinωft and 
zero, respectively. Hence, it follows that in Eq.(21), 
N1i is the slope at the origin of the modified charac-
teristic of N for an input Bsinωft, while N2i is the 
slope at the origin of the characteristic of N2 [1], [4], 
[23]. The following examples illustrate the 
procedure for determining the value of B for which 
desynchronisation would take place and self-
oscillations would reappear. 
     Example 1. Considering the system of Fig. 2, 
where G1(s)=2/s(s+1)2, G2(s)=1/s(s+4) and the two 
nonlinear elements have ideal saturation characteris-
tics as shown in Fig.2a. Since the value of N2i for 
small signals is equal to unity, Eq.(21) leads to 
 

( ) ( )
( ) 0

21
21111 =⎥

⎦

⎤
⎢
⎣

⎡
ω+

ω
+ω+

jG
jG
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Substituting G1( jω ) and G2( jω ) and separating in 
real and imaginary parts finally yields: 
 

( ) 01182104 =++ω−ω iN  
and                 (23) 
 

( ) 02
1264614 =ω+−ω+ iNiN . 

 
Simultaneous solution of the above equations yields: 
N1i = 0.51 (critical). The IDF for the saturation 
characteristic with given s1 (=1.5) is given by [1], 

[4], [17] and [20]: ⎟
⎠
⎞

⎜
⎝
⎛ −

∏
=

B
.siniN 5112

1 . 

Hence, the amplitude B of the dither that would 
make the IDF equal to the critical value of 0.51 is 
found to be B=2.09. 
    Example 2. Consider the system of Example 1 but 
the characteristics of nonlinear elements are as 
shown in Fig. 3b. The value of dither amplitude for 
desynchronisation is found to be B=1.5. It is 
important to note that the above analysis is based on 
the assumption that the amplitude of signal XS (self-
oscillation) is zero at all points in the system. 
However, once the amplitude of self-oscillation is 
different from zero, the signals at the various points 
would represent forced oscillations. Consequently, 

the frequency of self-oscillation that the system 
would eventually sustain after desynchronisation 
would be different from the one predicted above. 
So, the above analysis predicts only the critical 
amplitude B at which the process of 
desynchronisation sets in. 
 
 
4.2 Forced oscillations 
We now present an analysis of the forced oscilla-
tions in the system of Fig.2 when it exhibits self-
oscillations while being subjected to a high-
frequency input Bsinωft at u1. As a consequence of 
assumed low-pass characteristics of linear elements, 
the input to the nonlinear element N1 is composed of 
dither signal of frequency ωf and self-oscillating 
signal of frequency ωS, while the input to the 
nonlinear element N2 is composed only of self-
oscillating signal of frequency ωS. Consequently, an 
analysis of the components of the frequency of self-
oscillation, ωS, can be visualized as the analysis of 
the system of Fig.5a. The system of Fig.5a is 
obtained by replacing the nonlinear element N1 in 
Fig.1 by its modified characteristics [3], [4], [9], 
[13-16], [20] determined by the component of the 
frequency ωf at its input. In view of the low-pass 
characteristics of the linear elements and the high-
frequency of dither, this component can be 
approximated as Bsinωft. The dither frequency 
should be much greater compared to self-oscillation 
frequency and the frequency ratio is considered irra-
tional so that the DIDF will depend only on 
amplitude of two signals [1], [4], [18] and [20]. The 
component of frequency ωf at the input to the non-
linear element N2 is negligibly small and therefore, 
the characteristics of the element N2 in Fig.5a would 
remain unaltered. The system of Fig.5a can 
subsequently be analyzed for possible self-
oscillations by employing the techniques developed 
in [4], [10]. If such an analysis shows the presence 
of self-oscillation for the system of Fig.5a, then the 
system of Fig.2 would exhibit forced oscillation of 
the frequencies ωS and ωf. A rigorous analysis of 
such a system is extremely complex. However, if 
the whole system is assumed to exhibit an 
oscillation predominantly at a single frequency and 
if the loops possess low-pass characteristics, then a 
simpler analysis, based on harmonic balance 
approach can be developed along the following 
lines. The characteristic equation in frequency 
domain is obtained as 
 

( ) ( )
( ) ( ) 0121212

2211
.NeqNjGjG

NjGeqNjG

−=ωω

+ω+ω
                (24) 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Marius-Constantin Popescu, Onisifor Olaru, Valentina Balas

ISSN: 1991-8763 182 Issue 4, Volume 4, April 2009



 
a) 

 
b) 

Fig.5: (a) Equivalent system for analyzing forced 
oscillations of Fig. 2 with external input at U1. 

 (b) Linearised equivalent for the system 
of  Fig. 2 for analyzing forced oscillation. 

 
     The three unknowns, X1, X2 and w require three 
independent equations for their evaluation. 
Separating the real and imaginary parts only two 
independent equations can be developed. The 
characteristic equation alone is not sufficient for 
analysis of self-oscillation in multidimensional 
systems. However, representing the system of 
Fig.5a alternatively as in Fig.5b, the following 
conditions must be fulfilled for ensuring harmonic 
balance. 
(i) The phase condition 
 

018021 =θ+θ cc  .                      (25a) 
 

where θc = loop angle of subsystems.  
(ii) The gain condition: 
 

( )( ) 12211 =R/CR/C .                  (25b) 
 

(iii) The amplitude ratio condition 
 

( )
( )ω

ω+
=

jGeqN

jGN
'X

'X

11

221

2

1  .                   (25c) 

 
It may be noted that N1eq and X1

’ are related through 
the DF expression for the modified characteristic of 
the element N1 (DIDF), while N2 and X2

’ are related 

through the DF expression of the element N2. 
Eq.(25) constitutes three equations for the solution 
of the three unknowns ω , X1

’, X2
’. 

     Example 3. Consider again the system of 
Example 1. Substituting G1(jω), G2(jω) in Eqs.(25a) 
and (25b) finally yields 
 

( ) ( ) ( ) ( )
( )214

1622218
22311223112

2
ω−

+ωω−−ω−ω+ω−ω
=N  (26) 

and 

  
8

429
28

12
1

ω−ω
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −ω
= NeqN .      (27) 

 
Again, substituting G1(jω), G2(jω) in Eq.(25) finally 
yields 
 

( )
)(

NN
'X

'X

162

2
22241622

2

1

+ωω

+−+ωω
= .       (28) 

 

 
a) 

 
b) 

Fig.6: (a) Variation of C1 and C2 with dither 
amplitude,   illustration of limit cycle quenching 

(signal stabilization), results of Example 3.  
(b) Variation of frequency with dither amplitude 

results of Example 3. 
 

Furthermore, the relations between X1
’ and N1eq and, 

X2' and N2 are obtained from the given nonlinear 
characteristics as [2], [4] 
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( ) ( ) ( ) ( )duu'XJBuJ
u

uSsin
'X

B,'XeqN 1102
1

1

2
11 ∫

∞

∞−∏
= (29) 

 
where J0, and J1 are Bessel's function of first kind of 
order 0 and 1, respectively. 
     We also note that the input to nonlinear element 
N2 can be approximated by a signal of frequency of 
self-oscillation alone. Therefore, the gain for the 
nonlinear element N2 would be defined by its DF: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−

∏
= 'X'X'X

sinN
2

21
2

2

2

212
2 .       (30) 

 
     The procedure for evaluation of the frequency of 
oscillations and other parameters is executed in the 
following sequential steps: 

(a) certain value of ω is assumed; 
(b) Eq.(26) yields a value of N2; 
(c) consequently Eq.(27) yields N1eq; 
(d) subsequently Eq.(28) yields a value of X1

'/X2
'; 

(e) for the N2 and N1eq obtained in steps (b) and (c) 
above and for a particular value of B an 
alternative ratio X1

'/X2
' can be obtained from 

Eqs.(29) and (30); 
(f) steps (a)-(e) are repeated for several assumed 

values of ω, while keeping the value of B a 
fixed number. 

The frequency for which the ratio X1
'/X2

' can be ob-
tained by two alternative means are equal is the fre-
quency of self-oscillation of the system. The other 
variables associated with self-oscillations can, 
subsequently be calculated. For example, if the 
frequency of oscillation is found out, N1eq and N2 can 
be determined from Eqs.(26) and (27). From these 
values X1

’ and X2
' and hence C1 and C2 can be 

calculated. For various values of B, this procedure is 
repeated and the variations of C1, C2 and co for 
various B are depicted in Fig.6 along with the results 
of digital simulation. The digital simulation 
technique used is similar to the Subramanian's work 
on SISO system [21] and also used by the authors' 
earlier work on limit cycle prediction for two-
dimensional autonomous system [13]. The dither 
frequency chosen in the work is 10 rad/s. Fig.7 
depicts the buildup of subsystem output C1 at B 
=1.0, which shows the periodic nature of oscillation.  
The forced oscillation has less settling time. The 
low-frequency demand signal is the excitation signal 
used to initiate the oscillation. The system was also 
simulated through MATLAB 7.0 for predicting the 
above phenomenon at various dither values. The 
simulation results are also shown in Fig.6. The 

analytical results have excellent agreement with 
simulation results. 
    Example 4. Consider the same system of Example 
2. The results from simulation and analytical 
technique are compared in Fig.8. It can be seen that 
the simulation provides a good match with the 
frequency and amplitude of oscillation. 
Synchronization occurs at B=1.865. 
 

 
Fig.7: Build up of oscillation is subsystem-1. 

 
a) 

 
b) 

Fig.8: (a) Variation of C1 and C2 with dither 
amplitude, illustration of limit cycle quenching 

(signal stabilization), results of Example 4. 
(b) Variation of frequency with dither amplitude. 

Results of  Example 4. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Marius-Constantin Popescu, Onisifor Olaru, Valentina Balas

ISSN: 1991-8763 184 Issue 4, Volume 4, April 2009



5  Aquering input – output data 
A solid identification requires the use of a command 
signal of the process with the most frequencies. This 
signal will be overlapped on the static value of the 
command which corresponds to the functioning 
point around which we want to identify the process. 
Usually, we use as a excitation signal a SPAB of 
low amplitude.  
 
 
5.1 Acquisition protocol  
     To be able to correctly identify the static 
amplification of the dynamic process, at least one of 
the impulses of the SPAB signal must be higher 
than the develop time of the system to be identified.  
     This leads to the following condition:            

p N T e ≥ t c ,              ( 3 1 )  
 
where: Te  is the sampling period, p is the frequency 
divider; pTe is the period of the SPAB generator (the 
frequency of the clock is equal to fe/p); N is the 
length of the generator’s register and tc is the 
development time of the system. 
    The amplitude of the SPAB generator must not 
surpass the static command signal (a few 
percentages). The acquisition is usually done with 
the help of a computer equipped with an acquisition 
board of input- output data, which contains analog- 
numeric and numeric- analog convertors. The board 
is simulated on the computer which gives away both 
the SPAB signal and the continuous component that 
corresponds to the functioning point. The 
identification program must generate, with the help 
of a PC, SPAB signals, must generate a continuous 
command signal to define the functioning point and 
it also must perform the acquisition of the input and 
output process. There are two connection 
configurations of the process: 
     1. Open circuit process, the easiest case. In this 
situation, the excitation signal overlapped on the 
command signal of the functioning point is directly 
applied to the process. The launching of the 
acquisition protocol must be done as soon as the 
process is found in a stationary regime.  
     2. Closed circuit process, where there are two 
situations. In the first case, if the excitation of the 
process is overlapped on the output of the regulator, 
case where the SPAB signal is combined with the 
output of the regulator, the acquisition of real input 
and output process will be started. The transfer 
between y0 and y1 will be identified. The SPAB signal 
will be combined with the reference, thus defining the 
functioning point and acquiring the input and output 
data of the process. It is better that a “weak” 
regulator is used (without a derived action and a 

week proportional action), but keeping an integral 
action that will help maintain the functioning point. 
The second case is when the excitation is applied 
on the reference. If n is large enough (n ≥ 4), an 
anti-distortion filter is usually enough: 
 

yf(t) = 
n

)nt(y...)t(y)t(y 11 +−++−+  ,∀ t∈N (32) 

 
In case we take too many samples, we must turn our 
attention towards choosing the clock/ tact (p) 
frequency divisors of the SPAB signal. The 
frequency (p) divisor used for the SPAB signal must 
be a multiple of n, so that the final sampling 
frequency fe will remain a multiple of the clock 
frequency of the SPAB signal. The clock frequency 
of the SPAB signal is given by the relationship:  

 fSPAB = af
n
1 ,                                (33) 

and the final sampling frequency by: 

  fe = SPABa f
n
p

f
n

⎟
⎠

⎞
⎜
⎝

⎛=
1 ,                      (34) 

where (p/n) must be a whole value. 

 

5.2 Anti-distortion filters 
A conversion of continuous signals higher than 
0,5fe will introduce a distortion of the sample signal 
from 0 to 0,5fe. To avoid this situation, we must 
introduce an analogical anti- distortion filtering 
between the measured output of the process and the 
acquisition board. This is possible by using a pass-
down filter that allows diminishing the signal 
components which have the frequency higher than 
0,5fe. If we not respect the rule, we might encounter 
serious errors during the identification process. 
Even if we obtain discrete models that are validated, 
they will not be representative for the actual 
behavior of the process (of the continuous model of 
the process).  
 
 
5.3 Over- sampling 
Choosing the sampling frequency for the regulation- 
command systems is done depending on which 
passing belt we desire for our closed system. 
Whatever the way of telling what our desired 
performances are, they can always be connected to 
the passing belt of the closed-curled system. The 
many situations we have encountered in practice 
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lead to the use of a acquisition frequency which is a 
multiple of the sampling frequency in the regulation 
loop. For example:  
- in may numeric control and command systems, 

the cadence of the acquisitions is bigger than the 
sampling frequency in the regulation loop;  

- in the systems which use a sampling period 
higher than 1 in their regulation loops, 
analogical anti-distortion filtering is very 
difficult and we must use a numeric filtering 
technique;  

      An acquisition must be made with a frequency 
multiple of the sampling frequency (or vice-versa);  

    fa = n fe ,                                      (35) 

where: fa is the acquisition frequency, n is the 
frequency report and  fe  is the sampling frequency 
of the regulation loop. The discrete signal obtained 
after sampling for the  fa  frequency is passed 
through an anti- distortion numeric filter that 
attenuates all frequencies higher than 0,5fe = 0,5fa/n. 
All n samples obtained are gathered at once.  

 
5.4 Conditioning the signals 
The elimination of the continuous component: The 
structures of the models used for identification are 
dynamic models (variations of the input data 
depending on the variations of the output data 
around the functioning point). For a correct 
identification, we must remove from the input- 
output data the continuous components (functioning 
point) or the slow derives of the functioning point.  
     There could be two cases: 
1. Eliminating the stationary continuous 

components.  
This can be done in two stages:  
(a) Calculating the medium values (MV) of the 
input- output files I/O (input-output).  
(b) Deducting the medium value from the I/O files 
and creating a new file:    
 
y'(t) = y(t) -VM(y) ,  u'(t) = u(t)-VM(u) ,   ∀ 
t∈N.   (36) 
  
2. Eliminating the un-stationary continuous 
components: we replace the files of the input/ output 
measures with the variations of the measured, 
filtered I/O measures:  

 y'(t) = 11
)1()(

−+

−−

qf
tyty , 

with -0,5≤f1≤0; but other types of filters can be 
used.  
These functions are usually assured by the 
identification program we use (MATLAB). If the 
identification process contains a pure integrator, 
then if we know about the existence of an integrator, 
we can use this preliminary information to reduce 
the complexity of the model we have to identify.  
    Two methods can be used: 
1. The input is replace by its integral, the output 

remains the same:   

y'(t) = y(t),  u'(t) = 11
)(
−− q

tu  ,     ∀ t∈N.        (38) 

2. We replace the output by its variations and the 
input remains the same:  

 
y'(t) = y(t)-y(t-1), u'(t) = u(t) , ∀ t∈N.       (39) 

 
We can filter y'(t) and u'(t). These functions can be 
obtained with the help of the identification program 
we use (MATLAB). We then scale the inputs and 
outputs. The vector φ(t) contains the following 
components y(t), y(t -1), ... (or variables correlated to 
the outputs) and u(t), u(t - 1), ...:          

 φT(t) = [-y(t),-y(t -1), ..., u(t), u(t -1),...],     ∀ t∈N. (40) 

One the other hand, the adaptation amplification  
K(t) has the following expression: 

K(t)= Iii T
t

δ
φφ 1)1()1( +−−∑

=i 1
, ∀ t∈N,(δ<< 1) (41) 

If the level of u ( t ) ,  u(t -1), . . .  is different from 
the level of y ( t ) ,  y ( t - 1 ) , ..., the amplification 
matrix will not be balanced, which will lead to 
different convergence speeds for âi(t) şi ib

)
(t) 

parameters. As a consequence, scaling the input/ 
output files is necessary. A modification of the 
identified static amplification will be the result. 
Thus the values of the parameters will have to be 
divided or multiplied so that we can obtain a model 
that has the same static amplification as the model. 
This scaling function is done through the 
identification program we use.  

 
6 Conclusion 
Comparison of analytical results with the results of 
digital simulation of the example considered, shows 
that the simplifying assumptions made in the 
analysis lead to results of acceptable accuracy. In 

1
u'(t)= 11

)1()(
−+
−−

qf
tutu ,

1
∀t∈N. (37)   
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addition, the method of analysis also aids the 
conceptual visualization of the mechanism leading 
to these interesting phenomena. However, the signal 
stabilization for the system comprising several 
interconnected subsystems exhibiting limit cycle at 
different frequencies are yet to be explored and this 
method of analysis may be appended by Neural 
Network model [15]. 
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