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Abstract: - This paper presents a pseudo-equivalence of digital fuzzy PID controllers with linear PID 
controllers in the continuous time domain. Transfer functions and equivalence relations between controller’s 
parameters are obtained for the common structures of the fuzzy PID controllers. The pseudo-equivalence is 
made using a graphic analytical analysis based on the input-output transfer characteristics of the fuzzy block, 
the linear characteristic of the fuzzy block around the origin and the usage of the gain in origin obtained as an 
origin limit of the variable gain of the fuzzy block. An algorithm of equivalence is presented. The paper 
presents a unitary theory, which may be applied to the most general fuzzy PID controllers, developed using all 
kind of membership functions, rule bases, inference methods and defuzzification methods. The term “pseudo-
equivalence” is emphasized because there is no straight equivalence between the non-linear fuzzy controllers 
and the linear PID controllers. A case study of a control system using linear and fuzzy controllers is presented. 
The action mode of the fuzzy controller is analyzed. Based on the transient characteristics a comparison 
analyses is done. Better control quality criteria are demonstrated for control systems using fuzzy controllers. 
 
Key Words: -Fuzzy logic, control systems, PID controllers. 
 
1.   Introduction 
Some applications of fuzzy systems suddenly met in 
practice are so called PID fuzzy controllers. In the 
world scientific literature there were published many 
papers on this subject. Fuzzy controllers have a large 
field of applications and they may replace the linear 
PID controllers in process control. Some 
applications, from the most recent literature are, for 
example, the vector control of wind turbine [1] and 
the metal chamber temperature control [2]. 
     The fuzzy PID controllers result after the 
introduction of a fuzzy block in the structure of the 
linear PID controller. The fuzzy block is developed 
using fuzzy logic and its basic theory is presented in 
many textbooks published in then last decades [3, 4]. 
In this paper we present a method and some synthesis 
relations for pseudo-equivalence of PID fuzzy 
controllers with PID linear controllers. 
     Many principles and methods were presented in 
literature for the equivalence (tuning, design) of the 
fuzzy PID controllers with the linear PID controllers 
[5, 6, 7, 8, 9] and a short survey of them is presented 
as follows. A related method is presented in [3]. That 

method makes an equivalence between the fuzzy PI 
controller and a linear control structure based on the 
state feedback. Relations for equivalence are derived. 
In the paper [5] the author proved that a fuzzy logic 
controller can be design to have an identical output to 
a given PI controller. Also, the reciprocal case is 
proven that a PI controller may be obtained with 
identical output to a given fuzzy logic controller with 
specified fuzzy logic operations. The paper [6] shows 
that it is possible to apply the empirical tool to 
predict the achievable performance of the 
conventional PID controllers to evaluate the 
performance of a fuzzy logic controller based on the 
equivalence between a fuzzy controller and a PI. The 
book [4] and other papers of the same author present 
a theory of fuzzy control, in which the fuzzy PID 
controllers are analyzed. Tuning fuzzy PID controller 
starting from a tuned linear PID controller, replacing 
it with a linear fuzzy controller, making the fuzzy 
controller nonlinear and then in the end making a fine 
tuning. In the paper [7] some mathematical models 
for the simplest fuzzy PID controllers and an 
approach to design fuzzy PID controllers are 
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presented. The paper [8] analyses the analytical 
structure of a simple class of Takagi-Sugeno PI 
controller with respect to conventional control 
theory. An example shows an approach to Takagi-
Sugeno fuzzy PI controllers tuning. But this type of 
controller is only a particular case in practice. In the 
paper [9] a tuning method based on gain and phase 
margins has been proposed to determine the 
weighting coefficients of the fuzzy PI controllers in 
the frame of the control o linear plant. Numerical 
simulations are presented. 
     In this paper we presents a method and some 
synthesis relations for pseudo-equivalence of the PID 
fuzzy controllers with the linear PID controllers, in 
the most general case, when the fuzzy block may be 
developed using all kind of: fuzzyfication methods, 
fuzzy values, membership functions, rule bases, 
inference methods and defuzzification methods. The 
equivalence is made based on the values taken from 
the graphical input-output transfer characteristics of 
the fuzzy block. 
     The linear PID controllers may be designed based 
on different methods, for example the modulus or 
symmetrical criterions, in Kessler’s variant. The 
linear controller parameters may be used for an initial 
equivalence and after this other calculus must be 
applied, which will be presented in this paper. 
     The paper is treating the equivalence of the most 
common structures of fuzzy PID controllers. 
     Face to the above mentioned methods this paper is 
presenting a unitary theory, which is taking in 
consideration the input and output scaling 
coefficients, the analytic transfer characteristics of 
the fuzzy block, the nonlinear gain of the fuzzy block 
and the linear characteristic of the fuzzy block in the 
origin. The paper presents the calculus of the general 
gain of the fuzzy block and of the origin gain based 
on specific transfer characteristics obtained by digital 
computations. 
     For a good understanding of this method the 
readers may consult the paper [13] where the most 
important properties of the fuzzy systems used in this 
theory are presented. 
     The author used this equivalence theory in fuzzy 
control applications [11] and stability analysis [12]. 
 
 
2.   Basic Elements 
2.1.   Fuzzy Controllers with Dynamics 
The basic structure of the fuzzy controllers with 

dynamics is presented in Fig. 1. 
 

 
Fig. 1. The block diagram of a fuzzy controller with 

dynamics 
 
     So, the following fuzzy controllers, with 
dynamics, have as a central part a fuzzy block FB, an 
input filter and an output filter. The two filters give 
the dynamic character of the fuzzy controller. 
     The fuzzy block has the general structure from 
Fig. 2. 
 

 
Fig. 2. The structure of the fuzzy block 

 
     The fuzzy block does not treat a well-defined 
mathematical relation (a control algorithm), as a 
linear controller is treating, but it is using inferences 
with many rules, based on linguistic variables. The 
inferences are treated with the operators of the fuzzy 
logic. The fuzzy block from Fig. 2 has in its structure 
three distinctive parts: fuzzyfication, inference and 
defuzzification. The fuzzy controller is an inertial 
system, but the fuzzy block is a non-inertial system. 
     The fuzzy controller has in the most common case 
two input variables x1 and x2 and one output variable 
u. The input variables are taken from the control 
system. The inference interface of the fuzzy block 
makes a treatment by linguistic variables of the input 
variables, obtained by the filtration of the controller 
input variables. For the linguistic treatment a 
definition with membership functions of the input 
variable is needed. In the interior of the fuzzy block 
the linguistic variables are linked by rules that are 
taking account of the static and dynamic behavior of 
the control system and also they are taken account of 
the limitations imposed to the controlled processed. 
In particular, the control system must be stable and it 
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must assure a good amortization. After the inference 
fuzzy information for the output variable is obtained. 
Because in general the actuator that follows the 
controller must be commanded with a crisp value ud, 
the defuzzification is used. The command variable u, 
furnished by the fuzzy controller, is obtained by 
filtering the defuzzified variable ud. The output 
variable of the controller is the command input for 
the process. The fuzzification, the inference and the 
defuzzification bring a nonlinear behavior of the 
fuzzy block. The nonlinear behavior of the fuzzy 
block is transmitted also to the fuzzy controller. By 
an adequate choosing of the input and output filters 
we may develope different structures of the fuzzy 
controllers with imposed dynamics. So, we may 
obtain PI, PD and PID fuzzy controllers. The PI 
fuzzy controller may be with integration at the output 
or at the input.  
 
 
2.2.   Characteristics of the Fuzzy Block 
The fuzzy block FB has a MISO transfer 
characteristic: 
 

],[,),,( aaxxxxfu deedeeFBd −∈=  (1) 

 
     From this transfer characteristic a SISO transfer 
characteristic may be obtained: 
 

],[),;( aaxxxfu edeeed −∈=  (2) 

 
where xde is a parameter. 
     A composed variable is introduced: 
 

deet xxx +=  (3) 

 
     A family of translated characteristics may be 
obtained using this composed variable: 
 

]2,2[),;( aaxxxfu dettd −∈=  (4) 

 
with xde as a parameter. 
     Using the above translated characteristics we may 
obtain the characteristic of the variable gain of the 
fuzzy block: 
 

0,/);();( ≠= ttdettdetFB xxxxfxxK  (5) 

 
     Now, the MISO transfer characteristic of the 
fuzzy block may be seen as follows: 
 

tdetFBdee

deeFBdeeFBd

xxxKxx
xxKxxfu

).;().(
).,(),(

=+
==

 
(6) 

 
     For the fuzzy block a linear characteristic may be 
used, around the point of the permanent regime xe=0, 
xde=0 and ud=0: 
 

)(0 deed xxKu +=  (7) 

 
     The value K0 is the value at the limit, in origin of 
the characteristic KBF(xt; xde): 
 

0),;(lim
00 ==

→ dedetFBxe
xxxKK  (8) 

 
     This value may be determined with a good 
approximation, at the limit, from the gain 
characteristics. 
     Some examples of the above characteristics for 
the fuzzy block with max-min inference, 
defuzzification with center of gravity were the input 
variables and the output variables have 3 membership 
values from Fig. 3 and the 3x3 primary rule base 
from Tab. 1. 
 

 
Fig. 3. Membership functions 

 

 
     The MISO characteristic is presented in Fig. 4. 
 

Tab. 1. The 3x3 (primary) rule base 

xe u 
NB ZE PB 

NB NB NB ZE 

ZE NB ZE PB 

 
xde 

PB ZE PB PB 
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Fig. 4. MISO transfer characteristic 

 
     The SISO characteristics are presented in Fig. 5. 
 

 
Fig. 5. SISO transfer characteristics 

 
     The translated characteristics are presented in Fig. 
6. 
 

 
Fig. 6 The translated characateristics 

 
     And the characteristics of the variable gain are 

presented in Fig. 7.  
 

 
Fig. 7 The gain characateristics 

 
     From the Fig. 7 we may notice the value of the 
gain in origin is K0 ≈ 1,2. 
    Taking account of the correction made upon the 
fuzzy block with the scaling coefficient cdu, the 
characteristic of the fuzzy bloc around the origin is 
given by the relation: 
 

)(0

~

deedud xxKcu +=  
(9) 

 
     We use: 
 

0

~
Kcc dudu =  

(10) 

 
 
3    PI Fuzzy Controller 
     with Integration at the Output 
3.1   Basic Structure 
The structure of a PI fuzzy controller with integration 
at its output (FC-PI-OI) is presented in Fig. 8. 
 

 
Fig. 8 The block diagram of the fuzzy PI controller 
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     The controller is working after the error e between 
the reference input variable and the feedback variable 
r. In this structure we may notice that two filter were 
used. One of them is placed at the input of the fuzzy 
block FB and the other at the output of the fuzzy 
block. Their discrete time mathematical models 
present the filters. In the approach of the PID fuzzy 
controllers the concepts of integration and derivation 
are used for describing that these filters have discrete 
mathematical models obtained from continuous time 
mathematical models for integrator and derivative 
filters. 
     The filter from the controller input, placed on the 
low channel, realizes the operation of digital 
derivation at its output we obtain the derivative de of 
the error e: 
 

)(1)()()( ze
hz

zzdete
dt
dtde −

=•−= o  
(11) 

 
were h is the sampling period. In the domain of 
discrete time the derivative block has the input-
output model: 
 

)(1)(1)( te
h

hte
h

htde −+=+  
(12) 

 
     That show us that the digital derivation is made 
based on the information of error at the time 
moments t=tk=k.h and tk+1=tk+h: 
 

))1((
)(

1 hkee
khee

k

k

+=
=

+

 
(13) 

 
     So, the digital equipment is making in fact the 
subs traction of the two values. 
     The error e and its derivative de are scaled with 
two scaling coefficients ce and cde, as it follows: 
 

)()(
~

tecte e=  
(14) 

 

)()(
~

tdectde de=  
(15) 

 
     The variables xe and xde from the inputs of the 
fuzzy block FB are obtained by a superior limitation 
to 1 and an inferior limitation to –1, of the scaled 
variables e and de. This limitation is introduced 
because in general case the numerical calculus of the 
inference is doing only on the scaled universe of 

discourse [-1, 1]. 
     The fuzzy block offers the defuzzified value of the 
output variable ud. This value is scaled with an output 
scaling coefficient cdu: 
 

ddud ucu =
~

 
(16) 

 
     In the case of the PI fuzzy controller with 

integration at the output the scaled variable du
~

 is the 
derivative of the output variable u of the controller. 
The output variable is obtaining at the output of the 
second filter, which has an integrator character and it 
is placed at the output of the controller: 
 

)(
1

)()()(
~

0

~
zu

z
zzudutu d

t

d
−

=•−ττ= ∫ o  
(17) 

 
     The input-output model in the discrete time of the 
output filter is: 
 

)1()()1(
~

++=+ tututu d  
(18) 

 
     The above relation show that the output variable is 
computed based on the information from the time 
moments t and t+h: 
 

))1((

)(
))1((

~

1

~

1

hkuu

khuu
hkuu

ddk

k

k

+=

=
+=

+

+

 

(19) 

 
     From the above relations we may notice that the 
“integration” is reduced in fact at a summation: 
 

1

~

1 ++ += dkkk uuu  
(20) 

 
     That could be easily implemented in digital 
equipments. 
     Due to this operation of summation, the output 
scaling coefficient cdu is called also the increment 
coefficient. 
     Observation: The controller presented above 
could be called “fuzzy controller with summation at 
the output” and not with “integration at the output”. 
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3.2   Equivalence 
For the fuzzy controller FC-PI-OI with the fuzzy 
block BF with a linear characteristic around the 
origin we may write the following input-output 
relation in the z-domain: 
 

)(1
1

))()((
1

)(

~

~

ze
hz

zccc
z

z

zdezec
z

zzu

deedu

du

⎥⎦
⎤

⎢⎣
⎡ −

+
−

=

=+
−

=
 

(21) 

 
     The transfer function of the PI fuzzy controller 
with integration at the output become: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

==
hz

zccc
z

z
ze
zuzH deeduRF

1
1)(

)()(
~

 
(22) 

 
     A pseudo-equivalence may be done for the fuzzy 
controller with a linear PI controller in the 
continuous time, used in common applications. The 
equivalence is a false one, because the fuzzy 
controller is not linear, so we use the word “pseudo”. 
     The PI controller has the general transfer function: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+==

RG
RGRG sT

K
se
susH 11
)(
)()(  

(23) 

 
     We use the quasi-continual form of the transfer 
function, obtained by the conversion from the 
discrete time in the continuous time with the 
transformation [1]: 
 

2/1
2/1

sh
shz

−
+

=  
(24) 

 
were h is the sampling period for the conversion of 
the transfer function: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+

+⎟
⎠
⎞

⎜
⎝
⎛ +=

===
−
+

=

shcc
c

chc
h

c

zH
se
susH

ede

e
ede

du

sh
shzRFRF

)2/(
1

2

)(
)(
)()(

~

2/1
2/1

 

(25) 

 
     We notice that the above transfer function 
matches the general transfer function of the linear PI 
controller (23). 
     From the identification of the coefficients of the 

two transfer functions the following relations result: 
 

⎟
⎠
⎞

⎜
⎝
⎛ += ede

du
RG chc

h
cK

2

~

 

(26) 

 

e

ede

RG c

chc
T 2

+
=  

(27) 

 
     From relation (26) we may notice that the value of 
the gain coefficient KRG of the PI fuzzy controller 
depends on the all three scaling coefficients, and 
what it is the most important, it depends on the gain 
in the origin of the fuzzy block. 
     And from the relation (27) we may notice that the 
time constant TRG depends only on the scaling 
coefficients ce and cde from the inputs of the fuzzy 
block. At the limit, for h→0, the gain coefficient of 
the fuzzy controller has the value  
 

hcKcK dudeRG /0=  (28) 

 
and the time constant of the fuzzy controller has the 
value 
 

edeRG ccT /=  (29) 
 
     Observations: A great value of ce assures a small 
value of time constant of the fuzzy controller based 
on the relation (27). The value ce=1/eM, were eM is 
the superior limit of the universe of discourse of the 
variable e, assures a dispersion of the values from the 
input e of the fuzzy block on the entire universe of 
discourse, without limitation for large variations of 
the error e. 
     A great value of cde makes a great value of the 
time constant of the controller. A small value of cde 
makes smalls values for the time constant and also 
for the gain. 
     But increasing cdu we may compensate the 
decreasing of the gain due to the decreasing of cde. 
     Chosen of other fuzzy block with other 
membership functions and inference method is 
equivalent to the chosen of other K0, greater or 
smaller. 
     From these relations we obtain the relation for 
designing the scaling coefficients based on the 
parameters of the linear PI controller: 
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RGdu

RG
e TKc

hK
c

0

=  
(30) 

 

)2/( hTcc RGede −=  (31) 

 
     We may notice the influence of the gain in origin 
on ce and also cde. 
     The linear PI controller may be designed with 
different methods taken from the linear control 
theory. 
     Because the gain in origin is the main issue in this 
equivalence we present the algorithm of computation 
of the gain in origin is: 
     1. Obtaining the MIMO transfer characteristic of 
the fuzzy block. 
     2. Obtaining the family of SISO transfer 
characteristics from the MIMO characteristic, using 
one of the input variables as a parameter. 
     3. Obtaining the family of translated characteristic 
from the SISO characteristic, using a compound 
variable as summation of the two input variables. 
     4. Obtaining the gain characteristic by dividing 
the translated characteristic to the compound 
variable. 
     5. Obtaining the gain in origin by computing the 
limit in origin of the families of gain characteristics. 
 
 
3.3.   Anti-wind-up circuit 
As in the case of the analogue linear PI controllers 
for the digital fuzzy controllers with integration an 
anti-wind-up circuit is necessary. For the PI 
controller with integration at the output an equivalent 
anti-wind-up circuit may be implemented as it is 
shown in Fig. 9. 
 

 
Fig. 9 The structure of the fuzzy PI controller with an 

anti-wind-up circuit 
 
     This structure is different from the structure from 
Fig. 8. Because the integration block a feedback is 
made with the anti-wind-up circuit AW. The circuit 
is necessary because the output of the controller is 
limited at maximum and minimum values +/-UM 
imposed by the maximum command u of the process. 

3.4   Correction of Fuzzy Controller 
To assure stability to control systems using fuzzy PI 
controllers a correction is needed to modify the 
input-output transfer characteristic and a quasi-fuzzy 
controller results, with the structure from Fig. . 
 

 
Fig. 10 Fuzzy controller with stability correction 

 
     With the correction from Fig. 10 the command is 
given by relation: 
 

)(
~~

deedeeKuu cFFc −−++=  
(32) 

 
and the characteristic of the nonlinear part of the 
control system is placed only in the I-st and III-rd 
quadrants [12]. 
     In the quasi-fuzzy structure in parallel with the 
fuzzy block BF a linear structure is introduced. The 
correction is nonlinear. 
 
 
4   PI Fuzzy Controller with 
    Integration at the Input 

The PI Fuzzy Controller with integration at the Input 
has the block diagram from the fig. 11. 
 

 
Fig. 11 The block diagram of the PI fuzzy controller 

with input integration 
 
     In the case of this structure the integration is made 
at the input of the fuzzy block on the error e. 
     In this case the transfer function of the fuzzy 
controller may be obtain as follow. The fuzzy block 
is described with a linear around the origin, for the 
permanent regime xe=0, xie=0 and ud=0: 
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)(0 ieed xxKu +=  (33) 

 
     The value of K0 is the value at the limit in origin 
of the gain characteristic KBF(xt; xie), were: 
 

ieet xxx +=  (34) 

 
     Taken account of the correction made upon the 
fuzzy block with the increment cu, the characteristic 
of the fuzzy is: 
 

)(0 ieeu xxKcu +=  (35) 

 
with 
 

)(0 ieeu xxKcu +=  (36) 

 
     For the fuzzy controller FC-PI-II with the 
linearized fuzzy block we may write the following 
input-output relation in the z-domain: 
 

)(
1

)]()([)(
~

~

ze
z

zccc

zxzxczu

ieedu

ieeu

⎟
⎠
⎞

⎜
⎝
⎛

−
+=

=+=
 

(37) 

 
     With these observations the transfer functions of 
the fuzzy controller become: 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
+==

1)(
)()(

~

z
zccc

ze
zuzH ieeduRF  

(38) 

 
     A pseudo-equivalence may be done with a PI 
linear controller described with the relation (23). For 
this reason the following quasi-continuous form is 
used: 
 

⎥
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⎤
⎢
⎣

⎡
+

+⎟
⎠
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⎜
⎝
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(39) 

 
     We may notice that the above transfer function 
matches the transfer function of the common PI 
linear controller. 
     From the identification of the coefficients of the 
two transfer functions from the relations (38) and 
(23) the following equalities result: 
 

⎟
⎠
⎞

⎜
⎝
⎛ += ede

du
RG chc

h
cK

2

~

 

(40) 

 

e

ede

RG c

chc
T 2

+
=  

(41) 

 
     From relation (40) we may notice that the value of 
the gain coefficient KRG of the PI controller depends 
on the all three scaling coefficients. 
     From the relation (41) the time constant depends 
only the scaling coefficients ce and cde from the 
inputs of the fuzzy block. At the limit, for h→0, the 
gain coefficient of the fuzzy controller has the value 

hcKcK dudeRG /0= , and the time constant has the 
value edeRG ccT /= . 
     Observation. A great value of ce assures a small 
value of time constant. The value ce=1/eM were eM is 
the maximum error on the universe of discourse, 
assure a repartition of the values from the input e on 
the all universe of discourse. A great value cde leads 
to a grea time constant. Increasing the value of cdu we 
may compensate the decreasing of the gain by the 
decreasing of cde. 
     From the above equalities we may obtain the 
relations for the scaling coefficients based on the 
parameters of the linear PI controller: 
 

RGdu

RG
e TKc

hK
c

0

=  
(42) 

 

)2/( hTcc RGede −=  (43) 

 
     The linear controller may be designed using 
different methods from the linear control theory. 
 
 
5   PD Fuzzy Controller 
The structure of the PD fuzzy controller is presented 
in fig. 12. 
     In this case the derivation is made at the input of 
the fuzzy block, on the error e. 
     The fuzzy block is described with a linear 
characteristic around the origin, for the permanent 
regime xe=0, xde=0 and ud=0: 
 

)(0 deed xxKu +=  (44) 
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Fig. 12 The block diagram of the PD fuzzy controller 
 
     The value of K0 is obtained from the characteristic 
KBF(xt; xde), were: 
 

ieet xxx +=  (45) 

 
     Taking account of the correction with the 
increment cu, the characteristic of the fuzzy block is: 
 

)(0 deeu xxKcu +=  (46) 

 
with 
 

0

~
Kcc uu =  

(47) 

 
     For the fuzzy controller FC-PD the following 
relation in the z-domain is obtained: 
 

)(1
)]()([)(

~

~

ze
hz

zccc

zxzxczu

deeu

deeu

⎥⎦
⎤

⎢⎣
⎡ −

+=

=+=
 

(48) 

 
     With this relation the transfer function results: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

+==
hz

zccc
ze
zuzH deeuRF

1
)(
)()(

~
 

(49) 

 
     The PD linear controller has the transfer function: 
 

( )sTKsH DRGRG += 1)(  (50) 

 
     Pseudo-equivalence may be done, using the quasi-
continual form: 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=+==

s
c
c

c
c

sccc
se
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e
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)(
)()(
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(51) 

 

     From the identification of the coefficients from 
the two relations (50) and (49) result the relations: 
 

e

u
RG c

cK
~

=  

(52) 

 

e

de
RG c

c
T =  

(53) 

 
     From relation (52) we may notice that the value of 
the gain KRG of the controller depends on two scaling 
coefficients. And the time constant TRG depends only 
on the scaling coefficients from the input of the fuzzy 
block ce and cde. 

     Observation. A great value of uc
~

 assures a great 
value of time constant, according to relation (52). A 
great value of cde leads to a great time constant. 
From the above relations we obtain the relations of 
the scaling coefficients, based on the parameters of 
the linear controller: 
 

RG

u
e K

cc
~

=  

(54) 

 

RG

uRG
de K

cT
c

~

=  

(55) 

 
     We may notice that the values of the input scaling 
coefficients do not depend on h. 
 
 
6.   PID Fuzzy Controller 
The structure of the PID fuzzy controller is presented 
in fig. 13. 
 

 
Fig. 13 The block diagram of PID fuzzy controller 
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     In this case the PID characters are made at the 
input of the fuzzy block. The integration and the 
derivation are made at the input of the fuzzy block on 
the error e. The fuzzy block has three input variables 
xe, xie and xde. 
     For the PID fuzzy controllers introduced in this 
paragraph pseudo-equivalence with a linear PID 
controller in the continuous time domain may be 
done. This pseudo-equivalence will be proved as 
follows. 
     In the case of the PID fuzzy controller we extend 
the method of linear characteristic around the origin, 
for the permanent regime, for xe=0, xie=0, xde=0 and 
ud=0 with the relation: 
 

)(0 deieed xxxKu ++=  (56) 

 
     The fuzzy block as three input variables and it 
may be describe with the function: 
 

0,)0,;( ≠== t
t

d
iedetFB x

x
uxxxK  

(57) 

 
where 
 

deieet xxxx ++=  (58) 

 
     The value of K0 is the value at the limit in origin 
of the above function: 
 

)0,;(lim
00 ==

→ iedetBFx
xxxKK

t

 (59) 

 
     Taking account of the correction with the 
increment cu, the characteristic of the fuzzy block is: 
 

)(0 deieeu xxxKcu ++=  (60) 

 
with 
 

0

~
Kcc uu =  

(61) 

 
     For the fuzzy controller the following relation 
results in the z-domain: 
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and the transfer function is: 
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     The pseudo-equivalence is made with the linear 
PID controller described by the transfer function: 
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     The quasi-continual form used is: 
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(65) 

 
     In the calculus we considered h2=0. 
     We may notice the match between the transfer 
functions. 
     After the identification of the coefficients from 
the relations (64) and (65) the designing relations 
result: 
 

)2/(
~
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+
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(68) 

     Observations. A great value of uc
~

 assures a great 
value of the controller gain. A great value of scaling 
coefficient cie leads to a small value of the time 
constant of the integrator. A great value of cde leads 
to a great derivation time constant. 
     From the above equalities we obtain the relations 
for the scaling coeffients based on the parameters of 
the linear controller: 
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Iu
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Tc

hK
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(70) 
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u
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K
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(71) 

 
 
7   Case Study 
To demonstrate the advantages of the above 
equivalence method a fuzzy control system for an 
electric drive is analyzed [11]. 
     The block diagram of the fuzzy control system of a 
d. c. drive is presented in Fig. 14. 
 

 
Fig. 14 The block diagram of the fuzzy control system 

 
     A fuzzy PI digital controller RF-Ω with the 
structure from Fig. 15 is used. 
 

 
Fig. 15 The structure of the quasi fuzzy controller 

 
     This fuzzy controller has a correction which assures 
stability and the transfer characteristic of the non-linear 
part from Fig. 16, place only in the I-st and III-rd 
quadrants [13]. 
     The controller has also an anti wind-up circuit. 
     The scaling coefficients were chosen after some 
iterative steps, using the quality criteria of the transient 
characteristics of the speed fuzzy control system at a 
step speed reference. The speed scaling coefficient ce 
had the same value ce=1/eM. The first value of the 
derivative scaling coefficient was cde=1/deM. 
     The coefficients ce and cde from the inputs of the 
fuzzy block are chosen after some iterative testing with 
the fuzzy control system, to assure good control quality 

criteria. The incremental coefficient cdi from the output 
of the fuzzy block was chosen based on a stability 
analysis using circle criterion [12]. 
 

 
Fig. 16 The corrected transfer characteristic 

 
     The adopted solution contains the values of the 
scaling coefficients from the sixth step. The transient 
characteristics obtained in the process of choosing the 
scaling coefficients are presented in the following 
figures. Fig. 17. 
 

 
Fig. 17 The transient characteristics for scaling 

coefficients determination 
 
     We have started the selection from the initial values 
of the linear PI speed controller parameters obtain for 
the linear control system, tuned with the symmetrical 
criterion in Kessler’s variant. The value of cde was 
decreased to the final value from the sixth step. 
Decreasing more this scaling coefficient the fuzzy 
control system becomes unstable. 
     Using the above equivalence relation a transfer 
function for the equivalent controller resulted: 
HRF0(s)=11,46(1+1/0,12s). 
     The Simulink block diagram of the speed fuzzy 
control system of a d.c. motor is presented in Fig. 18.  
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Fig. 18 Simulink block diagram of the speed fuzzy 

control system 
 
     The Simulink block diagram of the fuzzy controller 
is presented in Fig. 19. 
 

 
Fig.19 Simulink block diagram of the fuzzy controller 

 
     The transient characteristics for the main variables 
of the fuzzy control systems are preened as follows. 
 

 
Fig. 20 Rotational speed reference Ω* and the load 

torque Ms 
 
     Simulations are made for both control systems, 
conventional and fuzzy, with tuned parameters: J and kf 
and detuned parameters: Jd=2J and kf

d=2kf. In the 
second case an error at the parameter identification is 
assumed. 

 

Fig. 21 The input and output variables of the fuzzy 

block 
~~

,dee , 
 

 
Fig. 22 The characteristic of the non-linear part, 

corrected 
 
 

Fig. 23 The reference current i*, the current error ei the 
armature voltage ua 
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     The transient characteristics for the current and 
speed, for tuned and detuned parameters are presented 
in Fig. 24. 
 

 
Fig. 24 Armature current ia and the rotational speed Ω 
 
     With continuous line are represented the 
characteristics for tuned parameters and with dash-dot 
line are represented the characteristics for detuned 
parameters. 
     The regime consists in starting the process unloaded 
at t=0 with a constant the speed reference Ω*=314 
rad/s. At the time 2,5 s a constant load torque Ms of 
MN=3 Nm, in the range of the rated process torque, is 
introduced. At the time 4 s the speed is reversed, at 
Ω*=-314 rad/s, maintaining the constant load torque: 
Ms=MNsign(Ω). 
     The comparative characteristics for fuzzy and linear 
control are presented in Fig. 25. 
 

 
Fig. 25 Transient characteristics for current and speed 
 
     Based on a comparative analysis of the speed 
performance criteria the following may be presented. 

     The fuzzy controllers assure better control quality 
criteria: -overshoot for reference is zeros at start and at 
the reversing; the settling time for speed reference at 
start and reversing of the fuzzy control system is 
smaller; -the deviation of speed for perturbation of the 
fuzzy control system is smaller then in the 
conventional case; the performance criteria of the fuzzy 
control in the case of detuned parameters are sensitive 
better then the performance criteria for conventional 
control and the fuzzy control system is more robust at 
the identification errors then the convention control 
system. 
 
 
8   Conclusion 
In this paper some common controllers based on 
fuzzy blocks with the general structure and PID 
dynamics was analyzed. Pseudo-equivalences of 
them with linear PID controllers were made. The 
transfer characteristics of the fuzzy blocks were used 
in the design of the fuzzy controllers. The design of 
the fuzzy controller is based on: the input-output 
transfer characteristics of the fuzzy block, obtained 
by digital computer calculation and the linear 
characteristic of the fuzzy block around the origin, 
for the permanent regime. The gain in origin is 
obtained as a limit in origin of the function obtained 
from the translated SISO transfer characteristics. 
    Design relations were developed for all the fuzzy 
controllers: PI with output and input integration, PD 
and PID fuzzy controllers. 
     Analysis of the design relation was made. 
     Some observations related to the influence of the 
scaling coefficients were presented. 
     The results presented in this paper are important 
in the design of the control systems based on PID 
fuzzy controllers. 
     A pseudo-equivalence of them with linear PID 
controllers was made.  
          The method is developed for the most general 
structure of the fuzzy systems. This method for 
equivalence is valid for all kind of fuzzyfication and 
defuzzification methods, all types of membership 
functions, all inference methods, because it is based 
on analytic transfer characteristic, which may be 
obtained using computer calculations. 
     If there is a designed linear PID controller for a 
process control we may use the equivalent fuzzy PID 
controller in its place to control the process with 
better control quality criteria. 
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     Based on the above notice the method may be 
used also for tuning the fuzzy PID controllers in a 
control system. 
     The paper uses the term of “pseudo-equivalence”, 
because there is no direct equivalence between the 
nonlinear digital fuzzy PID controllers, with linear 
gain only in the origin, and a linear analogue PI 
controller. 
     Using a correction of the fuzzy block a quasi-
fuzzy controller results, which assures stability of 
fuzzy control system [12]. 
     Anti-wind-up circuit may be used for the 
integrator component I the same way as at the linear 
PID controllers. 
     The theory presented in this paper is used and 
proved by the author in practical control applications 
[11] and stability analysis of these fuzzy control 
systems [12]. 
    Using this equivalence method we may obtain 
fuzzy controllers which used in control systems 
assure better quality criteria and a higher robustness 
of the control systems [11]. 
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