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1 Introduction
We denote by Mp×n(C) the space of com-

plex matrices having p rows and n columns,
and in the case which p = n we write Mn(C).

We consider the set M of pairs of matrices
(E,A) representing families of singular linear
time invariant systems in the form Eẋ = Ax
with E,A ∈ Mp×n(C).

Singular linear systems are found in engi-
neering systems such as electrical circuit net-
work, power systems for example. They can
be treated under different point of view.

A manner to understand the properties of
the system is treating it by purely algebraic
techniques. The main aspect of this approach
is defining an equivalence relation preserving
these properties.

Having defined an equivalence relation,
the standard procedure then is to look for a
canonical form, that is to say to look for a
pair of matrices which is equivalent to a given

pair and which has a simple form from which
we can directly read off the properties of the
corresponding singular system. In order to
obtain the canonical reduced form we try to
find a complete system of invariants for pairs
of matrices. The proposed approach can be
applied to obtain a canonical reduced form
of systems where feedbacks and output injec-
tions are considered.

In this paper we deal with equivalence re-
lation between systems accepting one or both
of the following transformations: basis change
in the state space and premultiplication by
an invertible manifold. A canonical reduced
form can be derived associating a matrix pen-
cil to the system characterized by two sets of
minimal indices (row and column minimal in-
dices), and sets of finite and infinite elemen-
tary divisors (the classical invariants). In this
paper we present an alternative complete sys-
tem of structural invariants based in compu-
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tation of the ranks of certain matrices, which
permits an easy characterization of the equiv-
alence classes. An alternative system of struc-
tural invariants also based in computation of
the ranks of certain matrices for standard sys-
tems was obtained by Garćıa-Planas and Ma-
gret in [10], and for generalized regularizable
systems a collection of invariants was also ob-
tained by Garćıa-Planas in [9]. The Kronecker
canonical form provides a variety of applica-
tions in control systems theory as we can see
in [4], [13] among others.

The paper is organized as follows
In section §2, a brief resume of notations

is presented.
In section §3, an equivalence relation is de-

fined.
In section §4, a matrix pencil is associated

to the pair of matrices. After to observe that
the strict equivalence of the pencils, is related
to the equivalence relation of the pairs, it is
possible to make use of the Kronecker reduced
form for pencils in order to obtain a canonical
reduced form for pairs of matrices.

In section §5, A complete system of invari-
ants for pairs of matrices under equivalence
relation considered, is obtained.

In section §6, as application we obtain a
reduced form of a pencil associated to a singu-
lar system under proportional and derivative
feedback as well proportional and derivative
output injection.

And finally in §7 conclusions are pre-
sented.

2 Notations
In the sequel we will use the following no-

tations.
- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its re-
duced form N = diag(N1, . . . , N`), Ni =(

0 Ini−1

0 0

)
∈ Mni(C),

- J denotes the Jordan matrix J =
diag(J1, . . . , Jt), Ji = diag(Ji1 , . . . , Jis), Jij =
λiI + N ,
- L = diag = (L1, . . . , Lq), Lj =

(
Inj 0

) ∈

Mnj×(nj+1)(C),
- R = diag(R1, . . . , Rp), Rnj =

(
0 Inj

) ∈
Mnj×(nj+1)(C).

3 Equivalence relation
The description equation for mathematical

model may be obtained by selecting appropri-
ate state variables. The selection of these vari-
ables is not unique having no uniqueness of the
model. So we are interested in to study the re-
lationships between the state variable models,
defining an appropriate equivalence relation.

The standard transformations in state
space: x(t) = Px1(t), and premultiplication
by an invertible matrix: QEẋ(t) = QAx(t),
realized over generalized systems relate them
in the following manner, two systems are re-
lated when one can be obtained from the other
by means of one, or both, of the transfor-
mations considered. In fact, this transforma-
tions define an equivalence relation in the cor-
responding space of pairs of matrices in the
following manner.

Definition 1 two pairs of matrices
(Ei, Ai) ∈ M, i = 1, 2, are equivalent if and
only if there exist matrices P ∈ Gl(n;C) and
Q ∈ Gl(p;C) such that

(E2, A2) = (QE1P, QA1P ),

That we can write in a matrix form in the fol-
lowing manner

(
E2 0
0 A2

)
=

(
Q 0
0 Q

)(
E1 0
0 A1

)(
P 0
0 P

)

It is straightforward the following propo-
sition.

Proposition 1 The equivalence relation
defined over the space of pairs of matrices, is
an equivalence relation.

Clearly, the relation defined possesses re-
flexivity, transitivity, and symmetry.

Generally, the matrices P and Q which
transfer a pair of matrices (E1, A1) to the
equivalent pair (E2, A2) are not unique.
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Example 1 The pairs

(E1, A1) =
(

3 1
6 2

)
,

(
1 0
0 0

)
,

and

(E2, A2) =
(

1 0
0 0

)
,

(
0 0
0 1

)
,

are equivalent because of, for Q =
(

0 1/2
1 −1/2

)

and P =
(

0 1
1 −3

)
we have that (E2, A2) =

(QE1P, QA1P ).

4 Associated pencil
Given a pair of matrices (E, A) ∈ M we

can associate in a natural way the following
matrix pencil H(λ) = λE + A. It is easy to
proof the following proposition

Proposition 2 Two pairs of matrices in
M are equivalent if and only if the associated
pencils are strictly equivalent.

Proof. Straightforward.
¤

As a consequence we can apply Kro-
necker’s theory of pencils of matrices as pre-
sented in [7].

Corollary 1 Let (E, A) ∈ M a pair of
matrices. Then, the associated pencil is equiv-
alent to λF + G with

F =

(
L

LT

I1
N

)
, and G =

(
R

RT

J
I2

)
.

Remember the definition of eigenvalue of
a pair of matrices, necessary for construction
of matrix J in the canonical reduced form.

Definition 2 Let (E, A) ∈M be a pair of
matrices and H(λ) its associated pencil. The
value λ0 ∈ C is an eigenvalue of H(λ) if and
only if

rankH(λ0) < rankH(λ).

We denote by σ(E, A), the spectrum of the
pencil, that is to say the set of eigenvalues of
the pencil:

σ(E, A) =
{λi ∈ C | rankH(λi) < rankH(λ)}.

It is easy to observe that σ(E, A) is an
empty set or it is a finite set.

Example 2 a) Let

H(λ) = λE + A = λ

(
3 1
6 2

)
+

(
1 0
0 0

)
,

for all λ0 6= 0 we have rankH(λ0) =
rankH(λ) = 3 and for λ0 = 0 rankH(0) =
2 < rankH(λ). Then

σ(E, A) = {0}.
b) Let

H(λ) = λE + A = λ

(
0 1
0 0

)
+

(
1 0
0 1

)
,

for all λ0 we have rankH(λ0) = rankH(λ) =
3. Then

σ(E, A) = ∅.
Proposition 3 The eigenvalues are in-

variant under equivalence relation considered.

Proof.

rankH2(λi) = rank (λiE2 + A2 =
= rankQ(λiE1 + A1)P =
= rankQH1(λi)P = rankH1(λi).

We observe that the associate pencil to the
pair (E2, A2) in example 1, is in its Kronecker
reduced form.

We can obtain the Kronecker canonical re-
duced form computing a collection of discrete
and continuous invariants.

Theorem 1 Let
(
λE + A

)
be a matrix

pencil under strict equivalence. Each equiva-
lence class is characterized by the following set
of structural invariants.

i) ω1 ≥ · · · ≥ ωs ≥ 1: Segre characteristic
of infinite zeroes.

ii) k1(λ) ≥ · · · ≥ kj(λ)(λ) ≥ 1: Segre char-
acteristic of eigenvalue λ.
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iii) ε1 ≥ · · · ≥ εrε > εrε+1 = · · · = εr = 0:
column minimal indices.

iv) (η1 ≥ · · · ≥ ηlη > ηlη+1 = · · · = ηl = 0:
row minimal indices.

Corollary 2 Let λE + A ∈ Mp×n be a
matrix pencil. Then

n=
∑s

i=1 ωi +
∑u

i=1

∑j(λi)
j=1 kj(λi) +

∑lη
i=1 ηi+∑rε

i=1 εi + rε + r0.

p=
∑s

i=1 ωi +
∑u

i=1

∑j(λi)
j=1 kj(λi) +

∑rε
i=1 εi+∑lη

i=1 ηi + lη + l0.

where r0 = r − rε and l0 = l − lη denote the
number of zero columns and zero rows respec-
tively.

Definition 3 Given a pair of matrices
(E,A), we call rank of the pair and we will
denote by rn to the rank of the associated pen-
cil H(λ):

rn = rank (E, A) = rank (λE + A).

3 Sequences of matrices associ-
ated to (E, A)

Let (E,A) ∈ M be a pair of matrices, for
all ` = 1, 2, . . . we define the following matri-
ces.

H1 = E,
H2 =

(
E
A E

)
,

...

H` =




E
A E

A E
. . . . . .

A E


 ,

C1 =
(

E
A

)
,

...

C` =




E
A E

A E
. . . . . .

E
A


 ,

O1 = ( E A ) ,

...

O` =

( E A
E A

. . . . . .
E A

)
,

J1 = λE + A,
J2(λ) =

(
λE+A

E λE+A

)
,

...

J`(λ) =




λE+A
E λE+A

E λE+A

. . . . . .
E λE+A


 , for

all λ ∈ C.

Remark 2 We are interested in J`(λ) for
λ ∈ σ(E, A). For other values of λ the matri-
ces J`(λ) are full rank for all `.

Proposition 4 The ranks of the matrices
H`, J`(λ), C`, O`, for all ` = 1, 2, . . . are in-
variant under equivalence relation considered.

Proof.
Let (E1, A1) and (E2, A2) two equivalent

pairs of matrices, then there exist invert-
ible matrices Q and P such that (E2, A2) =
(QE1P, QA1P ). So,


E2
A2 E2

A2 E2

. . . . . .
A2 E2


 =

(
Q

. . .
Q

)


E1
A1 E1

A1 E1

. . . . . .
A1 E1




(
P

. . .
P

)
.

Consequently, matrices H`(E1, A1) and
H`(E2, A2) have the same rank.

Analogously, we can prove the invariance
of ranks of the other matrices. ¤

We denote by

- rH` = rankH`,

- r`(λ) = rankJ`(λ),

- rC` = rank C`,

- rO` = rankO`.

Example 3

Let (E, A) with E =
(

1 0
0 0

)
and A =

(
0 1
0 0

)
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1. r2 = 1

2. rH` = `

3. r`(λ) = `

4. rC` = ` + 1

5. rO` = `

Theorem 2 Let (E, A) ∈ M be a pair of
matrices of rank rn. Then, for all ` = 1, 2, . . .

rH` = rn`−∑s
i=1 min{`, ωi}

r`(λ) = rn`−∑j(λ)
i=1 min{`, ki(λ)}

rC` = rn` +
∑rε

i=1 min{`, εi}

rO` = rn` +
∑lη

i=1 min{`, ηi}

Proof. Because of proposition 3, it suf-
fices to compute these collection of numbers,
for an equivalent pair such that the associated
pencil is in its Kronecker reduced form. ¤

(A similar result is obtained in [12]).

It is easy to deduce the following results.
Corollary 3 For all pair (E, A) ∈M we

have

s = rn − rH1 ,
j(λ) = rn − r1(λ),

rε = rC1 − rn,
lη = rO1 − rn, and
rn = rHn+1 − rHn = rCn+1 − rCn =

= rOn+1 − rOn = rn+1(λ)− rn(λ).

Proof. For ` = 1, we have

rH1 = rn · 1−
∑s

i=1 min (1, ω1)
= rn − (1 + s. . . + 1) = rn − s.

Analogously, we can deduce the other ex-
pressions.

¤
Example 4 Taking the same pair in the

example 3, we have

1. s = 0

2. j(λ) = 0

3. rε = 1

4. lη = 0

Corollary 4 For all pair (E, A) ∈M we
have

rn =
∑s

i=1 ωi +
∑u

i=1

∑j(λi)
j=1 kj(λi)+

+
∑rε

i=1 εi +
∑lη

i=1 ηi.

Theorem 3 Let (E,A) ∈ M a pair of
matrices. Then

1. The numbers

s1 = rH1 − 2rH0

s`+1 = rH`+1 − 2rH` + rH`−1, ` = 1, 2, . . .

determine the quantity of blocks of size
` corresponding to the infinite zeroes in
the Kronecker reduced form of the asso-
ciated pencil.

2. The numbers

j1(λ) = r1(λ)− 2r0(λ)

j`+1(λ) = r`+1(λ)− 2r`(λ) + r`−1(λ),
` = 1, 2, . . .

determine the quantity of Jordan blocks
of size ` associated to the eigenvalue λ
of the pencil H(λ).

Proof. It suffices to compute the ranks of
the matrices Hi of a Kronecker reduced form
pencil. ¤

Remark 3 let (E, A) ∈ M a pair of ma-
trices and H(λ) its associated pencil. If λ is
not in the spectrum of H(λ), we have that
j`(λ) = 0, ` = 1, 2, . . . .

Theorem 4 ([17]) Let (E, A) ∈M be a
pair of matrices. Then,
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1. the numbers

r1 = −rC2 + 2rC1

r` = −rC`+1 + 2rC` − rC`−1, ` = 2, 3, . . .

determine the quantity of column mini-
mal indices of size ` appearing in λE +
A,

2. the numbers

l1 = −rO2 + 2rO1

l` = −rO`+1 + 2rO` − rO`−1, ` = 2, 3, . . .

determine the quantity of row minimal
indices of size ` appearing in λE + A.

5 An alternative complete sys-
tems of invariants

Now we construct an alternative method
to obtain the canonical reduced form of a pen-
cil λE + A. These method is deduced from
the following numbers rH` , r`(λ), rC` y rO` ,
` = 1, 2, . . . .

Definition 4 For all pair of matrices
(E,A), we will call infinite zeros numbers and
we will write rCOi , to

rCO1 = rn − rH1
rCO2 = rH1 − rH2 + rn

...
rCO` = rH`−1 − rH` + rn, ` = 2, 3, . . .

Proposition 5 Let (E, A) ∈ M be a
pair and H(λ) its associated pencil. Each
rCO` , ` = 1, 2, . . . determine the quantity of
blocks corresponding to the infinite zeroes of
size greater than ` − 1, that they appear in
H(λ). The rCO-numbers verify:

rCO1 ≥ rCO2 ≥ · · · ≥ rCO`1 ≥ rCO`1+1 = · · · = 0.

Proof.

s = rn − rH1
s− s1 = rH1 − rH2 + rn

...
s−∑`−1

i=1 si = rH`−1 − rH` + rn,
` = 2, 3, . . .

¤
Corollary 5 The infinite zeroes indices

(ω1, ω2, . . . , ωs) are the conjugate partition of
the set of non zero numbers rCO` .

Definition 5 For all pair of matrices
(E, A), we will call Jordan numbers corre-
sponding to the eigenvalue λ and we will write
rCOi (λ), to

rCO1 (λ) = rn − r1(λ)

rCO2 (λ) = r1(λ)− r2(λ) + rn
...

rCO` (λ) = r`−1(λ)− r`(λ) + rn,
` = 2, 3, . . .

Proposition 6 Let (E, A) ∈ M be a
pair and H(λ) its associated pencil. Each
rCO` (λ), ` = 1, 2, . . . determine the quantity of
Jordan blocks of size greater than `−1 associ-
ated to the eigenvalue λ appearing in λE + A.
The rCO-numbers verify:

rCO1 (λ) ≥ · · · ≥ rCO`(λ)(λ) ≥
≥ rCO`(λ)+1(λ) = · · · = 0.

Proof.

j(λ)= rn − r1(λ)

j(λ)− j1(λ)= r1(λ)− r2(λ) + rn
...

j(λ)−∑`−1
i=1 ji(λ) = r`−1(λ)− r`(λ) + rn,

` = 2, 3, . . . .

¤
Corollary 6 The Segre characteris-

tic (k1(λ), k2(λ), . . . , kj(λ)(λ)) is the conjugate
partition of non zero rCO` (λ) numbers.
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Definition 6 For all pair of matrices
(E,A), we will call column minimal numbers
and we will write rCOi to

rCO0 = n− rn

rCO1 = rC1 − rn

rCO2 = rC2 − rC1 − rn
...

rCO` = rC` − rC`−1 − rn, ` = 2, 3, . . .

Proposition 7 Let (E, A) ∈ M be a
pair of matrices and H(λ) its associated pen-
cil each rCOi number determine the quantity of
column minimal indices of size greater than
` − 1 that appear in λE + A. These rCOi -
numbers verify

rCO0 ≥ rCO1 ≥ · · · ≥ rCO`2−1 ≥ rCO`2 = · · · = 0

Proof.

r = rε + r0 = n− rn

rε = rC1 − rn

rε − r1 = rC2 − rC1 − rn
...

rε −
∑`−1

i=1 ri = rC` − rC`−1 − rn, ` = 2, 3, . . .

¤
Corollary 7 let (kε

1, . . . , k
ε
rε

, kε
rε+1, . . . , k

ε
r)

be the conjugate partition of the non zero rCOi -
numbers. Then the non-negative numbers

(ε1, . . . , εrε , 0, . . . , 0) =
(kε

1 − 1, . . . , kε
rε
− 1, kε

rε+1 − 1, . . . , kε
r − 1)

coincide with the column minimal indices that
appear in λE + A.

As a consequence we have.
Corollary 8 λE+A has column full rank

if and only if rn = n.

Corollary 9 Let λE +A be a pencil hav-
ing column full rank. Then, for each `, matri-
ces C`(E, A) have column full rank.

Proof.

rCO1 + · · ·+ rCO` = rC` − `rn = rC` − `n = 0.

¤
Definition 7 For all pair of matrices

(E, A), we will call row minimal numbers and
we will write rCOi to

rCO0 = p− rn

rCO1 = rO1 − rn

rCO2 = rO2 − rO1 − rn
...

rCO` = rO` − rO`−1 − rn, ` = 2, 3, . . .

Proposition 8 Let (E, A) ∈ M be a
pair of matrices and H(λ) its associated pen-
cil each rCOi number determine the quantity of
row minimal indices of size greater than `− 1
that appear in λE + A. These rCOi -numbers
verify

rCO0 ≥ · · · ≥ rCO`3−1 ≥ rCO`3 = · · · = 0

Proof.

l = lη + l0 = p− rn

lη = rO1 − rn

lη − l1 = rO2 − rO1 − rn
...

lη −
∑`−1

i=1 = rO` − rO`−1 − rn, ` = 2, 3, . . .

¤
Corollary 10 Let (kη

1 , . . . , kη
lη

, kη
lη+1, . . . ,

kη
l ) be the conjugate partition of the non-zero

rCOi numbers. Then

(η1, . . . , ηlη , 0, . . . , 0) =
(kη

1 − 1, . . . , kη
lη
− 1, kη

lη+1 − 1, . . . , kη
l − 1)

coincide with the row minimal indices that its
appear in λE + A.

Corollary 11 λE + A has full row rank
if and only if rn = p.

Corollary 12 Let λE + A a pencil hav-
ing full row rank. Then for all `, the matrices
O`(E, A) have full row rank.
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Proof.

rCO1 + · · ·+ rCO` = rO` − `rn = rO` − `p = 0

¤
As a consequence we have the following re-

sults.
Theorem 7 The pencil H(λ) = λE + A

has full column and row rank if and only if
p = n and rn = n.

Theorem 8 For all pair of matrices
(E,A) ∈M, the collection of numbers

i) rCO1 ≥ · · · ≥ rCO`1
≥ rCO`1+1 = · · · = 0,

ii) rCO0 ≥ · · · ≥ rCO`2−1 ≥ rCO`2
= · · · = 0,

iii) rCO0 ≥ · · · ≥ rCO`3−1 ≥ rCO`3
= · · · = 0,

iv) rCO1 (λ) ≥ · · · ≥ rCO`(λ)(λ) ≥ rCO`(λ)+1(λ) =
· · · = 0, λ ∈ C

constitute a complete system of invariants.
Proof. The non-zero r-numbers permit us

to deduce the collection of numbers

i) ω1 ≥ · · · ≥ ωs ≥ 1

ii) k1(λ) ≥ · · · ≥ kj(λ)(λ) ≥ 1, λ ∈
σ(E,A)

iii) ε1 ≥ · · · ≥ εrε > εrε+1 = · · · = εr = 0

iv) η1 ≥ . . . ηlη > ηlη+1 = · · · = ηl = 0

that correspond with the structural invariants
of the associated pencil to the pair of matrices.

¤
6 Application to the systems
under proportional and deriva-
tive feedback as well propor-
tional and derivative output in-
jection

We consider the set of quadruples of ma-
trices (E, A,B, C) representing families of sin-
gular linear time invariant systems in the form

Eẋ(t) = Ax + Bu
y = Cx

}
(1)

with E, A ∈ Mp×n(C), B ∈ Mp×m(C) and
C ∈ Mq×n(C).

These equations arise in theoretical areas
as differential equations on manifolds as well
as in applied areas as systems theory and con-
trol, [14], [16].

Many interesting and useful equivalence
relations between singular systems have been
defined. We deal with the equivalence relation
accepting one or more, of the following trans-
formations: basis change in the state space,
input space, output space, operations of state
and derivative feedback, state and derivative
output injection and to pre-multiply the first
equation in (1) by an invertible matrix. That
is to say.

Definition 8 Two quadruples
(Ei, Ai, Bi, Ci), i = 1, 2, are equivalent if and
only if there exist matrices P ∈ Gl(n;C),Q ∈
Gl(p;C), R ∈ Gl(m;C), S ∈ Gl(q;C),
FB

E , FB
A ∈ Mm×n(C), FC

E , FC
A ∈ Mp×q(C)

such that

E2 = QE1P + QB1F
B
E + FEC1P,

A2 = QA1P + QB1F
B
A + FAC1P,

B2 = QB1R,
C2 = SC1P,

To consider proportional and derivative
feedback as well proportional and derivative
output injection is implicit in definition of con-
trollability and observability character of the
system.

Definition 9 A system (E, A,B,C) is
controllable if and only if

{
rank

(
E B

)
= n,

rank
(
sE + A B

)
= n, ∀s ∈ C,

Proposition 10 Let (E, A, B, C) be a
controllable system. Then, there exists:

a) a derivative feedback FB
E such that

rank
(
E + BFB

E

)
= n,

b) a proportional feedback FB
A such that

rank
(
A + BFB

A

)
= n.

Definition 10 A system (E, A, B, C) is
observable if and only if





rank
(

E
C

)
= n,

rank
(

sE + A
C

)
= n, ∀s ∈ C,
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Proposition 11 Let (E,A, B, C) be a
observable system. Then, there exists:

a) a derivative output injection FC
E such

that rank
(
E + FC

E C
)

= n,

b) a proportional output injection FC
A such

that rank
(
A + FC

A C
)

= n.

Given a quadruple of matrices
(E,A, B, C), we can associate the following
matrix pencil.

P (λ) =




λE + A λB B
λC 0 0
C 0 0


 ,

and we have the following proposition.

Proposition 9 Two quadruples are
equivalent under equivalent relation considered
if and only if the associates matrix pencils are
strictly equivalent.

So, we can compute the complete systems
of invariants obtained in §5, to obtain quali-
tative properties of the system.

Corollary 13 Let P (λ) be a matrix pen-
cil associated to the quadruple (E,A, B, C).
Then P (λ) its is equivalent to the pencil given
in Corollary 1, λF + G with

F =

(
L

LT

I1
N

)
, G =

(
R

RT

J
I2

)

Remark 4 Given a quadruple of ma-
trices (E,A, B, C), will call eigenvalues of the
quadruple to the eigenvalues of the associate
pencil P (λ), and we denote by σ(E, A,B,C)
the spectrum of the pencil.

Obviously, the collection of eigenvalues of
a quadruple are invariant under equivalence
relation considered.

7 Conclusion
We consider pairs of matrices (E,A), rep-

resenting singular linear time invariant sys-
tems in the form Eẋ(t) = Ax(t) with E, A ∈

Mp×n(C) under equivalence that accept ba-
sis change in the state space and premultipli-
cation by an invertible matrix. After to ob-
serve that this equivalence corresponds with
strict equivalence defined over associated pen-
cil λE+A and the Kronecker reduced form can
be used, in this paper we obtain an alternative
collection of invariants that they permit us to
deduce the canonical reduced form.
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¯ I. Garćıa-Planas, M.D. Magret, S.

Tarragona, Relationship between versal
deformations under different equivalence
relations in the space of singular systems.
Wseas trans. Circuits and Systems. vol 3
(10) pp. 2217-2222, (2004).

[12] S. Iwata, R. Shimizu, Combinatorial
analysis of generic matrix pencils. SIAM

J.Matrix Anal. Appl. 2
¯
9, pp. 245-259,

(2007).

[13] A.S. Morse, Structural invariants of
linear multivariable systems, SIAM J.
Contr. 11, pp. 446-465, (1973).

[14] H.H. Rosenbrock, Structural Properties
of Linear Dynamical Systems, Int. J.
Control, 20, pp. 191-202, (1974).

[15] Tannenbaum A., Invariance and Sys-
tem Theory: Algabraic and geometric
Aspects, Lecture Notes in Math. 845,
Springer-Verlag, (1981).

[16] J. S. Thorp, The Singular Pencil of Lin-
ear Dynamical System, System. Int. J.
Control, 18 (3), pp. 557-596, (1973).

[17] Williamson J., On the equivalence of
two singular matrix pencils, Proc. Edin.
Math. Soc., Series 2, 4, (1934/36).

WSEAS TRANSACTIONS on SYSTEMS and CONTROL A. Diaz, M. I. Garcia-Planas

ISSN: 1991-8763 496 Issue 10, Volume 4, October 2009




