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Abstract: - Control valve stiction is the most commonly found valve problem in the process industry. 
Quantification of the actual amount of stiction present in a loop is an important step that may help in scheduling 
the optimum maintenance work for the valves. In this paper, a Neural-network based stiction quantification 
algorithm is developed. It is shown that the performance of the proposed quantification algorithm is comparable 
to other method whereby accurate estimation of the stiction amount can be achieved even in the presence of 
random noise. Its robustness towards external oscillating disturbances is also investigated. 
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1 Introduction 
Control valves constitute an important element in 
chemical process control systems.  Through a 
control valve, control actions are implemented on 
the process. Due to their continuous motions, 
control valves tend to undergo wear and aging. In 
general, they contain static and dynamic 
nonlinearities including saturation, backlash, 
stiction, deadband and hysteresis [1-2]. 

Among the many types of nonlinearities in 
control valves, stiction is the most commonly 
encountered in the process industry [3]. In general, 
stiction is a phenomena that describes the valve’s 
stem (or shaft) sticking when small changes are 
attempted. Stiction causes fluctuation of process 
variables, which lowers productivity. The variability 
of process variables makes it difficult to keep 
operating conditions close to their constraints, and 
hence causes excessive or unnecessary energy 
consumption.  It is therefore desirable to understand 
and quantify the dynamics behavior of stiction so 
that necessary actions can be implemented to 
eliminate or hinder its deleterious effect before it 
propagates.  

Detection and modeling of stiction nonlinearity 
in a control loop has been extensively reported in 
the literature, however quantification of the actual 
amount of stiction is still an open research area [4]. 
Srinivasan et al. [5] uses a Hammerstein model 
identification approach along with one parameter 
stiction model (stickband plus deadband estimation) 
to detect and quantify valve stiction. However this 
method does not capture the true stiction behavior 
[4]. On the other hand, Choudhury et al.[6] 

proposed three methods for quantifying stiction 
utilizing valve positioner data (mv), controlled 
output (pv) and valve input signal (op). Problems 
such as the unavailability of mv and process loop 
dynamics limit the performances of the proposed 
methods. An extended version of [6] that includes 
the loop dynamics is proposed in [4] and [7] using 
two parameter stiction estimation. Both these 
methods used Hammerstein model to 
simultaneously predict process model and quantify 
stiction in control valve.  

In this paper, a similar algorithm used in [4] is 
adopted, however we investigated the possibility of 
incorporating Neural-network to simultaneously 
identify/predict the unknown process model and 
quantify the stiction amount. In this NN-based 
quantification algorithm, the actual valve positioner 
data (mv) is not required and no a-priori knowledge 
of the process model is necessary. Only pseudo-mv, 
generated from the two parameter stiction model of 
[3], is used as part of the quantification step. The 
outline of this paper is as follows: Section II 
describes stiction in general. In Section III, six 
Neural-Network algorithms considered in this paper 
are presented. Section IV illustrates the proposed 
quantification algorithm and its numerical results. 
Finally, the conclusions are drawn. 
 
 
2 Background 
 
2.1 Control Valve Stiction 
Fig. 1 shows the general structure of a pneumatic 
control valve. Stiction happens when the smooth 
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movement of the valve stem is hindered by 
excessive static friction at the packing area. The 
sudden slip of the stem after the controller output 
sufficiently overcomes the static friction caused 
undesirable effect to the control loop. 

 

Fig. 1 Structure of pneumatic control valve adapted 
from [8]. 

 

Fig. 2 illustrates the input-output behavior for 
control valve with stiction. The dashed line 
represents the ideal control valve without any 
friction.  

 

Fig. 2 Typical input-output behavior of a sticky 
valve adapted from [8]. 

 

Stiction consists primarily of deadband, 
stickband, slip jump and the moving phase [9].  For 
control valve under stiction resting at point (a), the 
valve position remains unchanged even when the 
controller output increases due to the deadband 
caused by the static friction. Only when the 
controller output exceeds the maximum static 
frictional force, fS, the valve starts to response 
(point(b)).  A slip jump of magnitude J is incurred 
when the valve starts to move at point (b) when the 
frictional force fS converts to kinetic force fD. From 
(c) to (d), the valve position varies linearly. The 
same scenario happens when the valve stops at point 

(d), and when the controller output changes 
direction.  
Stiction in control valves can either be modeled via 
physics-based or data driven [4]. Due to the 
complex nature of the physics-based approach, data-
driven modeling technique is highly favorable. In 
this paper, the widely acknowledged two parameter 
stiction model developed by Choudhury et al. [3] is 
used to model and describe the stiction nonlinearity. 
The two parameters involved in this model are S 
(stickband+deadband) and J (slip-jump) – see Fig. 
2. The model needs only the input signal or the 
controller output (op) and the specifications of S and 
J. For more details on the two parameter stiction 
model, readers are referred to Choudhury et al. [3]. 
 
2.2 Neural Network 
An artificial neural network (ANN) or commonly 
known as neural network (NN) is an interconnected 
group of artificial neurons that uses a mathematical 
model or computational model for information 
processing based on a connectionist approach to 
computation [10,11,12]. To develop the final 
quantification algorithm for stiction, a good NN 
type needs to be identified upfront that can provide 
the most accurate identification and prediction for 
(any) unknown process model. This is particularly a 
very important step of the algorithm development. 
Even though any NN is well-known for its 
capability of predicting any process behavior, high 
level prediction accuracy is imperative here since 
any inaccurate prediction, given by the selected NN, 
may result in ambiguous prediction error and the 
determination of the actual amount of stiction 
present might be cumbersome.   

For the purpose of the quantification algorithm 
development, the input data considered will be the 
pseudo-mv (pseudo-valve positioner data) and the 
actual process variable data, pv. In this paper, we 
consider the popular and well-known NN types, 
namely, Feedforward-Backpropagation NN and 
Recurrent NN, as well as Elman and Layer 
Recurrent Networks and Cascade Networks. 
 
 
2.2.1 Feed-forward Backpropagation NN  
Feedforward backpropagation neural networks (FF 
networks) are the most popular and most widely 
used models in many practical applications [9]. 
They are known by many different names, such as 
"multi-layer perceptrons." Fig. 3 illustrates a FF 
networks network with three layers. 

FF network was created by generalizing the 
Widrow-Hoff learning rule to multiple-layer 
networks and nonlinear but differentiable transfer 
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functions [13]. FF network with biases, a sigmoid 
(‘tansig’ or ‘logsig’) transfer functions at the hidden 
layers, and a linear transfer function at the output 
layer is capable of approximating any function to an 
arbitrary accuracy. 
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Fig. 3 Graphical representation of a BP network 
architecture. 

FF network architecture is slightly more complex 
than a single layer network. In addition to a single 
(hidden) layer consisting nodes with sigmoid 
transfer function, another layer called the output 
layer is required. The output layer is usually kept 
linear to produce output values in the similar range 
as the target values. However, the sigmoid transfer 
functions (either ‘logsig’ or ‘tansig’) are often used 
if the outputs need to be constrained to the range of 
[0,1] or [-1,1]. The minimum architecture of FF 
network is illustrated as layer diagram in Fig. 3. The 
(R x 1) inputs p are fed to Layer 1 (hidden layer) 
consisting of S1 ‘tansig’ nodes. The resulting outputs 
a2 with ‘linear’ transfer function retain the same size 
(S2 x 1) as the net inputs n2 to Layer 2 (output layer). 
With this architecture, the FF networks are capable 
of approximating any linear and nonlinear functions 
given adequate number of hidden nodes. 
 
2.2.2 Recurrent NN  

In Feedforward NN, the neurons in one layer 
receive inputs from the previous layer. Neurons in 
one layer deliver its output to the next layer; the 
connections are completely unidirectional; whereas 
in Recurrent NN, some connections are present from 
a layer to the previous layers. The next value of 
output is regressed on previous values of input 
signal (see Fig.4). 

The nonlinear autoregressive network with 
exogenous inputs (NARX) is a recurrent dynamic 
network, with feedback connections enclosing 
several layers of the network. The NARX model is 
based on the linear ARX model, which is commonly 
used in time-series modeling.  The defining equation 
for the NARX model is shown in (1), where the next 
value of the dependent output signal y(t) is regressed 

on previous values of the output signal and previous 
values of an independent (exogenous) input signal. 

Standard NARX architecture is as shown in Fig. 
5(a). It enables the output to be fed back to the input 
of the feedforward neural network. This is 
considered a feedforward BP network with feedback 
from output to input. In series parallel architecture 
(NARXSP), Fig. 5(b), the true output which is 
available during the training of the network is used 
instead of feeding back the estimated output. The 
advantage is that the input to the feedforward 
network is more accurate. Besides, the resulting 
network has a purely feedforward architecture, and 
static BP can be used for training. 

 

Fig. 4 Recurrent NARX NN structure. 
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Fig. 5 NARX network architecture. 
 
2.2.3 Simple Recurrent Network (SRN) 

Simple Recurrent Network (SRN) is also known 
as Elman network. In Elman network, the input 
vector is similarly propagated through a weight 
layer but also combined with the previous state 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL H. Zabiri, A. Maulud, N. Omar

ISSN: 1991-8763 90 Issue 2, Volume 4, February 2009



activation through an additional recurrent weight 
layer. A two-layer Elman network is shown as in 
Fig.6. 

 

Fig. 6 Elman network structure. 

 

The output of the network is determined by the 
state and a set of output weights, W, 
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∑ +=
m

j
kkjjk wtytnet θ)()(                                        
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Elman network has activation feedback which 
embodies short-term memory. A state layer is 
updated through the external input of the network as 
well as the activation from the previous forward 
propagation. The feedback is modified by a set of 
weights as to enable automatic adaption through 
learning (e.g. BP). Elman network differs from 
conventional two-layer networks in that the first 
layer has a recurrent connection. The delay in this 
connection stores values from the previous time 
step, which can be used in the current time step. 
Because the network can store information for 
future reference, it is able to learn temporal patterns 
as well as spatial patterns. The Elman network can 
be trained to respond to, and to generate, both kinds 
of patterns.  

 
2.2.4 Layer Recurrent Network (LRN) 

An earlier simplified version of this network was 
introduced by Elman. In the LRN, there is a 
feedback loop, with a single delay, around each 
layer of the network except for the last layer. The 
original Elman network had only two layers. The 
original Elman network was trained using an 

approximation to the BP algorithm. Fig. 7 illustrates 
a two-layer LRN.  

LRN generalizes the Elman network to have an 
arbitrary number of layers and to have arbitrary 
transfer functions in each layer. LRN is trained 
using exact versions of the gradient-based 
algorithms used in BP. 

 

Fig. 7 Layer-recurrent neural network structure. 
 
 
2.2.5 Cascade-forward backpropagation 
Network  (CF) 

Feedforward networks have one-way connection 
from input to output layers. They are most 
commonly used for prediction, pattern recognition, 
and nonlinear function fitting. Supported 
feedforward networks include feedforward 
backpropagation and cascade-forward 
backpropagation. In CF network, each subsequent 
layer has weights coming from the input as well as 
from all previous layers. 

Like FF networks, CF networks uses BP 
algorithm for updating of weights but the main 
symptoms of the network is that each layer neurons 
related to all previous layer neurons. 
 
 
3 Quantification Algorithm 
In this section, the development of quantification 
algorithm is presented. The best type of NN that can 
efficiently identify/predict the process model from 
the pseudo-mv and pv data is initially determined. 
This NN is then incorporated as part of the final 
quantification algorithm. 

The performance of the NN-based quantification 
algorithm is then exhibited for estimating the 
unknown stiction amount presents in the case study 
selected. Analysis of the quantification algorithm 
performance under varying unknown stiction 
amount plus external oscillating disturbances is also 
presented. 
 
3.2 Case Study Description 
Case study in [4] is used for simulating the proposed 
method as in Fig. 8: 
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Fig.8. Simulink block diagram used for generating 

stiction data adapted from [4]. 
 
The process model is: 
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A proportional-integral (PI) controller is used.  
 
3.3 NN selection analysis for process model 
identification 
As mentioned in the earlier section, to develop the 
final quantification algorithm for stiction, a good 
NN type needs to be identified upfront that can 
provide the most accurate identification and 
prediction for (any) unknown process model. This is 
particularly a very important step of the algorithm 
development. Even though any NN is well-known 
for its capability of predicting any process behavior, 
high level prediction accuracy is imperative here 
since any inaccurate prediction, given by the 
selected NN, may result in ambiguous prediction 
error and the determination of the actual amount of 
stiction present might be cumbersome.   

In this section, the capability of the six types of 
NN mentioned in the earlier section are investigated 
to identify an unknown process model from  
pseudo-mv (valve output) and pv (process variable) 
data, and the prediction error results are compared. 

In this analysis, we consider the case of stiction 
undershoot (S>J) with Kc=0.05 and integral 
parameter, iτ  is fixed at 1. The two parameter 
stiction model described in [3] is used, and the 
values of stiction parameters S and J are fixed at 3 
and 1 respectively.  

The pseudo-mv and pv data of S=3 and J=1 are 
generated using the case study described in Fig. 8.  
The model structures for each of the NN types are 
initially analyzed and the optimized architecture is 
selected.  

Figures 9-14 show the results for the six stiction 
models. All NN are able to predict the process 
output satisfactorily. However, there is a slight 

deviation at the peaks of both NN when the signal is 
at steady state mode for feedforward BP NN.  

To select the best NN type, statistical analysis is 
used to choose the best network type. Root Mean 
Squared Error (RMSE) and Correct Directional 
Change (CDC) for all types of NN are tabulated in 
Table 1. 

From the table, RMSE for feedforward 
backpropagation and NARXSP NN shows different 
values but close to each other. This is expected 
because of the close visual results of both NNs. 
However, CDC values show greater deviation and 
are considered in the screening process. 

 
 

TABLE 1. 
STATISTICAL ANALYSIS FOR NN 

ARCHITECTURE 
Neural 

Network 
Model 

RMSE CDC 

FF 0.0454 22.07% 
NARX 0.0499 30.76% 

NARXSP 0.0440 44.10% 
Elman 0.1078 18.06% 
LRN 0.1078 18.06% 
CF 0.0466 30.10% 

 
 

From the analysis, it is clear that NARXSP has 
the lowest RMSE value (0.044) and highest CDC 
value (44.1077). As a result, NARXSP is concluded 
as the best NN type to be used in the process model 
identification/prediction stage for the quantification 
algorithm. 

One disadvantage of NRAXSP NN that is widely 
acknowledged is that the model cannot be used 
independently from the plant, and only one-step 
ahead prediction can be achieved. Since the 
quantification algorithm is developed for offline 
analysis and no multi-step ahead prediction is 
necessary, the usage of NARXSP NN will not 
present any problem. 
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Fig. 9. Actual and predicted process output using 
feedforward BP NN. 
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Fig. 10 Actual and predicted process output using 
NARX NN. 
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Fig. 11. Actual and predicted process output using 
NARXSP NN. 
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Fig. 12. Actual and predicted process output using 
layer NN. 
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Fig. 13 Actual and predicted process output using 
elman NN. 
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Fig. 14. Actual and predicted process output using 
cascade forward BP NN 
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3.4 Quantification of stiction: S and J 
estimation 
Since the type of NN has been selected in the 
previous section for process model 
identification/prediction stage, the next step is to 
incorporate this into the quantification algorithm to 
estimate or quantify the actual amount of S 
(stickband+deadband) and J (slip-jump) present in a 
sticky valve. Figure 15 shows the flow chart of the 
procedure. This proposed procedure eliminates the 
need of the actual valve positioner data (mv). 

The controller output, op, and process variable, 
pv, are the problematic loop data. These data are 
typically available in the industrial plant. The next 
step is to guess initial value of S and J.  

Then, pseudo-valve positioner data, mvn data is 
generated using Simulink block as in Figure 16, 
using two parameter stiction model of Choudhury 
et. al [3]. The pseudo-mvn and pv are the inputs to 
the NARXSP NN for process model 
identification/prediction. 

The resulting process model is then used to 
predict the corresponding pvpred. RMSE1 is 
calculated for the difference between pv and pvpred 
values. The next step is to choose S2 (i.e. S2<S1) with 
constant J and repeat the steps until RMSE2 
calculation. If RMSE2 is greater than RMSE1, all 
values of S<S1 are discarded since they will give 
larger errors. The same procedures are repeated until 
minimum RMSE is calculated. 

The same procedure is then applied to estimate J 
using S with the lowest RMSE. The final value S 
and J are reported as stiction. 

 
 

3.5 Numerical Evaluation 
For simulation purposes, three sets of data (for 
Kc=0.05, Kc=0.10, and Kc=0.15, respectively) are 
generated using Figure 8 where the stiction 
parameters are fixed at S=3 and J=1. The different 
Kc values are imperative to evaluate the robustness 
of the estimation algorithm against varying 
operating conditions. 

Random noise with zero mean is also added to 
further corrupt the data. The integral parameter, iτ  is 
fixed at 1. The two parameter stiction model 
described in [3] is again used, and the values of 
stiction parameters S and J are fixed at 3 and 1 
respectively for all cases considered. 

 
 

 

 

Use op to generate 
mvn  

Choose Sn and Jn 

values 

Start 

Import op,pv 

Use mvn and pv as inputs to NARXSP  for process 
model identification to predict pvpred 
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Fig. 15. Flow chart for S and J estimation. 
 

 

Fig. 16. Simulink block for generating mv data using 
Choudhury et. al [3] stiction. 
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Using the quantification algorithm described in 
Fig. 15, the RMSE for every case is tabulated in 
Table 2. For all three cases of Kc=0.05, Kc=0.10, 
and Kc=0.15, the estimation algorithm using 
NARXSP NN correctly and efficiently quantified 
the amount of stiction that exist in the system. In all 
three cases, S=3 and J=1.  The low number of 
iterations required however, depends strongly on the 
good initial guesses made on the S and J parameters. 

 
 

TABLE 2 (A). 
STATISTICAL ANALYSIS FOR Kc=0.05 

1st level 
Combination S5J1 S2J1 S1J1 

RMSE 0.0544 0.0479 0.0500 
2nd level 

Combination S2J1 S3J1 S4J1 
RMSE 0.0479 0.0409 0.0541 

3rd level 
Combination S3J1 S3J2  

RMSE 0.0409 0.0410  
 
 

TABLE 2 (B). 
STATISTICAL ANALYSIS FOR Kc=0.10 

1st level 
Combination S5J1 S2J1 S1J1 

RMSE 0.1089 0.0978 0.0937 
2nd level 

Combination S1J1 S3J1 S4J1 
RMSE 0.0937 0.0912 0.1002 

3rd level 
Combination S3J1 S3J2  

RMSE 0.0912 0.0921  

 
TABLE 2 (C). 

STATISTICAL ANALYSIS FOR Kc=0.15 
1st level 

Combination S5J1 S2J1 S1J1 
RMSE 0.6030 0.6019 0.5434 

2nd level 
Combination S1J1 S3J1 S4J1 

RMSE 0.5434 0.4888 0.6119 
3rd level 

Combination S3J1 S3J2  
RMSE 0.4888 0.6053  

 
 

3.5.1 Effect of varying stiction strengths to the 
NN-based stiction quantification algorithm  
Table 3 shows the summary of the performance of 
the proposed method for varying values of the 
stiction parameters S and J. In all cases, Kc=0.05 is 
used with all other parameters are kept constant. 
From the table, it can be clearly observed that the 
proposed method can correctly and efficiently 
quantified the amount of stiction present in each 
case.  
 

TABLE 3. 
SUMMARY OF STICTION ESTIMATION FOR 

VARYING S AND J VALUES 
S J 

Actual Estimated Actual Estimated 
1 1 0 0 
1 1 1 1 
4 4 2 2 
6 6 4 5 
8 8 8 8 
8 8 10 10 

 
3.5.2 Effect of external oscillating disturbance 
to the NN-based stiction quantification algorithm 
The performance of the proposed stiction 
quantification algorithm is further tested in the 
presence of external oscillating disturbance acting 
on the process output. The external disturbance is 
taken as a sine wave with varying amplitude and 
frequency strengths. Kc=0.05 is used with all other 
parameters are kept constant.  

Table 4 shows the estimation results for sine 
wave with small amplitude and frequency, i.e. 
ampliture 0.5 and frequency 0.5 rad/sec. All other 
parameters are kept constant. For all cases, S and J 
are estimated correctly.  
 
 

TABLE 4. 
STICTION ESTIMATION FOR SYSTEM WITH 
EXTERNAL DISTURBANCE (AMPLITUDE = 

0.5, FREQUENCY = 0.5 RAD/SEC) 
S J 

Actual Estimated Actual Estimated 
1 1 1 1 
4 4 2 1 
6 6 4 4 

10 10 5 5 
12 12 4 4 

 
However, when the amplitude is increased to 1.0 
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whilst the frequency is lowered to 0.1 rad/sec, 
higher values of J show false estimation when S is 
greater than 10 – please see Table 5. The proposed 
method is not able to retain its accuracy in the 
presence of external oscillating disturbance with 
high amplitude when the amount of stiction present 
in the system is greater than 10% of the valve travel 
span. The unstable data probably reduced the 
capacity of the NARXSP NN to properly identify 
the process model.  

 
TABLE 5. 

STICTION ESTIMATION FOR SYSTEM WITH 
EXTERNAL DISTURBANCE (AMPLITUDE = 

1.0, FREQUENCY = 0.1 RAD/SEC) 
S J 

Actual Estimated Actual Estimated 
1 1 1 1 
4 4 2 2 
6 6 4 4 

10 11 5 1 
12 13 4 1 

 
Further analysis is made by increasing both the 

amplitude and frequency to 1.0, and Table 6 shows 
that even though all values of S are efficiently and 
correctly quantified, the performance of the 
proposed method deteriorated even further in terms 
of J values estimation. This indicates that the 
proposed method is fairly sensitive to external 
oscillating disturbance especially when the 
amplitude and frequency are high, and should be 
used with caution. Further improvements may be 
necessary to increase the robustness of the proposed 
stiction quantification algorithm in estimating the J 
parameters.  

 
 

 
TABLE 6. 

STICTION ESTIMATION FOR SYSTEM WITH 
EXTERNAL DISTURBANCE (AMPLITUDE = 

1.0, FREQUENCY = 1.0 RAD/SEC) 
S J 

Actual Estimated Actual Estimated 
1 1 1 1 
4 4 2 0 
6 6 4 0 

10 10 5 1 
12 12 4 1 

 
 

 
4 Conclusion 
In this paper, a Neural-network based stiction 
quantification algorithm has been developed using 
routine operating data. The algorithm is simple and 
works efficiently in quantifying the actual amount 
of stiction present in the loop, even in the presence 
of corrupted data. The proposed method also works 
well for varying stiction strengths. However, the 
method is found to be sensitive especially in 
quantifying the correct J values in the presence of 
external oscillating disturbances. Further 
improvements have to be incorporated to increase 
the robustness of the proposed method in the 
presence of external oscillating disturbances.   
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