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Abstract: Several approaches to learning in dynamic decision making tasks are developed in this paper on the basis
of the application of feedback control theory to the case study of the Sugar Production Factory task. Previous ex-
perimental models are not robust to workload change and require a large amount of information to be stored. The
control model presented here not only avoids such shortcomings, but also significantly enhances the system effi-
ciency, adaptivity and robustness. On the other hand, as trust and self-confidence are closely linked to the capacity
of automation and manual control in a supervisory control system, it behooves us to develop a dynamic model to
assist the operator in gaining a better understanding of capacities. A quantitative model of trust in automation is
then proposed to accurately characterize operator’s reliance on automation. Those results are demonstrated through
simulation within a framework of a Sugar Factory supervisory control system.

Key–Words: Control theory, Dynamic decision making, reliance on automation, Sugar Factory task, supervisory
control.

1 Introduction

Dynamic decision making tasks include important ac-
tivities such as stock trading, air traffic control, and
managing continuous production processes. In these
tasks, decision makers make multiple recurring de-
cisions to reach a target, and they receive feedback
on the outcome of their efforts along the way (see
[11, 18, 20] and the references therein).

A transfer of insights from other related domains
makes it possible to develop a formulation of learn-
ing building on the application of control theory to
the study of human performance in dynamic decision
making [19]. Brehmer uses control theory [3, 4] as
a framework to analyze the goal-directed behavior in
dynamic decision-making environments, who empha-
sizes the decision makers’ understanding of the envi-
ronmental model. People who use less sophisticated
environment models are able to learn to improve their
performance only when feedback is timely and con-
tinuous [3, 4]. Jordan and Rumelhart [20, 22] ad-
dress similar issues in the area of motor learning. A
key idea of their approach to dynamic decision mak-

ing is to divide the learning problem into two interde-
pendent subproblems. A broad set of topics includ-
ing feedback control, feedforward control, delay and
learning algorithms are then introduced into this area
[21]. Gibson [17] inherits Jordan’s connectionist net-
work and applies online learning in parallel distrib-
uted processing, or a neural network control model to
illustrate the Sugar Factory (SF) Task [16].

The SF model is a simple dynamic decision-making
task in which decision makers are expected to learn
from experience [1, 16, 10]. It is of interest to com-
putational organization theorists, and there have been
various kinds of tests conducted on it. A typical phe-
nomenon arising from these experiments is that while
participants progressively improve their capacity to
control the system, they remain unable to describe
how the system works or how does it reach the target
value, leading to large amounts of repetitive work and
low efficiency. Upon such backgrounds, an automatic
design is required and presented as a reference.

Automation can improve the efficiency and safety
of complex and dangerous operating environments by
reducing the physical or mental burden on human op-
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erators [30]. Despite this fact, it is always a critical
distinction whether or not automation is engaged, and
the operator’s role has to be changed from controllers
directly involved with the system to supervisory con-
trollers [24]. In such supervisory control systems, op-
erators monitor the performance of automation during
normal operations, and intervene to take manual con-
trol when necessary.

Studies have shown that operator’s use of automa-
tion reflects automation reliability, and inappropriate
reliance associated with misuse and disuse partly de-
pends on how well trust matches the true capabili-
ties of the automation [34]. In order to guide design,
evaluation and training to enhance human-automation
partnerships as well as high specificity of trust are re-
quired, and through which misuse and disuse of au-
tomation can be mitigated [25]. Consequently, a bet-
ter operator knowledge of how automation works and
the automation design philosophy are both required
for more appropriate use of automation [29].

The operator’s choice plays such an important role
in the automated system performance that the alloca-
tion of functions is becoming a critical decision mak-
ing process, and to optimize this process will be of
great importance [26]. A dynamic approach capital-
ized on the power of the DFT (Decision Field The-
ory) has been developed to characterize operators’ re-
liance on automation in a supervisory control system
by describing a quantitative model of trust in automa-
tion, and an EDFT (Extended DFT) model is proposed
[15]. As trust and self-confidence are closely associ-
ated with the capacity of automation and manual con-
trol separately [23, 35], it behooves us to improve the
existed model in order to help the operator gain a bet-
ter understanding of capacities.

In the first instance of the following sections, a con-
trol approach is introduced to produce the desired out-
put in the SF task, with the response of one specific
input being available at the next time step. Since the
information of capacity on automation is conveyed to
the participants specifically, a good estimation of the
automation control capability will thus be presented.
It will be found that automatic control provides a clear
guidance to participants for better decision making.
Secondly, we will propose a framework to modify
the EDFT method based on theoretical analysis. A
more satisfying result is derived through a computer
simulated Sugar Factory supervisory control scenario,
which presents an effective demonstration of our pro-
posal.

The rest of this paper is organized as follows. The
next section gives a detailed description of the Sugar
Factory task. A control model for the SF task is pro-
posed, in which two cases are discussed. Also simula-
tion results are presented corresponding to both cases

respectively to show the feasibility of our method.
The modified EDFT method in supervisory control
system is described in detail in Section 3. Also in this
section, theoretical analysis to the EDFT model and
modified approaches are proposed, as well as simula-
tion results via the SF supervisory control system. In
Section 4, some concluding remarks and future work
are given.

2 Motivation: Sugar factory task
The Sugar Factory (SF) task was first investigated to
see how participants learn to operate complex systems
through a computer simulated scenario. Two kinds of
computational models have been proposed to explain
the behavior of participants: the D&F model [10] and
the W model [33]. Over a series of trials within a
training set, subjects repeatedly specify a new work-
force and observe the resulting production level, at-
tempting to achieve the prespecified production goal.
Almost all of the experiments carried out within the
SF paradigm adopted the same value as 9,000 tons of
sugar [1, 2, 10], but there are still exceptions of con-
sidering what would happen if such a value is varied
by assuming, for instance, that the participants should
reach and maintain a production of 3,000 tons [9].
Changing a target value needs another series of repet-
itive trials, and a large amount of information has to
be stored.

2.1 Mathematical Description
By choosing discrete-time computational steps, the
actual output of production p(k) is governed by the
following equation (which is unknown to subjects):

p(k + 1) = 2w(k + 1)− p(k) + ε (1)

where p(k + 1) represents the new production at time
t + 1, w(k + 1) is the input specified at t + 1, and ε is
a uniformly distributed random error term, taking the
values of −1, 0, or 1.

Both p(k) and w(k) are chosen as a discrete-value
state from 1 to 12, and they are multiplied in the actual
computer simulation by 1000 and 100, respectively.
So values within ±1000 of the production goal are
also considered to be on target.

Although the task appears fairly simple as pre-
sented in Equation (1), it exhibits hard constraints that
are challenging to handle. First, the input signal w(k)
at each trial only takes discrete values, and moreover,
100*w(k) must be an integer by taking account of the
actual meaning. Second, the signals w(k) and p(k)
are both bounded. Particularly, due to the lag term
p(k), two interdependent inputs are required at both
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time steps k and k+1 to reach steady-state production.
The authors of [32, 17] observe that maintaining a
steady-state workforce at nonequilibrium values leads
to oscillations in production. However, this could be
solved by formulating the control model as introduced
in the next section, by which stability of the system
could be guaranteed. Also, the system is allowed to
change autonomously due to the random term, forc-
ing participants to exercise adaptive control [1, 32]. A
measure of performance is the participant’s ability to
accurately predict how the factory’s production will
respond next period to a new workforce value given
this period’s production [1, 2, 5]. As a result, an ac-
curate automation-oriented approximation is required
as a reference, which is demonstrated in the following
section. We will find later that this new model is also
robust to workload change.

2.2 Control Model of SF
As it is well known, using a feedback controller can
not only correct error at the current time step, but is
also likely to diminish error at the following time step.
The performance of such a controller is not so sensi-
tive to the exact value of the gain as other types of con-
trollers (e.g. open-loop feedforward controller). Un-
der the circumstance of existence of unanticipated dis-
turbance in the system, a feedback controller, if suit-
ably designed, will yield robustness of stability.

Based on these merits, we apply the feedback con-
trol theory to the analysis of the Sugar Factory task to
present a relatively accurate reference to participants.
As for the type of controller, PI (Proportional plus In-
tegral) control is chosen to eliminate or diminish the
error signal e(k), which is the difference between the
actual production p(k) and the target production p∗.
The primary reason for the integral part is to reduce
or eliminate steady-state errors by considering all pre-
vious errors in [12], yielding

η(k) = η(k − 1) + e(k) (2)

where e(k) is as previously defined:

e(k) = p∗ − p(k) (3)

Let the output from the controller be u(k), which is
counted to be twice the input w(k) in the SF model
(1).

u(k) = 2w(k) = 2[kpe(k) + kiη(k)] (4)

Through these slight adjustments, the whole system
could be expressed as a standard state-space formula-
tion in control theory. In the following subsections,

we will consider two kinds of circumstances sepa-
rately.
(A) Ideal Case(ε = 0)

For the sake of simplicity, first let us consider the
ideal case of no stochastic disturbance existing in the
system, which means that the last term ε in equation
(1) is ignored. After adding (4) to the equation, the
whole system is given as follows:

p(k) = u(k − 1)− p(k − 1) (5)

Define state variables as x(k) =
[
η(k)
e(k)

]
to express

the system in the state-space form, and let p∗ and p(k)
be the system input and output separately. Then the
equations could be rewritten in a more compact form
[13]:

x(k + 1) = Ax(k) + Bp∗

p(k) = Cx(k) + Dp∗
(6)

where

A =
[

1− 2ki −2kp − 1
−2ki −2kp − 1

]
; B =

[
2
2

]

C =
[

0 −1
]
; D = [1]

(7)
After the control design is completed, ensuring the
stability of the obtained closed-loop system is a cru-
cial issue in control engineering. Also, stability of
a linear system ensures state variable converge to its

equilibrium, which is x(k) =
[
ηe

0

]
in our case. Con-

sequently, if system (6)-(7) is stable, then e(k) and
η(k) will converge to zero and ηe respectively as time
k goes to infinity. In other words, the limit of p(k) is
exactly that of p∗, and this is just the case we desire.

So next we shall focus on the linear system sta-
bility criterion. For the SISO(Single-Input Single-
Output) linear discrete systems to be stable, the poles
of the closed-loop pulse-transfer function (derived by
z-transformation) or the roots of the characteristic
equation must lie within the unit circle. Any closed-
loop pole outside the unit circle makes the system un-
stable. As for MIMO(Multi-Input Multi-Output) lin-
ear discrete systems, we can express them in the form
of state space equations. The concept of pulse-transfer
function is extended to the pulse-transfer-function ma-
trix of a state space representation. Under this circum-
stance, stability requires all roots of

|zI −A| = 0 (8)

lie within the unit circle [28]. Then the actual out-
come p(k) in system (6) will converge to the desired
target value p∗ in a certain number of time steps, if
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we choose proper ki and kp satisfying either of the
following inequalities:

(a)
{

(kp + ki)2 + 2kp + 1 ≥ 0
kp < −0.5ki < 0

(9)

or the inequalities:

(b)
{

(kp + ki)2 + 2kp + 1 < 0
−1 < kp < −0.5

(10)

The above conditions can be derived as follows. Sub-
stituting the state matrix A in (7) into characteristic
equation (8), one derives the expression of eigenval-
ues as

z = −(ki + kp)±
√

(ki + kp)2 + 2kp + 1. (11)

Two cases appear, as shown below:
Case (a) (ki + kp)2 + 2kp + 1 ≥ 0.
This is the situation that all roots of (8) are real, then
stability condition requires the following expressions:

{ −(ki + kp) +
√

(ki + kp)2 + 2kp + 1 < 1
−(ki + kp)−

√
(ki + kp)2 + 2kp + 1 > −1

(12)
Case (b) (ki + kp)2 + 2kp + 1 < 0.
In this case, the poles are complex. Inequalities below
ensure the stability of the whole system.

|z|2 = (ki +kp)2− [(ki +kp)2 +2kp +1] < 1. (13)

Simple transformations of (12) and (13) lead to (9)
and (10) directly. Thus, the proof is completed.

The following simulations demonstrate the effec-
tiveness of our method by choosing different pairs of
parameters (kp and ki) that satisfy the above condi-
tions. In Figure 1, the solid line represents the actual
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Figure 1: Invariable target value for the ideal case

sugar production output, which reaches the invariable
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Figure 2: Variable target value for the ideal case

target production value of 9000 tons of sugar (dashed
line) in less than seven time steps. As for the variable
target from 3000 to 9000 shown in Figure 2, it demon-
strates the adaptivity to workload change of the con-
trol model. Both of the charts have presented good il-
lustrations of obviously enhanced effectiveness to the
SF task.

We remark here that the process of choosing the
type of controller is crucial. If the proportional control
method is chosen without the integral part, which is
the so-called P control, then the main result as stated
above will not hold.
(B) Practical Disturbance Case (ε 6= 0)

This case can be addressed by studying disturbance
ε 6= 0, or in other words, the external stability. By ex-
ternal stability, we mean that for every Bounded In-
put, it should have a Bounded Output. This is also
called BIBO stable. Using linear system theory [12],
if all poles are inside the unit circle, the system with
rational transfer function is BIBO stable. As we have
already proved in the previous part that for parame-
ters ki and kp satisfying conditions (9) or (10), system
(6)-(7) has all poles inside the unit circle or is inter-
nally stable) when no disturbance exists in the sys-
tem. Therefore, if we choose parameters based on
these conditions, output p(k) will also be bounded,
accordingly when the disturbance ε is considered as
the input. The following simulation results validate
our conclusion. Here ε is chosen to be a group of sto-
chastic numbers. By adding this disturbance term to
the dynamic equation, it is getting closer to the actual
model. One can intuitively see from Figure 3 that after
several time steps, the actual production p(k) (plotted
in the solid line) keeps oscillating around the desired
production 9000t (dashed line) in a small region, from
which robustness of the control model is validated.

Figure 3 can be viewed as a reference of choosing
the input number of workforce w(k). Nevertheless,
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Figure 3: Disturbance case (invariable target value)

we hope that the control model we propose may help
participants make better decision. One of the effec-
tive ways is that, if the oscillation is within the region
of ±1, the operator just input the number of work-
force w(k) as shown in the figure; if not, they adjust
the number slightly according to the simulation result.
Through the application of the human-machine inter-
face, effectiveness will be enhanced greatly.

In Figure 4, the solid line denotes the actual produc-
tion value due to the desired production change, which
is in the form of dashed line. This figure shows the
transition process of desired production from 3000t
to 9000t, from which adaptivity is also well demon-
strated.
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Figure 4: Disturbance case (variable target value)

3 Extended Decision Field Theory:
Some preliminary results

3.1 Problem Statement
Due to the complexity and variability of automation
performance, the operator’s choice between automatic
and manual control in supervisory control situations
can be considered both a preferential choice problem
and a decision-making process described by Decision
Field Theory (DFT) [7, 8]. The standard elementary
DFT model used to investigate decision making un-
der risk or uncertainty could be described through a
straightforward example in supervisory control. Sup-
pose one is facing the problem of choosing whether
to rely on automation (A) or to intervene with manual
control (M), as shown in the following chart. In Figure

Figure 5: DFT choosing model in a supervisory con-
trol situation [15]

5, S1 and S2 are two interdependent uncertain events,
one of which may occur at a certain time point. S1

denotes the occurrence of an automation fault and S2

represents the incidence of a fault that compromises
manual control. During the course of decision mak-
ing, the valence of an action Vi (i = A or M) is defined
as the subjective expected payoff for each action also
fluctuates from sample to sample, which is relevant to
the subjective probability weight W (Sj) and the util-
ity of the payoff [6]. The preference state at sample
n is derived based on the accumulated valence differ-
ence:

P (n) = (1− s)× P (n− 1) + [VA(n)− VM (n)]

= (1− s)× P (n− 1) + [d + ε(n)].
(14)

Let C represent the true capability of the automa-
tion (CA) or manual control (CM ). The former sym-
bol describes the reliability of the automation in terms
of fault occurrence and general ability to accomplish
the task under normal conditions, while the latter one
describes how well the operator can manually control
the system in various situations. BC denotes the belief
or estimation of the capability of automation (BCA) or
the operator’s manual capability (BCM ). In the EDFT
model, sequential decision processes are linked by dy-
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namically updating beliefs regarding the capability of
automation or manual control based on previous de-
cisions in order to guide the next decision as follows
[15]:

BC(n) = BC(n− 1) +
1
b1

(C(n− 1)−BC(n− 1)).

(15)
The value b1 (b1 ≥ 1) represents the level of trans-
parency of the system interface, describing how well
information is conveyed to the operator when capa-
bility information is available. b1 = 1 means the in-
formation is perfectly conveyed to the operator. The
larger b1 is, the more poorly information is conveyed
to operator.

There is a formulation depicted in [14] that beliefs
represent the information base that determines atti-
tudes and then attitudes determine intentions and con-
sequently behaviors. Under the circumstance of su-
pervisory control, trust and self-confidence are both
attitudes that depend on beliefs, while at the same
time, they determine preference and reliance. Take T
and SC as the denotation of trust and self-confidence,
which are updated by BCA and BCM as the new input
respectively. Preference of A over M is defined as the
difference between trust and self-confidence at time
step n in the EDFT model, denoted by P (n) [15]:

P (n) = T (n)− SC(n) = [(1− s)× T (n− 1)

+ s×BCA(n) + ε(n)]− [(1− s)× SC(n− 1)

+ s×BCM (n) + ε(n)] = (1− s)× P (n− 1)

+ s× [BCA(n)−BCM (n)] + εP (n).
(16)

Here the difference between CA and CM corresponds
to d, and P (n) combined with other factors such as
time constraints will determine whether to actually
rely on automation or not.

3.2 Model Modification
In a supervisory control system, operators are sensi-
tive to the ability of predicting the capacity of automa-
tion or manual control, and previous findings suggest
that operator’s trust is closely linked with the capacity
of automation [27]. More specifically, people’s trust
on automation may vary according to the change of
discrepancy between the operators’ expectation and
the true behavior (the capacity) of automation. Con-
sequently, though it is useful to get to know the in-
fluence of capacity C on trust, it is necessary to ex-
amine whether the expectation of capacity is close to
the practical situation if we are to develop a predictive
model of trust in automation and intervention behav-
ior. Improving the accuracy of operators’ perception
to the system capacities will also greatly enhance the

appropriateness of their trust in automation. Based on
this, it is necessary to develop a modified model that
can better reflect appropriate trust.

One of the effective ways to modify the EDFT
model is to consider the discrepancy between the ca-
pacity of two sequential time steps. Accordingly, be-
lief is expressed as:

BC(n) = BC(n− 1) +
1
b1

(C(n− 1)−BC(n− 1))

+ (1− 1
b1

)(C(n− 1)− C(n− 2)).

(17)
By transposing (17), we will get:

X(n− 1) = (1− 1
b1

)X(n− 2), (18)

where X(n− 1) = BC(n− 1)−C(n− 2). Equation
(18) constitutes a contraction mapping, from whose
definition we know that X(n−1) converges to 0 for a
enough large n. Consequently, BC(n − 1) will even-
tually converge to C(n− 2) as time step n increases.

Modifying the generation of belief in pattern of (17)
enables operators to generate their belief much closer
to the true capacity, and it provides a better under-
standing of how automation works. As a result, the
operators’ trust in automation will grow, and thus lead
to more appropriate reliance on automation. The ef-
fectiveness is demonstrated through simulation in the
next subsection.

3.3 Simulation Results
Some work on designing an automated aid to simulate
the actual production output of the Sugar Factory has
already been done in Section 2. Since operators play
an important role in this system to decide whether to
adopt automation or not, this model can also be con-
sidered as a supervisory control system. In this part,
we will take this general case for example.

The capability of automation is commonly mani-
fested by its ability to achieve the goals of the operator
in a consistent fashion. It is a critical parameter that
describes the automation and should not be randomly
selected. Under the circumstance of the SF supervi-
sory control task, we can treat the error signal between
actual output and desired output as a measure of au-
tomatic ability, that is the system’s true capability of
automation CA. By using the EDFT model, the belief
or estimation of the automation BCA1 is generated by
equation (15), while BCA2 is generated by using our
modified EDFT model (17). Depending on whether
there exists random noise in the system, we simulate
separately to compare these two beliefs.
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Figure 6 presents the comparison result under the
non-disturbed circumstance with b = 2, while Figure
7 corresponds to the similar situation with b = 100.
As it is defined previously that the parameter b rep-
resents the transparency of the system interface, one
could straightforwardly find that the beliefs derived by
our modified approach are closer to the original capac-
ity of automation CA than those updated by the EDFT
model in both cases. This phenomenon becomes more
distinct as b grows larger, which is the circumstance
that information is not well conveyed to the operator.
Thus the predominance of our approach is verified.
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Figure 6: Comparison of BCA1 and BCA2 when no
disturbance exists (b = 2)
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Figure 7: Comparison of BCA1 and BCA2 when no
disturbance exists (b = 100)

As for the disturbance case, one can get a more ob-
vious understanding of the superiority to the modified
EDFT approach. Figure 8 shows the case in which
stochastic disturbance exists, from which we can see
that the original EDFT model just make belief fluc-
tuate randomly without any inhibition on disturbance.
On the other hand, the modified approach enables be-
lief to match the capacity of automation quite well in
a short period’s time.

We could also combine trust and self-confidence
with other factors of attitude like perceived risk and
mental workload to form the intention of preference.
In such cases, it comes to the multiple choice problem
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Figure 8: Difference between BCAi(i = 1, 2) and CA

in the disturbance case (b = 2)

in a dynamic decision making task. In order to solve
such problems, a MDFT (multi-alternative DFT) for-
mulation [31] is required to be extended as an EMDFT
model.

4 Conclusions and Future Work
This paper presents a control-theoretic approach to
learning in dynamic decision making tasks to the
study of Sugar Factory task. By constructing a control
model, it presents a fairly good estimation of automa-
tion control capability to participants. Also, the model
provides an accurate approximation and a reliable ref-
erence to participants through the demonstration of
simulation. Aiming at enhancing appropriate trust in
automation in a supervisory control system, a modi-
fied approach to the previous EDFT model is proposed
to provide a more accurate approximation of trust.
Feasibility is demonstrated by both theoretic analysis
and simulation through a Sugar Factory supervisory
control system. The model becomes robust to distur-
bance irrespective of the fluctuations after modifica-
tion, and the effectiveness is demonstrated.

Currently, we are working towards improving the
proposed control model from the following aspects:
(1) Addressing the above-mentioned constraints on
the number of workers w(k) and the production value
p(k);
(2) Optimal choice of parameters for improved perfor-
mance;
(3) Other types of high-level control method like non-
linear control for further performance improvement.

As for the modified EDFT model, experiments
should be conducted to further verify the effectiveness
of the modified approach in the future.
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