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Abstract: – This paper presents some theoretical and numerical problems that arise in the analysis of coupled 
electromagnetic-thermal problems, and inverse problems in electromagnetic devices.  

The principal objective of the paper is to describe some computational aspects for coupled electromagnetic and 
thermal fields in the context of the finite element method, with emphasis on the reduction of the computing 
resources. We present coupled models for magnetic field and thermal field. The mathematical model for magnetic 
field is based on time-harmonic Maxwell equations in vector magnetic potential formulation for axisymmetric 
fields. The model for the heat transfer is the heat conduction equation.  

We propose simplified numerical models for coupled fields in electromagnetic devices with target examples on 
the induction heating devices and high-voltage and large power cables. Domain decomposition is presented in the 
context of the coupled fields. The analysis domain is divided into two overlapping subdomains for the two coupled-
fields considering physical significance of the pseudo-boundary of the two subdomains.   
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1 Introduction 
The phenomena in the technical devices are not 
isolated but they were analysed independently because 
of some justified motivations. Ones of them are:  
• limited computational power of the conventional 

computers 
• the complexity of the coupled problems 
• the lack of a strong co-operation between the 

engineers and mathematicians  
There are two standpoints, which are not in 

contradiction, but they are linked. The former is the 
mathematician's standpoint that tries to prove that 
the problem has a solution and preferably a unique 
solution. The latter is the engineer's standpoint that 
wants the solution, and in practical cases an 
approximate solution. An engineer is concerned with 
large-scale physical achievement. We must not forget 
that each category is judged by different measures for 
their activities: a mathematician is judged for his 
publications in his area, and an engineer is judged by 
his physical achievements.  

It is true that mathematics is with a step before the 
engineering, that is, sometimes, there are many years 
or decades between the mathematical researches and 
the application in the engineering. One of the 
motivations is limited technology for implementation 
of the mathematics results in practice. Now the time 

intervals are reduced. Are we clever? In my opinion, 
the answer is NO. We have more knowledge, we have 
a fast access to the information and we cooperate or 
we must cooperate in different disciplines. We dream 
more and have the tools to transform the dreams in 
reality. 

Research engineers, that is the engineers devoted 
themselves to scientific research into engineering 
problems, use mathematics extensively. Mathematics 
enables the engineer to express his technical 
knowledge in clear and concise mathematical terms 
and arrange the components his knowledge in logical 
order. Engineering is a science so that an engineer 
without mathematics is a gardener without his special 
tools.  

 
  

1.1.Motivations for advanced algorithms 
It is well known that the nature is complex in its 
behaviour and the abstract models do not capture 
accurately the laws of the nature. So that we work with 
abstract models that try to describe the phenomena 
from nature and the technical devices. But it is a great 
mistake to think that we have perfect models of the 
natural phenomena. More, many numerical algorithms 
are not discovered so that, although we limit our 
discussion to our actual achievements in this area, we 
must dream and to seek permanently new and modern 
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approaches for the actual problems in science, 
techniques and life. 

Analytical solutions for the electrical engineering 
problems are limited to some simple applications and 
ignore some physical phenomena. For complex 
problems the accurate models are necessary and the 
numerical solutions are efficient approaches for an 
optimal design and operation.  

With the advent of modern digital computers, many 
numerical models were developed and they become 
widely used in the scientific computing. We use the 
old algorithms and transform them for the new 
architectures but we must invent new algorithms 
having in our mind the computational power of the 
new computers. 

The efficient design of the electromagnetic devices 
has resulted in more stringent specifications and a 
demand for optimal operation, which is very important 
in high-performance electrical power systems. More 
exacting specifications have demanded during the 
design stage the development of accurate methods of 
predicting the performance characteristics of these 
devices. Some of the performance indicators of 
concern in the design of the power devices are the 
electromagnetic forces, iron losses, the eddy-currents 
effects and the heat transfer between the component 
parts. Prediction of the flux densities and current 
densities can be used to compute forces and local 
heating, both of which are of a serious concern to the 
designer of the devices of high performance.  

 
 

1.2.Motivations for coupled models 
Many areas of electrical engineering require the 
solution of problem in which the electromagnetic field 
equations are coupled to other partial differential 
equations, such as those describing thermal field, fluid 
flow or stress behaviour. These phenomena are 
described by equations that are coupled [5]. The 
coupling between the fields is a natural phenomenon 
and only in a simplified approach the field analysis can 
be treated as independent problem.  

 In several cases, it is possible a decoupling and a 
cascade solution of the coupled equations. Another 
attractive and efficient approach of solving coupled 
differential equations is to consider the set as a single 
system. In this way a single linear algebraic system for 
the whole set of differential equations is obtained after 
discretization, and is solved to a single step. If one or 
more equations are non-linear, non-linear iterations of 
the whole system are required. 

The equations of the electromagnetic fields and 
heat dissipation in electrical engineering are coupled 
because the most of the material properties are 

temperature dependent and the heat sources represent 
the effects of the electromagnetic field [5]. 

The thermal effects of the electromagnetic field are 
both desirable and undesirable phenomenon. Thus, in 
conducting parts of some electromagnetic devices 
(coils of the large-power transformers, current bars, 
cables conductors, conductors of the electric machines 
etc) the heating is an undesirable phenomenon. The 
heat is generated by ohmic losses of the driving 
currents and eddy currents induced in conducting 
materials. But in induction heating devices for welding 
the heating is a desirable phenomenon. The thermal 
effect of the electromagnetic field is the treatment base 
for many electric materials in industry [6]. 
 
 
1.3.Motivations for optimisation of coupled 
problems 
In practical engineering synthesising the best 
engineering solution to a given design problem is of 
great interest. This requirement in engineering is called 
inverse problem and several methods have been 
developed for this purpose. Among them the 
deterministic method using design sensitivity analysis 
has proved to give a proper design in terms of 
computational efficiency.  

Optimisation methods has been efficiently 
developed and applied to electromagnetic devices and 
mechanics. Unfortunately, the methods developed 
always deal with single systems. The reality is the 
coupled problems are complex because the critical 
design parameters are in both systems. 

In the area in discussion, one of the principal 
criteria of performance is to control the distribution of 
the temperature in a device. In inverse problems the 
heat sources play the role of the control variable of the 
heat dissipation in an electromagnetic device [2]. 

With the terminology of the system theory, we 
identify two kinds of the heat sources (and commands 
in an inverse problem): 
• Distributed sources (electrical  currents) 
• Boundary sources (Dirichlet condition, Neumann 

condition, convection and radiation) 
A control of the electromagnetic devices can be 

done by internal commands or/and boundary 
commands. For the first case the commands are the 
heat sources (position, amplitude). 

In the heating of the electromagnetic devices, the 
distributed commands are the internal heat sources 
(position, amplitude) that are represented by:  
• Ohmic losses from driving (source) currents 
• Ohmic losses from eddy currents induced in 

conducting materials of the time variable magnetic 
field 
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• Dielectric losses due to friction in the molecular 
polarisation process in solid dielectrics that form 
the insulation of the high-voltage apparatus 

• Hysteresis loss in magnetic problems. It is due to 
magnetic domain friction in ferromagnetic 
materials. 

 The boundary commands can be [3]: 
• Dirichlet command, that is, an imposed 

temperature on the boundary of the spatial domain  
• Neumann command  that involves an imposed 

flux temperature on the boundary of the spatial 
domain  

• Convective command (the temperature of the 
ambient medium or a cooling fluid, a parameter of 
the cooling fluid as the speed etc)  

• Radiation commands (the temperature of the 
ambient medium or other parameters that are 
outside the spatial domain of the field problem and 
influences the temperature of a device by radiation 
phenomenon).  

 
 
2 Mathematical modelling of the 
electromagnetic field 
A complete physical description of electromagnetic 
field is given by Maxwell’s equations in terms of five 
field vectors: the magnetic field H, the magnetic flux 
density B, the electric field E, the electric field density 
D, and the current density J. In low-frequency 
formulations, the quantities satisfy Maxwell’s 
equations [5]: 

JH =×∇    (1) 

t
BE
∂
∂

−=×∇   (2) 

0=Bdiv    (3) 

cDdiv ρ=    (4) 
with ρc the charge density, σ – the electric 

conductivity, and μ the magnetic permeability. For 
simplicity we give up to the bold notations for vectors. 

The second set of relationships, called the 
constitutive relations, is for linear materials: 

EJEDHB σεμ === ;;  
The B-H relationship is often required to represent 

non-linear materials. The current density J in Eq. (1) 
must represent both currents impressed from external 
sources and the internally-generated eddy currents.  

The formulation with vector and scalar potentials 
has the mathematical advantage that boundary 
conditions are more often easily formed in potentials 
than in the fields themselves. The magnetic vector 
potential is a vector A such that the flux density B is 
derivable from it by the curl ( ×∇ ) operation 

The complexity of the mathematical model for 
electromagnetic field was one of the main reasons to 
find and develop new computation methods. All 
methods can be included in one of the following 
classes [5]: 
• Manipulation of the equations so that some 

unknowns are eliminated 
• Definition of some potential functions from where 

the field unknowns can be obtained by simple 
processing 

• Finding of some assumptions that simplifies the 
computation for practical problems 

The potential formulations seem attractive because 
of their computational advantages. One of these 
consists in the fact the boundary conditions are easily 
framed in the potentials than in the field themselves. 

 
 

2.1.The eddy-currents problem 
The time-varying magnetic field within a conducting 
material causes circulating currents to flow within the 
material. These currents called eddy-currents can be 
unwanted or desirable phenomena. Thus, the eddy-
currents in electrical machines give rise to unwanted 
power dissipation. On the other hand the induction 
heating is a wanted phenomenon in industry of the 
metal treatment.  

Industrial equipment in which the eddy currents are 
essentially can be included in one of the following 
classes: 
• long structures, in which the electric field  and 

the current density posses only one component 
• complex structures in which we use models 3D 

In the long structures, the currents are generated by 
an electric field applied at the terminals of the 
conductor or by a time-varying magnetic field linking 
the loop formed by the conductors. These structures 
belong to electric transmission network or the 
distribution networks (bus bars, large-power cables 
etc). In these problems the applied voltage of the bar 
or cable is known and we seek to compute the current 
density distribution within the conductor in order to 
determine some electromagnetic quantities of interest 
(the electrodynamic forces, mutual inductances, local 
heating etc). 

The complex structures generate difficulties in 
simulation and computation of their characteristics 
although these structures possess construction 
simplicity. One of these structures is the device for 
electric heating by electromagnetic induction. In these 
type the applications it is necessary to compute 
accurately the eddy currents. If the eddy-currents 
distribution is non-uniform, the resulting high-
temperature gradients may crack the workpiece. 
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The problems are different in the two different 
types of applications but for any given application the 
presence of the saturable iron sheets introduces 
saturation phenomena and the problem becomes non-
linear. 

For each class we can apply general mathematical 
methods but it is more efficient to develop a particular 
algorithm for each kind of classes. 

The effects of the eddy currents are: 
• The time-varying magnetic flux density is 

nonuniform within the conductor. The 
alternating magnetic flux is concentrated 
toward the outside surface of the material 
(phenomenon known as the skin effect). 

• Power losses are increased in the material 
Eddy current computation appears in two types of 

problems: 
• Stationary problems where the structures are 

fixed and source currents are time varying 
• Motion problems where the field source is a 

coil in moving 
Many practical engineering problems involve 

geometric shape and size invariant in one direction. 
Let z denote the Cartesian co-ordinate direction in 
which the structure is invariant in size and shape. This 
is the case of a plane-parallel field or translational 
field problem, where A has one component, namely 
Az. It is independent of the z co-ordinate and the 
Coulomb Gauge is automatically imposed and V is 
independent of x and y. In such a case both the 
magnetic vector potential and the source current JS 
reduce to a single component oriented entirely in the 
axial direction and vary only with the co-ordinates x 
and y. Consequently, the component Az (for simplicity 
we give up the subscript z) satisfies the diffusion 
equation in fixed domains [5]: 

sJ
t
A

A −=
∂

∂
−∇∇ σν )(   (5) 

or in Cartesian co-ordinates: 

s-J=
t
A

σ)
y
A

(υ
y

+)
x
A

(υ
x ∂

∂
−

∂

∂

∂

∂

∂

∂

∂

∂
 (6) 

The boundary conditions are set-up for the single 
component A and can be Dirichlet and/or Neumann’s 
condition. The interface conditions between two 
materials with different properties are defined by the 
following equations: 

n
A2ν2=

n
A1ν1   ;A2=A1

∂

∂

∂

∂
 

 
 
2.2. Modelling of time-dependent fields 
The time dependent electromagnetic field problems 
are usually solved using differential models of 

diffusion type. Many practical problems of great 
interest in electromagnetics involve time-harmonic 
fields and this case will be considered in this work. 

In general, computer software for time-varying 
problem can be classified into two classes [5]: 

1. time-domain programs 
2. frequency-domain programs 
Time-domain programs generate a solution for a 

specified time interval at different time moments. 
Frequency-domain programs solve a problem at one or 
more fixed frequencies. 

The first class has some disadvantages. One of 
these consists in the large amount of data that must be 
stored to recover the field behaviour. Although the 
second class has an essential advantage (a compact 
and a cheap program in terms of the computer 
resources), the area of problems that can be solved is 
limited. It is applicable only to linear problems (all 
phenomena are sinusoidal). 

The usual mathematical model for time dependent 
electromagnetic field problems is with Maxwell’s 
equations in their normal differential form. For low 
frequency the displacement current term in Maxwell’s 
equations can be neglected. At a surface of a 
conducting material the normal component of current 
density Jn can be assumed to be zero. 

In 2D problems, there are two limiting cases: 
1. A formulation with H field 
2. A formulation with magnetic vector potential 
Both cases are PDEs of the diffusion type. More, 

the latter case is of greater practical interest because 
can be solved by numerical methods. 

In general the time dependent problems after a 
spatial discretization can lead to a lumped-parameter 
model. For example, Maxwell’s equations in 
differential form for low frequency in 2-D case, after 
spatial discretization, lead to a system of ordinary 
differential equations by the form [5]:  

 { } 0{b}A[R]
t
A

[S] =++
∂

∂

⎭
⎬
⎫

⎩
⎨
⎧   (7) 

where [R] and [S] are matrices and b is the vector 
of the free terms. 

To simplify the computation, one approach is to 
separate the spatial domain of the problem in 
conducting and non-conducting parts, such that A1 is 
the solution vector in conducting regions and A2 is the 
solution vector in the non-conducting regions. By 
reordering the matrices, the system of equations is 
divided in two systems [5]:  

01
1

212111 =+
∂

∂
++

⎭
⎬
⎫

⎩
⎨
⎧

}{b
t

A
[S]}]{A[R}]{A[R  (8) 

02222121 =++ }{b}]{A[R}]{A[R   (9) 
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The system (9) is formed of algebraic equations; 
the system (8) is formed of differential equations. 
These systems are solved by an iterative procedure in 
time.  The algorithm in pseudo-code has the following 
structure: 

1. Choose the starting value for {A1} at t=0; 
2. Compute {A2} from the system (9) 
3. Compute {∂A1/∂t} from the system (8)  
4. Compute the values of {A1} at t=t+δt; 
5. Repeat the steps 2-4 for each time step until the 

final time is reached. 
 
 

3 Mathematical modelling of the 
thermal field 
The thermal field is described by the heat conduction 
equation [5]: 

 qTTkTT(c
t

=∇⋅−∇+⋅
∂

∂
])([]))([ γ   (10) 

where:  T (x, t) is the temperature in the spatial 
point x at the time t; point k is the tensor of thermal 
conductivity; γ is mass density; c is the specific heat 
that depends on T; q is the density of the heat sources 
that depends on T. In the coupled problems we use the 
formula: 

                  (11) 2)( JTq ⋅= ρ
with ρ the electrical resistivity of the material. 

Equation (10) is solved with boundary and initial 
conditions. The boundary conditions can be of 
different types: Dirichlet condition for a prescribed 
temperature on the boundary; convection condition; 
radiation condition, and mixed condition [5]. 

For many eddy-current problems the magnetic flux 
penetration into a conductor without internal sources 
of the magnetic field is confined mainly to surface 
layer. This is the skin effect. The skin depth δ depends 
on the material properties μ, ω and σ so that for the 
small depths all of the effects of the magnetic field is 
confined to a surface layer.  

In steady-state low-frequency eddy current 
problems in magnetic materials, the mathematical 
model is the diffusion equation (6). 

The skin effect can be exploited in two directions: 
• To reduce the space domain in analysis  with a 

fine mesh close to conductor surfaces 
• To reduce the material volume since a 

significant proportion of the conductor is 
virtually unused  

The penetration depth is given by the formula: 

ωσμ
δ 2
=    (12) 

For example, in a semi-infinite slab of conductor 
with an externally applied uniform alternating field, 
parallel to the slab, the amplitude of flux decays 
exponentially. In other words for problems with the 
skin depth very small all the effect of the field is 
confined to a surface layer. In a numerical model 
based on finite element method (FEM) this effect can 
be exploited by the use of a special boundary 
condition, known as the surface impedance condition. 
In this way we don’t waste run-time of a program 
based on FEM. 

Designer engineers use the formula (12) 
considering the permeability and the conductivity as 
numbers. In reality the two physical parameters 
change during heating. The changes in the value of δ 
affect the loss in the material and depend on the 
process (conduction or induction). For example, if the 
conductivity decreases by x, the depth depends on √x; 
that is, the current penetrates deeper into the metal.  If 
the magnetic material heats, its resistivity (the inverse 
of the conductivity) rises but its relative permeability 
remains substantially constant up to the Curie point. In 
this point it drops suddenly to unit. 

Another simplifying assumption for the designer 
engineers is based on that all heat enters at the surface 
of the conductor. In reality, this is only true if the 
frequency of the magnetic field source is very high and 
the depth of heating is small compared with the 
geometrical dimensions of the conductor.  

For an accurate computation of the penetration 
depth of the magnetic field we must consider two 
practical conditions: 

• The heat is distributed in the conducting part 
• There is an important heat lost by radiation at 

the conductor surface 
Radiation can be regarded as a simple surface loss 

subtracting from the surface power input.  The Stefan-
Boltzmann law gives the radiation loss. If the body is 
radiating to a surface at absolute temperature T∞ 
Kelvin, the radiation loss is defined by: 

)44(0 ∞−= TTCrrP ε  

where εr  is the emissivity coefficient of the surface 
(dimensionless) and T is the absolute surface 
temperature in Kelvin (K). The constant C0 is 5.67.10-8 
W/m2K4.  For low temperatures the radiation loss is 
negligible but in the induction-heating device it must 
be considered. 

Consequently, it is convenient to use coupled 
models and accurate methods for computation of the 
heat penetration in the conductors, especially in the 
induction heating devices. 
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4 Iterative algorithms for coupled 
problem 
A complete mathematical model for coupled fields 
involves Maxwell’s equations and the heat conduction 
equation. Combining these equations yields a coupled 
system of non-linear equations. In a discrete form the 
unknowns are the nodal values of the temperature T 
and the magnetic vector potential A. 

For electromagnetic field we consider the A-
formulation, that is we define the magnetic vector 
potential A by B = curl A. More, the domain is the 
same for temperature and the electromagnetic field 
although in practice the interest is for different field 
domains.  

The non-linear equations for T and A are 
straightforwardly obtained by a Galerkin's finite 
element method. For the 2D steady-state problems we 
do the approximations at the element level [8]: 

∑
=

=
r

j jTyxjNyxT
1

),(),(  

∑
=

=
r

j jAyxjNyxA
1

),(),(  

where the interpolation functions Nj are basis 
functions in the mesh over Ω, and r is the number of 
nodes of an element.  

The usual procedure for the FEM applications 
leads to a system of 2p equations where p is the total 
number of the unknowns in each field problem.  These 
non-linear equations can be solved by two different 
basic strategies [9]: 
• Solving the equations for Ti and Ai simultaneously 
• Solving the equations for the two fields in 

sequence with an outer iteration, technique known 
as operator-splitting technique (for example 
Newton-Raphson procedure) 

In the area of the first strategy, Gauss-Seidel and 
Jacobi methods are well known. We present these 
methods in brief [2]. For this, let us define the two 
discrete equations derived from the electromagnetic 
field model and the thermal field model in the form: 

0),...,,,...,( 11 =ppA TTAAf  

0),...,,,...,( 11 =ppT TTAAf  
where the subscript denotes the original problem 

(A – for the magnetic field in the magnetic vector 
potential formulation, and T – for the thermal field). 

The Gauss-Seidel algorithm for coupled fields has 
the following pseudo-code [9]: 

• For  m:=1 , 2, … until convergence DO 
• Solve  

0))1(,...,)1(
1;)(,...,)(

1( =−− m
pTmTm

pAmAAf

 with respect to A1
(m), … Ap

(m) 

• Solve 

0))(,...,)(
1;)(,...,)(

1( =m
pTmTm

pAmATf  

with respect to T1
(m) , … Tp

(m) 

 
In other words, the system is solved firstly with 

respect to A, using the values of T from the previous 
iteration. Afterwards, the equation derived from the 
thermal field model is solved using the computed 
values of A from the current iteration. The equations 
fA=0 or/and fT=0 are non-linear and must be solved by 
an iterative procedure (for example Newton-Raphson 
method). 

The algorithm Jacobi-type is similar to Gauss-
Seidel method, except that at the iteration m when we 
must solve the model for T, the values for A are from 
the previous iteration, that is A(m-1). The algorithm has 
the following pseudo-code: 
• For m:=1 , 2, … until convergence DO 

• Solve  

011
11 =−− ))(m

p,...,T)(m;T(m)
p,...,A(m)(AAf

with respect to A1
(m), … Ap

(m) 
• Solve 

0))(,...,)(
1;)1(,...,)1(

1( =−− m
pTmTm

pAmATf

with respect to T1
(m) , … Tp

(m) 

 
The domain decomposition method is the best 

among three possible decomposition strategies for the 
parallel solution of PDEs, namely, operator 
decomposition, function-space decomposition and 
domain decomposition [10]. This is one of the 
motivations to present the principles of the domain 
decomposition methods in this section. 

The domain decomposition could be determined 
from mathematical properties of the problem (real 
boundaries or interfaces between subdomains), or 
from the geometry of the problem (pseudo-
boundaries). For elliptic partial differential equations, 
there exists a mathematical approach based on the 
ideas given earlier in 1890 by Schwarz [1].  In 
Schwarz procedure there is an inherent parallelism 
with a data communication time for the passage of 
pseudo-boundary data between processors.  

There is no general rule for the domain or/and 
operator decomposition. It is defined in a somewhat 
random fashion. The problems and questions that 
appear in the decomposition technique are: 

• do domain decomposition or the operator 
decomposition 

• Which approach is the best: disjoint or 
overlapping sub-domains? 

• What kinds of boundary conditions are set up 
on the pseudo-boundaries of the sub-domains 
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• What kind of domain decomposition is useful 
for a particular problem: static or dynamic 
decomposition? 

 
 

4.1 Decomposition techniques 
The desire of the scientific community for faster 
processing on lager amounts of data has driven the 
computing field to a number of new approaches in this 
area [10]. The main trend in the last decades has been 
toward advanced computers that can execute 
operations simultaneously, called parallel computers. 
For these new architectures, new algorithms must be 
developed and the domain decomposition techniques 
are powerful iterative methods that are promising for 
parallel computation. Ideal numerical models are those 
that can be divided into independent tasks, each of 
which can be executed independently on a processor. 
Obviously, it is impossible to define totally 
independent tasks because the tasks are so inter-
coupled that it is not known how to break them apart. 
However, algorithmic skeletons were developed in this 
direction that enables the problem to be decomposed 
among different processors. The mathematical 
relationship between the computed sub-domain 
solutions and the global solution is difficult to be 
defined in a general approach. 

In the area of the coupled fields we define two 
levels of decomposition, that is we define a hierarchy 
of the decompositions:  

• One at the level of the problem 
• The other at the level of the field 

In other words, we decompose the coupled 
problem in two sub-problems: an electromagnetic 
problem and a thermal problem, each of them with 
disjoint or overlapping spatial domains. This is the 
first level of decomposition. At the next level, we 
decompose each field domain in two or more 
subdomains. The decomposition is guided both by the 
different physical properties of the materials, and the 
difference of the mathematical models. At this level of 
decomposition the Steklov-Poincaré operator can be 
associated with field problem [10]. This operator 
reduces the solution of the coupled subdomains to the 
solution of an equation involving only the interface 
values. One efficient and practical solution of elliptical 
partial differential equations is the dual Schur 
complement method [10]. 

 
 

5 Induction heating 
As target example we consider a long cylindrical 
workpiece excited by a close-coupled axial coil (figure 
1). The problem is an axisymmetric heating device. An 

axial section is presented in the figure 2 with 1- the 
workpiece, 2 – the air and 3 – the coil. The coil is 
assimilated with a massive conductor. In this case we 
can not ignore the eddy currents in the coil. 

We consider a low-frequency current in the coil so 
that the penetration depth is large. We can decompose 
the whole domain of the field problem into overlapped 
subdomains for the two coupled-fields.  

The domain for the magnetic field is the whole 
device bounded by a boundary at a finite distance from 
the device. For the thermal field we consider the 
workpiece as the analysis domain. The penetration 
depth of the magnetic field in the workpiece imposes 
the overlapping. The radiation plays an important role 
in induction heating at high temperature. Convection 
losses are small in through-heating, as the workpiece is 
contained in a shell which dos not permit air 
movement. In the case the workpieces are in the open 
air, the convection losses are very important. 

Fig.1 - Device for induction heating 

In Fig.2 an axial section is presented. The coil is 
assimilated with a massive conductor. In this case we 
can not ignore the eddy currents in the coil. We 
consider a low-frequency current in the coil so that the 
penetration depth is large. In this case we can 
decompose the whole domain of the field problem into 
overlapped subdomains for the two coupled-fields.   

The domain for the magnetic field is shown in the 
Fig. 3, that is a quarter of the device bounded by a 
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boundary at a finite distance from the device. For the 
thermal field we consider the workpiece as the 
analysis domain. The penetration depth of the 
magnetic field in the workpiece imposes the 
overlapping domains for the two fields [7]. The 
numerical model is considered in a cylindrical co-
ordinates with the vertical axis Or and the horizontal 
axis Oz. 

A complete mathematical model for coupled fields 
involves Maxwell’s equations and the heat conduction 
equation. Combining these equations yields a coupled 
system of non-linear equations. In a discrete form the 
unknowns are the nodal values of the temperature T 
and the magnetic vector potential A. 

For electromagnetic field we considered the A-
formulation, that is we defined the magnetic vector 
potential A by B = curl A. More, the domain was the 
same for temperature and the electromagnetic field 

although in practice the interest is for different field 
domains.  

 
 

5.1. Numerical results 
We can distinguish two practical cases: low frequency 
and high frequency. At high frequency the domain for 
the magnetic field can be reduced: a part of the 

workpiece is not penetrated by the magnetic field. The 
domain is the coil, the air and a layer of the thick. For 
the thermal field the analysis domain is the workpiece. 

 
Fig. 2 – Axial section 

Fig. 4 – Temperature vs. time in coil

The radiation plays an important role in induction 
heating at high temperature. Convection losses are 
small in through-heating, as the workpiece is 
contained in a shell that does not permit air movement. 
In the case the workpiece is in the open air, the 
convection losses are very important. 

 
Fig. 3 – The analysis domain 

The finite element method was used for the 
numerical results [8]. In Fig. 4 the temperature versus 
time in a point on the internal surface of the coil is 
plotted using the program Quickfield [11]. The initial 
temperature was 200C (293.15 K). The workpiece is a 
steel cylinder and the coil material is copper. The 
current intensity is 60000 [A] and the time duration is 
600 [s]. We considered both forced convection and 
radiation conditions. The convection coefficient is 50 
for the forced convection and radiation coefficient is 
0.8. 

In a numerical solution of the mathematical models 
for coupled problems, we determine an approximate 
solution for the unknown function at a finite number of 
discrete points in the domain. The finite element 
method (FEM) is presented in a large professional 
literature so that we do not discuss it. 
 
 
6 Inverse problems 
In this section we present some computational aspects 
for optimal control of the heat transfer in solids, both 
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for single system and coupled systems. For the single 
system we consider the case of the conduction heat 
transfer using as mathematical model the heat equation 
in space 2D. The functional cost (objective function) is 
a quadratic form [4].  
 
 
6.1.Optimal control by distributed-commands 
The general class of the problems dealt with this paper 
is governed by the following differential equation [5]: 
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where: u (x,y) is the temperature in the domain Ω C 
R2; C =C1 U C2 U C3 U C4 is the boundary of the 
domain;  h is a known function representing internal 
heat generation and f is the command (an unknown 
function). In (14) u0 is a known function (Dirichlet 
condition) and in (15) we have a Neumann condition 
with q -the flux on the boundary. On the boundary C3 
we have a convective condition (16) with α the 
convection coefficient and v the ambient temperature. 
On the boundary C4 we have a mixed-condition (as for 
example a convection and radiation condition), with g 
a known function. In (13)  kx , ky, are the thermal 
conductivities in the directions of the axes of the co-
ordinates system Oxy. In conditions (15)-(17), ∂/∂n is 
the directional derivative normal to the boundary C. 

We consider a functional cost by the form [3]  
   (18) dy dx)u-(uc=J(w) 2

D
 

0 ∫
Ω

with c0 - a given positive coefficient and uD - an 
imposed internal temperature distribution. This 
functional penalises the deviation of the temperature 
from an imposed (desired) distribution. 

The problem of the optimal control consists in the 
minimisation of the functional  (18), that is we seek a 
command f* in F (an admissible set) such that [7]: 

Ff   J(f);)fJ( * ∈∀≤  
in the conditions (13)-(17). Frequently, the set of 

admissible commands is by the form: 
}fff:)(L{f=F 2 maxmin ≤≤Ω∈  

Two practical cases appear: 

1.the positions (xi, yi) of the distributed sources are 
known and the intensities fi of these sources are 
required, that is the command function has the form: 

∑
=

−−=
n

i
iiii yyxxff

1

)()( δδ  

with δ the Dirac's function. 
2.the intensities fi are known and the positions are 

required. 
The first case is simpler than the second case 

because it doesn’t involve geometrical parameters in 
the design of the device.  

 
 

6.1.1. Necessary conditions for optimality 
We transform the constrained optimal control problem 
into an unconstrained problem through the 
introduction of adjoint function Φ. We define the 
augmented cost-functional by [3]: 
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Necessary conditions for optimality are derived by 
a variational approach. It is considered a variation δf in 
the command f that introduces a variation δL. From 
the first variation of L, results the adjoint equation [2]: 
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To obtain the optimal command f* (practically, the 
method of gradient projection), the algorithm proceeds 
as follows: 
1. make an initial guess of the command f0 and set 

the iterations counter n to zero; 
2. solve the state equation (13) with conditions (14)-

(17); 
3. solve the adjoint equation (20) with conditions 

(21)-(24); 
4. compute the new command: 

• )f n(Js.   (25) -f n=f 1+n ′
with s the length of the step in the antigradient 
direction. 

5. repeat the steps 20-40 until subsequent changes in J 
are less than a pre-set criterion. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Ion Carstea

ISSN: 1991-8763 593 Issue 6, Volume 3, June 2008



The length of the step s is determined by a one-
dimensional search technique [7] using the value of 
the  cost functional. 

 
 

6.2. Optimal control by boundary commands 
The general class of the problems dealt with this paper 
is governed by the following differential equation: 
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with specified boundary conditions. In (26) f is a 
known function that represents internal heat sources- 
the Joule Lenz effect and eddy-current losses. 

The boundary conditions are: 
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where: u (x, y) is the temperature in the domain Ω 
C R2 and C =C1 U C2 U C3 U C4 is the boundary of the 
domain. In (27) u0 is a known function (Dirichlet 
condition) and in (28) we have a Neumann condition 
with q -the flux on the boundary. On the boundary C3 
we have a convective condition (29) with α the 
convection coefficient and w the ambient temperature. 
On the boundary C4 we have a mixed-condition (as for 
example a convection and radiation condition), with g 
a known function. In (26)  kx and ky are the thermal 
conductivities in the directions of the axes of the co-
ordinates system Oxy. In conditions (28)-(30), ∂/∂n is 
the directional derivative normal to the boundary C. 

The mathematical model of the heat equation in 
space 2D, also is met in axisymmetric field, where the 
equation (26) becomes: 
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In a convective control, w can be chosen as a 
command variable. We consider a functional cost by 
the form:  

∫
Ω

−= dxdyDuucJ(w) )(0    (32) 

with: c0 - a given positive coefficient;  uD-an 
imposed internal temperature distribution. 

The functional cost has a practical significance: it 
penalises the deviations of the temperature in the 
domain from the imposed standard (uD). On the 
boundary C3 U C4 we apply a command w ε L2 (C) - 
the space of the integrable-squared functions, with g a 

known function. The boundary command w can be the 
temperature of the cooling medium that is we have a 
convective control like in (29) where the coefficient α 
is supposed constant or depends by the boundary 
temperature. In another practical case, the command w 
is the speed of the cooling medium (like in the oil-
immersed transformer), and g has the form g (u, 
w)=α(w)(u-u∞), where u∞ is the temperature of the 
cooling medium (supposed a constant). The 
dependence of α by w must be known but 
unfortunately this is a difficult task. It is determined 
from experimental data and is expressed using 
nondimensional parameters as Nusselt and Reynolds 
numbers. 

The problem of the optimal control consists in the 
minimisation of the functional  (32), that is we seek a 
command w* ε W (an admissible set) such that: 

   (33) Ww   J(w))w*J( ∈∀≤
in the condition (26), with specified boundary 

conditions (27)-(30). 
Frequently, the set of admissible commands is by 

the form [7]: 
}wwwL{w=W maxmin:)(2 ≤≤Ω∈  (34) 

 
 

6.2.1.Necessary conditions for optimality 
We transform the constrained optimal control problem 
into an unconstrained problem through the 
introduction of adjoint function Φ. We define the 
augmented cost-functional by [3]: 
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Necessary conditions for optimality are derived by 
a variational approach. It is considered a variation δw 
in the command w that introduces a variation δL. 
From the first variation of L, results the adjoint 
equation [5]: 
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The gradient of the cost-functional is: 
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The gradient method [4] can be employed to obtain 
the optimal command w* (or the method of gradient 
projection for the constrained problem). 

 
 

6.2.2. A numerical model 
For obtaining the optimal command w*, the gradient 
method can be used with good results, especially for 
the unconstrained commands. For this case the 
gradient method proceeds as follows [4]: 
• make an initial guess of the command w0, and set 

the iterations counter to zero; 
• solve the state equation (26) with conditions (27)-

(30); 
• solve the adjoint equation (36) with the conditions 

(37); 
• compute the new command: 

)w(Js.-w=w nn1+n ′    (39) 
• repeat the steps 20-40 until subsequent changes in 

J are less than a preset criterion. 
The length of the step s is determined by a one-

dimensional search technique. Recent developments 
allow replacing the step length rule by a trust region 
method. In the application program developed by the 
authors, it was used the following rule: an initial value 
for s is chosen and the functional-cost is calculated and 
if its value isn't less than the old value, the length of 
the step is divided to two and this procedure continues 
until the monotony of the functional is satisfied. The 
disadvantage of this rule is that it requires an iterative 
method to determine s at each iteration. The steps 20 
and 30 of the algorithm imply the solution of the state 
and adjoint equations. The finite element method was 
used to obtain approximate solutions in finite 
dimensional subspace.  

Finally, by assembling the element equations, 
results an algebraic equations system. The adjoint 
equation (36) and cost-functional are discretized in the 
same manner. 
 
6.3. Optimal control of the heat in electrical 
cables by boundary commands 
As target examples we consider an infinitely long 
coaxial cable with a stranded inner conductor carrying 
the direct current. This problem can be treated as a 
two-dimensional problem. The current density is a 
constant and this assumption is valid in the analysis 
and synthesis of electrical devices where the current 
density J is a specified constant in conductors and zero 
elsewhere. This inherent approximation becomes more 
and more valid as we use smaller and smaller 

triangles. In the alternating current, the skin effect 
appears but in the most practical systems the 
conductor is stranded (that is made up several tightly 
wound strands of conductor insulated from each other) 
so as to force the currents to flow through the entire 
cross section of the conductor. In this way we utilise 
the material better. Hence the validity of assuming 
uniform density as in direct current systems can 
simplify the computation. This assumption can lead at 
some practical applications. For such a system it has 
seen that the governing equation is (26). With the 
origin of the co-ordinates system in the centre of the 
cable, only a part of the entire domain is used. The 
convective command w is applied on the shield of the 
cable. The functional cost is by the form (32). We 
considered an averaged value of the gradient so that 
we can obtain a sub-optimal command. 

 
Fig. 5 – Analysis domain and mesh 

 
In this target example we consider a coaxial cable 

with a nonuniform current density and two insulation 
layers. In the figure 1 the analysis domain is presented. 
The geometrical dimensions are: conductor radius is 
15 mm, the outer radius of the first layer is 30 mm and 
the outer radius of the second layer is 50 mm. The 
resistivity of the copper was considered at the 
temperature 75 0C and equal to 1.78 .10-8 Ω/m.  The 
physical properties are the following: thermal 
conductivities kx=ky=385 W/m.0C in the copper and 
equal to k1=0.14 W/m.0C and k2=0.175 W/m.0C in the 
insulation layers; α=12 W/m2.0C .The current density 
is 5.0.10-5 A/mm2. The minimum value of J (w) was 
found to be equal to 5.604 for c0=0.0001. The number 
of iterations was 181 with the initial value of the 
command equal to 400C. The optimal command is 
63.95 0C for u =75 0C. D

 In numerical simulation it is considered a medium 
value of the gradient on the boundary, that is in the 
formula (39) the command w, at each iteration step, is 
a constant (a frequent case in industry where we 
consider an average value of the command variable). 
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Any case may be treated in the same manner (for 
example, a piecewise command or a local command).  
It is a sub-optimal  control but the accuracy of the 
solution is acceptable from the engineer’s viewpoint.   

 
 

7 Conclusions 
The problem of coupled fields and inverse problems in 
electrical engineering is a complex problem in terms 
of computing resources. In practice the coupled fields 
are treated independently in some simplified 
assumptions. The accuracy of the numerical 
computation is poor. With the new architectures, a 
multidisciplinary research is possible. Some iterative 
procedures were presented with emphasis on the 
coupled problems and inverse problems. 

In inverse problems we used a simple gradient 
technique. In the optimisation problems with 
restrictions we can use other techniques from the 
automatic control theory. In some previous works we 
used the method of the gradient projection. More, we 
can use a mixed control, that is, the boundary and 
distributed commands can be used.  

In many practical applications the optimisation can 
be done with respect a parameter. This parameter can 
be a physical or geometrical parameter. Usually the 
physical parameter is a material property as the 
conductivity, permitivitty etc. The physical parameter 
is the device shape. The latter is difficult because it 
involves the mesh reconstruction at each step of the 
optimisation algorithm. In our future research we 
develop software for shape optimisation of the 
electromagnetic devices. 

Domain decomposition offers an efficient approach 
for large-scale problems or complex geometrical 
configurations ([1],[10]). This method in the context of 
the finite element programs leads to a substantial 
reduction of the computing resources as the time of the 
processor.  

In coupled problems a hierarchy of decomposition 
can be defined with a substantial reduction of the 
computation complexity. 

Inverse problems in electrical engineering are 
complex problems that involve large resources in 
terms of computing. We presented some 
computational aspects with emphasis on simple 
gradient techniques. In our future research we shall 
develop algorithms based on gradient projection [5] 
and the second-order derivative of the functional cost. 
It is obviously that the algorithm complexity is 

increased by the accuracy of the optimisation solution 
is improved. 
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