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Abstract: - In this paper, we present an optimal adaptive fuzzy controller for a class of nonlinear systems with 
unknown nonlinear dynamics. The strategy of control is based on the fuzzy systems and linear matrix 
inequalities (LMI). The adaptive fuzzy logic system is used to approximate the unknown dynamics; we exploit 
the linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to design an indirect adaptive 
fuzzy controller. The auxiliary compensation control is added to attenuate the influence of external disturbances 
and to remove fuzzy approximation error. The design of the auxiliary control relies on LMI and the Lyapunov 
technique for achieving stability and specified performance. The adaptation laws of the adjustable parameters 
are deduced from the stability analysis, in the sense of Lyapunov, to get a more accurate approximation level. 
Simulation results are given to illustrate the tracking performance. 
 
 
Key-Words: - Nonlinear systems, Adaptive control, Fuzzy systems, Takagi-Sugeno Fuzzy Model, LMI, 
Lyapunov Approach. 
 
1 Introduction 
Traditionally, control system design has been 
tackled using mathematical models derived from 
physical laws. In fact, most of the parameters and 
structure of the system are unknown due to 
environment changes, modelling error and 
unmodelled dynamics. To overcome the above 
problems, several techniques, in particular, the 
intelligent technologies as neural networks, fuzzy 
logic, and genetics algorithm have been developed 
[2], [9], [12]. 

In the past few years, fuzzy control of nonlinear 
systems has been implemented successfully in many 
applications. In most of these applications, the so 
called Takagi-Sugeno (T-S) type fuzzy model is 
used to represent a nonlinear system [15]; then 
based on this model, a fuzzy controller is designed. 
Fuzzy logic, as one of the most useful approaches 
for utilizing expert knowledge, has been an active 
filed of research during the past decade [6], [11]. 
Fuzzy logic control has found promising 
applications for a wide variety of industrial systems 
specifically applicable to plants that are 
mathematically poorly modelled [10]. Based on the 
universal approximation capability, many effective 
adaptive fuzzy control schemes have been 
developed to incorporate with human expert 

knowledge information in a systematic way, which 
can also guarantee stability and performance criteria 
[7], [9], [12]. 

There have been many successful applications in 
fuzzy control in recent years. In spite of the success, 
there are still many basic issues that remain to be 
further addressed. Stability analysis and systematic 
design are certainly among the most important 
issues for fuzzy control systems [14],[16]. 

Some research has been focused on the 
Lyapunov synthesis approach to construct stable 
adaptive fuzzy controllers. The design procedure 
aims at rendering stable fuzzy controllers. More 
significantly, the stability analysis and control 
design problems and reduced to LMI problem [18], 
[14]. Numerically, the LMI problems can be solved 
very efficiently by means of some of the most 
powerful tools available to date in the mathematical 
programming literature. Therefore, recasting the 
stability analysis and control design problems as 
LMI problems is equivalent to finding solutions to 
original problems. 

In this respect, several direct and indirect 
adaptive fuzzy control schemes have been 
introduced for controlling nonlinear systems [5], [9], 
[11]. In the direct scheme, the fuzzy system is used 
to approximate an unknown ideal controller. On the 
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other hand, the indirect scheme uses fuzzy systems 
to estimate the plant dynamics and then synthesizes 
a control law based on these estimates. In these 
adaptive fuzzy control schemes, the controllers are 
generally composed of two main components.  

The ability of converting linguistic descriptions 
into automatic control strategy makes it a practical 
and promising alternative to the classical control 
scheme for achieving control of complex nonlinear 
systems. Recently, a great amount of the effort has 
been devoted to describing nonlinear system using a 
T-S fuzzy model [20]. 

Feedback linearization based on adaptive control 
is suitable for the control of nonlinear systems with 
accurate nominal models or linearly parametrical 
dynamical models. However, due to modelling 
errors, these controls may not be very effective 
without proper compensation to over came the 
modelling error effects [1], [4]. 

The basic idea of most of these works is that with 
the universal approximation ability of fuzzy 
systems, the systems uncertainties can be 
represented by linearly parameterized uncertainties 
so, that the standard parametric adaptive techniques 
can be utilized. 

First, we approximate this class of uncertain 
nonlinear systems by T-S fuzzy model. Then base 
on an LMI approach, we develop a technique for 
designing robust ∞H fuzzy state feedback and 
output feedback controllers such that gain of the 
mapping from the exogenous input noise to the 
regulated output is less than a presented value [19]. 
Thus, it is also very important to study the robust 
control against parameter uncertainties in the T-S 
fuzzy control systems.  

The apparent similarities between sliding mode 
control and fuzzy control motivate considerable 
research efforts in combining the two approaches 
for achieving more superior performances such as 
overcoming some limitations of the traditional 
sliding mode control [3]. 

Many adaptive fuzzy sliding mode control 
schemes have been proposed and the chattering 
phenomena in the controlled system can be avoided 
by using the fuzzy sliding surface in the reaching 
condition of the sliding mode control [3]. 

In order to improve the steady performance of 
the adaptive fuzzy sliding mode control, an adaptive 
fuzzy logic controller combining a proportional plus 
integral (PI) controller and the sliding mode control 
is considered in [3]. 

In this paper, an optimal adaptive fuzzy control 
is proposed for nonlinear systems. The controller is 
designed for a class of nonlinear systems with 
unknown nonlinear dynamics. 

The adaptive fuzzy model type T-S is used to 
approximate the unknown dynamics systems [5], 
[7]. The adjustable fuzzy parameters are updated on 
line by the adaptive algorithm. The stability and 
convergence analysis is ensured from the Lyapunov 
approach. The auxiliary compensation control is 
designed to attenuate the influence of external 
disturbances and the fuzzy approximation error. The 
design of this signal depends on the well-known 
upper bounds of both the approximation error and 
the external disturbances, which is a restrictive 
assumption due to the fact that these bonds are 
generally unknown.  

This paper is organized as follows: The problem 
formulation is presented in section 2. In section 3, 
the optimal fuzzy control design is proposed for 
nonlinear systems with unknown dynamics. In 
Section 4, simulation examples are shown to 
demonstrate the effectiveness of the proposed 
method. 
 
 
2 Problem Formulation 
For a class of nth order single input and single 
output (SISO) nonlinear systems in continuous time 
domain, the dynamics equation can be express as: 
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The ),( txf  is an unknown nonlinear continuous 
function, b  is a positive constant and )(td  is an 
unknown external disturbances. 

nT
n

Tn Rxxxxxxx ∈== − ],,,[],,,[ 21
)1( ……�  is 

the state vector of the systems which is assumed to 
be available for measurement. 

RtyRtu ∈∈ )(  and  )(  are, respectively, the 
scalar control input and the scalar output of the 
system. 

The objective of the control is to determine a 
control law )(tu  to force the system output )(ty  to 
follow a given bounded reference signal )(tyr  ,that 
is to minimise the tracking error )()( tytye r−=  
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and its forward shifted values, defined as 
)()()( )()( i

r
ii tytye −= . 

Assume that the given reference ry  is bounded 
and have up to ( 1−n ) bounded derivatives. 

The reference vector is denoted as: 
[ ]Tn

rrrr
yyyy   ,, , )1( −= …� . 

Then the tracking error vector is given by:  
nTn Reeee ∈= − ],,,[ )1(…� . 

It is desired that the output error of the system 
follow:  

00
)1(

1
)( =+++ −
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To ensure a good tracking, the selection of 

1,,2,0 , −= niki …  must satisfy the following 
Hurwitz polynomial:  

0
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n
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All roots of S are situated in the left-half-complex 
plane. 

In general, the system is unknown and the design 
of the control law is confronted with many problems 
due to environment changes, modelling errors and 
unmodelled dynamics. 

In this work, we propose a fuzzy system to 
approximate the unknown function and to use the 
LMI and Lyapunov approach for solving the 
problem of stability and tracking performance. 

We remark that, when the system (1) is well 
known, free of the external disturbances, 0≠b  and 
to guarantee that the state x  of the closed-loop 
system will follow the desired state

r
y , in other 

words, the tracking error will converge to zero, the 
control should be designed to have the following 
idealized control law [3]: 
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However, the control law (3) can not be 
implemented for large-scale system with unknown 
dynamics. Thus, the adaptive fuzzy system will be 
used to approximate the unknown dynamics.  
 
 
3 Optimal Adaptive Fuzzy Control 
Design  
The adaptive optimal fuzzy control is designed for a 
class of nonlinear system with unknown nonlinear 
dynamics. The strategy of control is based on fuzzy 
system, LMI and Lyapunov approach to ensure 
stability, tracking and consistent performance. 

At first part, the dynamics system ),( txf  is 
estimated by the adaptive fuzzy model type T-S.  

The T-S fuzzy model is widely accepted as a 
powerful tool for design and analysis of fuzzy 
control systems and applications of the T-S models 
to various kinds of nonlinear systems can be found. 
The T-S fuzzy model uses smooth aggregation of 
local linear mathematical models to represent 
dynamical systems, which are useful because they 
can provide description of a physical phenomenon 
or a process, and can be well suited to analysis, 
prediction and design of dynamic control systems. 

The fuzzy parameters can be tuned on-line by 
adaptive law based on Lyapunov approach.  

In the second part, the auxiliary part of control is 
used to suppress the external disturbances and to 
remove fuzzy approximation error. The design of 
this control law is derived from LMI and the 
Lyapunov approach. 

In the proposed design procedure, we represent a 
given nonlinear system by the so-called T-S fuzzy 
model. This fuzzy modelling method is simple and 
natural. The system dynamics is captured by a set of 
fuzzy implication which characterizes local relations 
in the stable state space. The main feature of T-S 
fuzzy model is to express the local dynamics of each 
fuzzy implication (rule) by a linear system model. 
The overall fuzzy model of the system is achieved 
by fuzzy blending of the linear system models. 

Specifically, the T-S fuzzy system is described 
by fuzzy if-then rules, which locally represent linear 
input-output relations of a system. The fuzzy system 
is of the following form: 
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where ),,1( MjRj …= denotes the j th  
implication, niF j

i ,,1, …=  are fuzzy variables 
characterized by membership functions 

jiF
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i
θμ  and)(  is the corresponding value of the 

output fuzzy singleton. 
The output of the fuzzy system with singleton 

fuzzification, product inference and centre average 
defuzzification can be expressed as: 
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where M is the total number of the fuzzy rules, 
T

M ],,,[ 21 θθθθ …= is the adjustable parameter 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
Manuscript received Oct. 30, 2007; revised Jan. 18, 2008 I. Lagrat, A. El Ougli, I. Boumhidi

ISSN: 1991-8763 91 Issue 2, Volume 3, February 2008



vector grouping all consequent parameters and 
T

M xxxx ])(,,)(),([)( 21 ξξξξ …= is the vector of 
the fuzzy basis functions. 
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The fuzzy system (5) is assumed to be well 
defined so that ∑ ∏= =

M

j

n

i iF
xj

i1 1
))(( μ for 

all nRx∈ . 
The fuzzy system (5) is a universal approximator 

of continuous functions over a compact set if its 
parameters are suitably selected. 

We define the optimal parameters vectors and 
fuzzy approximation error as:  
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),(ˆ),( ∗−= θxftxfw  

fΩ is the convex compact sets, which contain 
feasible parameter sets forθ , 

{ }f
n

f MR ≤∈=Ω θθ , 

 fM is given constant. 
Sufficient conditions for the stability of T-S 

systems were first proposed [17]. These sufficient 
conditions required the existence of a positive 
definite matrix P. 

This would satisfy a set of Lyapunov 
inequalities. 

This problem is transformed into a minimization 
problem subject to a LMI, which can be solved 
efficiently by using the existing convex optimization 
algorithms [13]. 

The controller design is based on the fuzzy 
system and the LMI optimization techniques. 

If there exist a matrix 0>P  , satisfying the 
following LMI: 
                           0<+ PAPAT          (8) 
where A  is given by:  
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We can use LMI convex programming 
techniques to solve this stability analysis problem.  

In this paper, we will make the following 
assumptions regarding the system (1) 
 
 

Assumptions: 
1) There exist a function uf positive such 

that uftxf ≤),( . 
2)  The unknown external disturbance is 

bounded and satisfies the condition as 
follows max)( dtd ≤ where maxd  is upper 
bound. 

We present a design methodology for control of 
a class of unknown nonlinear systems. First, we 
present a nonlinear plant with T-S fuzzy model. 
Whereas, the auxiliary control action is added to 
attenuate the influence of external disturbances and 
to remove fuzzy approximation error. 

The proposed fuzzy control law is as follows: 
rc uuu +=                                                                (9) 

In real system, ),( txf is unknown. Thus, it is 
impossible to generate the control law (3). To 
overcome these difficulties, we use fuzzy system 

),(ˆ θxf to approximate ),( txf , we introduce a 
certain type of fuzzy system that is based on T-S 
fuzzy model to approximate nonlinear system. Then 
the idealized control law (3) can be approximated as 
follows: 

]),(ˆ[1 )(1

0
)( in

i i
n

rc ekyxf
b

u ∑ −

=
−+−= θ                 (10) 

In order to obtain a good results and tracking 
performance, we can use the auxiliary action 
control. The synthesis of this control relies on LMI 
and Lyapunov approach. 

The auxiliary control part is given as: 

[ ]max
ˆ)(1 dffPBesat

b
u uT

r ++−= ∗              (11) 

The function )( PBesat T  may be written as: 
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ε  is a small positive constant.  
The adjustable fuzzy parameters can be tuned 

on-line by the adaptive law based on the Lyapunov 
technique. In order to guarantee that the adaptive 
parameters are bounded, we introduce the projection 
operator [10], to restrict them in the closed set fΩ . 
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The projection operator is given by: 
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where γ  is fixed adaptive gain. 
 
 
Theorem: 
Consider the nonlinear system (1), satisfying the 
assumptions (1-2). If there is a matrix 0>P  
satisfying the LMI: 0<+ PAPAT , the optimal 
fuzzy controller is chosen as (9) with parameter 
adaptation law (13), then the proposed fuzzy control 
scheme can guarantee that: 

i) all the variable of the closed-loop 
system are bounded 

ii) the tracking performance is achieved.  
 
 
Proof: 
Consider the system (2) 

)()(),()( tdtbutxfx n ++=  
Substituting (9) and (10) into (2), the output error 
dynamics can be expressed as: 
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After some manipulation, the error dynamic can be 
represented by: 
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(15) 
with nRB∈ , defined by:  
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Consider the following Lyapunov function: 
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where θθ −=Φ ∗  and γ is a positive constant 
specified by the designer. 
The time derivative of V along the trajectories of 
(15) equals 
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By consideration of the update law (13) and 
satisfying assumptions, V� can be written as: 
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with P verifying the LMI form: 
0<+ PAPAT  

Then 
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0≤V�  
This completes the proof of the theorem. 
 
 
4 Simulation Results 
To illustrate the effectiveness of the proposed 
adaptive controller, we test our proposed controller 
on two nonlinear systems. The first example is a 
regulation problem of a nonlinear servomechanism 
[8]. The second example is to let the doffing forced-
oscillation system to track a desired trajectory [10]. 
 
 
Example 1: 
The nonlinear servomechanism is modelled by the 
following second order differential equation: 

dqfqlqm +=Δ++ τ)(���       (23) 
q� : Velocity 
q : Position 

)(qfΔ : Nonlinear term depending on q . 
A,m : Mass and damping, 

τ : Torque 
d : Disturbance included in order to test the 
robustness of the adaptive controller against external 
disturbances. 

We suppose that the position  1 qx = and the 
velocity qx �=2 are available from measurements. 

The dynamic equations of the servomechanism 
can be described in space state as: 
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u

xflxtxf )(),( 12
. 

The control objective is to maintain the system to 
track the desired angle trajectory: 

)015.0sin(*2 tyr =  
The parameters are given as: 

1  ,1 == lkgm  
)0015.0cos(*01.0 td =  

Choose the initial condition:  

0)0( and 3)0( 21 == xx  
The adaptive gain  5.0=γ  with 

1 ,  10 21 == kk  and 1.0=ε . 
The choice of the number of fuzzy set and the 

constant fM  is related to knowledge of expert on 
the system.  

For simplicity, we consider 5.1=fM and the 
fuzzy membership functions are chosen as in Fig.1. 

Then there are 9 rules to approximate the 
primary control law ),(ˆ θxf . 
P  is given by solving the LMI form (8), using the 
Matlab Toolbox:  

⎥
⎦

⎤
⎢
⎣

⎡
=

1815.00614.0
0614.07052.1

P . 

The function uf  as defined by: 

2xf u =  
From Fig.2, it can be seen that, the tracking 

performance is obtained with unknown nonlinear 
dynamics in presence of disturbances, and it is 
proven by Fig. 5, where the tracking error is 
illustrated. 

The corresponding fuzzy control signal is shown 
in Fig.3. The tracking performance of the velocity is 
shown in Fig. 4. 

 

 

Fig.1 Membership functions 
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Fig.2 Reponses of the )(ty and )(tyr  

 

Fig.3 The control signal )(tu  

 

Fig.4 Reponses of the 2x  and )(tyr�  

 

Fig.5 The tracking error 
 
 
Example 2: 
In this example, we consider the Duffing forced 
oscillation system. The equation which describes the 
motion of the system is defined by: 

⎪
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The desired trajectory is chosen as follows:  
)01.0sin(*6.0)( ttyr =  

Let 7 and 1 21 == cc . 
The initial values of .1)0( and 4.0)0( 21 == xx  
Let the adaptive gain  5.0=γ , 1=fM and 

1.0=ε . 
The external disturbance is represented by 

)cos(12)( ttd ∗=  included in order to test the 
robustness of the adaptive controller against external 
disturbances. 
The solution to LMI (8) using the Matlab Toolbox 
is:  

⎥
⎦

⎤
⎢
⎣

⎡
=

1068.01769.0
1769.02580.1

P . 

The upper function uf is presented as follows:  

2
3
1 xxf u += . 

To construct the fuzzy approximators ),(ˆ θxf , 
we define fuzzy sets for component of each 

  and 21 xx with the memberships function for 
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system state is represented in fig.6. Hence, there are 
14 rules to approximate ),(ˆ θxf . 

Fig.7, demonstrates the tracking performance in 
presence of disturbances. The corresponding fuzzy 
control signal is given in fig.8. 

 

 

 

Fig. 6 Membership functions 

 

Fig.7 Reponses of the )(ty  and )(tyr  

 

Fig. 8 The control signal )(tu  

 

Fig. 9 Reponses of the 2x  and )(tyr�  
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Fig.10 The tracking error 

 
Fig. 9 shows the response of the 2x  and )(tyr� . 

Fig. 10 illustrates the tracking error, which 
converges to zero. These results demonstrate the 
good performance of our proposed approach. 
 
 
5 Conclusion 
In this paper, we have presented an optimal adaptive 
fuzzy controller for a class of nonlinear systems 
with unknown dynamics. We have introduced the 
fuzzy controller combining LMI and Lyapunov 
approach to ensure the stability, robustness and 
tracking performance. 

The adaptive fuzzy logic system type T-S is used 
to approximate the unknown nonlinear dynamics. 
The auxiliary part of control is implemented to 
improve the system performance by suppressing the 
influence of external disturbance and removing the 
fuzzy approximation error. 

The adaptation laws of the adjustable parameters 
are deduced from the stability analysis, in the sense 
of Lyapunov, to get a more accurate approximation 
level. 

The simulation results have shown that the 
proposed control strategy can guarantee the system 
stability as well as maintain a good tracking 
performance. In our future works, we will develop 
the new structure of control method of the complex 
and nonlinear system using the genetics algorithm 
combined with the fuzzy system. 
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