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Abstract: - This paper proposes the use of radial basis function neural networks approach to the solution of a 
mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the 
mobile robot, a neural network control system has been constructed and implemented. Neural controller has 
been charged to enhance the control system by adding some degrees of award. Making use of the potential of 
neural networks to learn the relationships, the desired reference orientation and the error position of the mobile 
robot are used in training. The radial basis function based neural networks have been trained via reinforcement 
learning. The performance of the proposed controller and learning system has been evaluated by using a mobile 
robot that consists of a two driving wheels mounted on the same axis, and a free wheel on the front for balance. 
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1 Introduction 
Desired orientation adjustment and trajectory 
tracking problems for the mobile robots have been 
studied by the researchers over the last decade [1-3]. 
It is seen from the related research that extensive 
efforts have not been spent on the robustness of the 
control of the mobile robot orientation control [1-5]. 
Although most of the studies have been conducted 
on solving the problem of motion under non-
holomonic constraints using the kinematic model, 
there is limited number of studies related to the 
problem of kinematic controller and the dynamics of 
the mobile robot [6, 7]. 

One of the problems in mobile robotics is the 
estimation of the robot position in its working 
environment. In order to solve this problem, some 
models have been developed. The idea behind these 
models is first to estimate a confidence interval of 
the robot position and then to compare it with the 
estimation obtained from robot’s dead reckoning 
system. Neural network strategies have been applied 
in these models where network can adapt itself in 
real-time to changing conditions and learn [22]. 
Neural network control strategies have also been 
applied to the applications of autonomous 
navigation with obstacle avoidance, path planning 
and multiple targets tracking of mobile robots [23, 
24, 25]. 

Another intensive use of neural networks takes 
place in applications consisting of intelligent and 

adaptive control [8, 9]. In order to control the 
nonlinear dynamics of the mobile robots, use of 
neural networks has been performed. These 
applications make use of the prominent advantage 
of neural networks; ability to learn and good 
performance for the approximation of nonlinear 
functions [10, 11, 12, 13].  

Traditionally the learning capability of a 
multilayer neural network has been applied to the 
navigation problem in mobile robot applications. In 
these approaches the neural networks are trained in 
a preliminary off-line learning phase with 
navigation pattern behaviors [7, 15, 16]. 

Often, the control systems, which are used on the 
mobile robot applications, utilize multilayer neural 
networks. However, the robustness of the system to 
be controlled cannot be increased and high degrees 
of nonlinearities cannot be avoided by using the 
multilayer neural networks [14]. 

Ever so often, mobile robots are constructed with 
simple control schemes such as PID control. 
However, the capability for manual regulations of 
the parameters of the controller is to be deficient in 
order to compensate for disturbances acting upon 
the mobile robot such as deriving the mathematical 
model of the system with the ground interaction 
(i.e., including friction forces or observing 
differences of the inertial forces between one the 
modeled and the one obtained from the real case). 
After obtaining the proper controller parameters of 
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the system manually, the controller adapted to the 
system is expected to work well generally for small 
fluctuations. In the case of encountering a large 
fluctuation/disturbance, however, the controller 
parameters have to be continuously adjusted 
otherwise, the robot’s performance will significantly 
be degraded. Since some parameters such as desired 
speed, terrain characteristics, motor voltage and 
current flow, tire inflation are going to change 
during operation, the parameters of the controller 
should be regulated continuously. Using fixed or 
manually changed controller parameters is at the 
bottom line not practical when robot dynamics is 
subject to continuous change.  To minimize human 
intervention and to improve robot performance, the 
control system should be able to modify its 
parameters automatically under varying conditions. 

In this paper, in the first section, some well 
known mobile robot platforms are going to be 
introduced briefly. Section is completed with a 
comparison chart indicating the types of neural 
networks structures and learning strategies adapted 
to these robots. For this work, radial basis function 
based neural networks approach has been chosen 
since multilayer neural networks can exhibit highly 
nonlinear behaviors. In order to increase the 
tracking robustness, a reinforcement learning 
strategy has been adopted. Radial basis function 
neural networks and the proposed learning strategy, 
reinforcement learning, have been adapted to the 
control of the specified mobile robot model. By 
using this adaptation, the control system is going to 
be introduced some degree of robustness.  
 
 
2 Overview of Mobile Robots 
Mobile robots are used in a variety of environments 
for achieving different tasks. There is a 
differentiation between operational environments 
that is based on whether the robot operates indoors 
or outdoors. Indoors generally provide well 
structured environments with smooth surfaces to 
detect and to move on. On the other hand outdoor 
environments might appear in various conditions 
such as smooth, rough or mixed terrain. Some 
common indoor robotic tasks are given as; cleaning, 
patient assistance, surveillance, etc. The major 
difference between indoor and outdoor applications 
is that, outdoor, the outdoor environment is almost 
never controlled, motion planning and execution is 
more complex and the robot can frequently 
encounter unexpected situations.  
 

  
          (a)                              (b) 

Fig. 1. Sojourner [31] and Pioneer [32] 
 

The popular one among the mobile robots is 
Sojourner shown by Figure 1-a. It was constructed 
for the mission of exploring planet Mars. Pioneer 
mobile robot base was constructed for the 
exploration of Sarcophagus at Chernobyl (Figure 1-
b). Mobile robot platform Koala was designed for 
easy use and easy transportation shown by Figure 2-
a. Compact size, modularity and easy control are 
noticeable features of the robot Koala. Packbot is a 
tough, light weight mobile robot (Figure 2-b).  
 

  
                           (a)                              (b) 

Fig. 2. Koala and Packbot [33] 
 

Packbot was constructed for searching explosive 
ordnance disposal, search and surveillance. The 
robot can also be aimed for the vital tasks like bomb 
squads, swat teams and so many military purposes. 
MR-5 shown in Figure 3 is a mobile robot platform 
developed for searching hazardous environments. It 
can operate in any weather and terrain condition.  
 

 
Fig. 3. MR-5 [34] 

 
A powerful mobile robot, Nomad, was 

constructed for Antarctic applications (Figure 4). It 
can operate autonomously without any external 
intervention. 
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Fig. 4. Nomad [35] 

 
In the section overview of mobile robots, some 

of the famous mobile robot platforms have been 
given. These robots have been effectively used for 
special tasks for a while. All these robots have to 
follow a given reference trajectory. Therefore a 
control strategy for having a successful trajectory 
tracking must be used.  

As seen from Table 1, specified mobile robot 
platforms have been controlled via neural networks 
control approach. In that table, types of neural 
networks which have been used for a specific 
application of the robot are given. Furthermore 
methods of neural networks approach are used due 
to their learning capability. In Table 1, the learning 
rules, which have been used to give the learning 
capability to the mobile robot, are also given. The 
abbreviations used in Table 1 are as follows: SL, 
ML, RBF and RC denote single layer (neural 
network) NN, multi layer NN, radial basis function 
NN and recurrent NN, respectively. RL, SL, USL, 
and QL denote reinforcement learning, supervised 
learning, unsupervised learning, and Q learning, 
respectively. Consequently it can be observed from 
Table 1 that radial basis function based neural 
networks have not been fully adapted to the 
specified mobile robots. Furthermore, reinforcement 
learning procedure and radial basis function neural 
networks have not been combined and employed for 
a purpose that is about tracking of a given desired 
orientation profile.    
 
Table 1. Neural network control of the some of the 
commonly used mobile robot platforms  

 
 
 
 

3 Neural Network Structures and 
Learning Algorithms 
A neural network is composed of numerous neurons 
that are connected in different ways. Figure 5 shows 
the atomic structure of a network, namely a neuron. 
 

 
Fig. 5. Simplified structure of a network 

 
There are some types of neural networks 

structures that can be used for determining and 
controlling the system. The mostly used ones are 
single-layer neural networks, multilayer networks, 
radial basis function based neural networks and 
recurrent neural networks. Feedforward neural 
networks can be built by single-layer networks 
which is the simplest form. Fundamentally this type 
of networks is composed of a single neuron (Figure 
6). In order to regulate the weights of the networks 
for the system changes, the learning algorithm can 
be developed by the single-layer networks strategy 
[26, 27]. The learning algorithm for adapting the 
weights of the networks can be summarized as:  
 

 )()()()1( kukekk ηωω +=+  (1)
 
where u is the input signal, e is the error, and η is 
the design parameters. Note that this algorithm 
supposes a global minimum due to errors that 
depends on the weights.  
 

 
Fig. 6. Single-layer neural network 

 
Single-layer and multi-layer neural network 

structures deviate from each others by presence of 
one hidden layer(s) as seen from Figure 7. In each 
layer all neurons have their inputs. At the same time 
these inputs are output signal of the behind layer. 
For the multilayer neural networks structure, 
networks may be partially-connected or fully-
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connected by connections of every neuron in the 
adjacent forward layer. The special characteristics 
for a multilayer perception may be given as follows: 
a chance of a high degree of connectivity of the 
network, possibility of having one or more hidden 
layers and smoothness of the activation function of 
each neuron. Multilayer neural networks strategy 
has also ability for learning. Therefore, it may be a 
powerful networks type for some applications. 

 

 
Fig. 7. Multilayer neural network  

 
In order to encode the on time information 

coming from the controlled system by using static 
neural networks, delay inputs and outputs may be 
introduced to the networks. In such a way, there are 
some restrictions due to encoding a limited number 
of previous evaluated outputs and affecting inputs. 
Using such a strategy requires amount of time, 
memory and computation power. Hence recurrent 
neural networks emerged. As seen from Figure 8 
recurrent neural network is apart from the static 
neural network in that it has a feedback. There is a 
chance using recurrent neural networks that a 
learning algorithm can be implemented to such a 
network. 

 
Fig. 8. Recurrent neural network 

 
Radial basis function (RBF) was developed for 

solving the multivariate interpolation problem [27]. 
The RBF and neural networks application were first 
combined and reported in [28]. The basic principle 
of RBF neural networks is that it consists of multi-
dimensional variables. They are related to the 
distance between the input vectors, u and a center, 
Mc, where the distance, d, can be calculated as: 

 

 ( ) ( )cucud T −−=  (2)
 
The RBF neural networks has a feed-forward 

structure that consists of a single hidden layer 
locally tuned units. The units are fully 
interconnected to an output layer of linear units 
shown in Figure 9. The RBF neural networks have 
three different layers. The structure of the input 
layer is constructed from input neurons. Through the 
instrumentality of the RBF, these neurons are used 
for nonlinear transformation of the inputs. And the 
last layer should be the output layer. 
 

 
Fig. 9. Radial basis function neural network 

 
Different types of functions may be used in 

RBFs, and commonly used ones can be listed as 
follows; 

 
 function)(linear   )( ddf =  (3)
 function) (cubic  )( 3ddf =  (4)

 function)(Gaussian   )( 2

2

2σ
d

edf
−

=  
(5)
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A special but commonly used RBF network 

assumes a Gaussian basis function for the hidden 
units given in Equation (5). A general mathematical 
representation for the RBF neural networks given in 
Figure 9 can be given by: 
 

 ( )∑ =
−==

n

i
rii icufuFy

1

2)( ω (7)
 
where ω is the weights, f(.) is the RBF, u is the 
input, c is the center, r is the radius and n is the 
number of the neurons. The distance can be defined 
as: 
 

 
( ) ( )

i

i
T

i
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 (8)
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Another way to but the same equation can be 
given as follows: 

 

 ( ) ( )ii
T

iri cucucu i −∀−=− −12
 (9)
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The matrix 1−∀i  can be interpreted as a 

covariance one. If matrix Ri is given as following, 
then an elliptic radial base may be obtained. 
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The Equation (3) can be given into a form which 

is one of the most popular RBF based on Gaussian 
functions: 
 

 ( ) ( ) ( )ii
T

iri cucucuf i −∀−=− −12
exp (10)

 
The RBF neural networks of which the 

mathematical representation is given in Equation 
(10) has the power of approximating any continuous 
nonlinear function to a linear one [29]. Thus this 
property is a reason for preferring this strategy into 
robot control applications. 

One of the most significant properties of a neural 
network is that it gives an opportunity to learn. 
Neural network can learn via performing an 
interaction with its environment and its information 
sources. In order to enhance the performance of a 

system that is controlled by a neural network, a 
learning rule is activated in that network. By means 
of adapting the weights of the networks according to 
a range of predefined performance, learning can be 
achieved. In other words, learning process is carried 
on the parameters of a weight space for obtaining a 
best solution and the process tries to optimize the 
predefined objective function. There are a few 
number of learning algorithm rules which are 
commonly used by the researchers. Some of them 
are supervised, unsupervised, competitive and 
reinforcement learning. In the supervised learning 
strategy, every input that comes from the working 
environment is forced to collaborate with a desired 
reference input. In the unsupervised learning 
procedure, it is the objective that the performance 
function defined based on the output of the network 
should be optimized. In the competitive learning 
strategy, the simple architecture is assumed. That 
means a single-layer is activated. Each of the single-
layer units are encountered the same input and they 
produce outputs.  

In order to construct a general learning 
procedure, the error can be defined for N training 
examples; 
 

 ∑ =
=

N

k
ke

1
2 )(

2
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with 
 

 ( )∑ =
−−=
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i
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1
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The quadratic errorε can be minimized with 
respect to iω , ic  and ir . The algorithm process can 
be performed by analyzing these parameters (weight 
regulation, center regulation or radius regulation). In 
the process of network, weight is continuously 
changed, weight adaptation should be performed. In 
case of changing weights, using the gradient 
descent, weights can be regulated as given in 
Equation (13). 
 

 )(
)()1(

k
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i
wii ω

εωω
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While chancing weights of the networks, centers 

should be updated. The adaptation of the centers can 
be performed as: 
 

 )(
)()()1(
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The regulation of the radius can also be 

performed as given in Equation (15). 
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In Equations (13-15), i terms are changing from 

1 to n. wh , ch  and rh  are the design parameters 
and they can be related with the following range. 
 

wcr hhh <<  
 

Reinforcement learning is a process of trial and 
error designed to maximize the expected value of a 
criterion function known as a reinforcement signal 
[30]. The fundamental idea of the reinforcement 
learning is that if an action is followed by nearby the 
desired action, then the desire of the action is 
awarded. Otherwise, that of the action is weakened. 
In other words, action may be reinforced or 
unreinforced according to the planned events. 
Reinforcement learning requires that the weights of 
the neural networks should be updated for every 
response and produced an evaluated signal. By this 
way, for a desired reference, the probability of 
award is tried to maximize. 
 
 
4 Modeling of Mobile Robot’s Motion 
The mobile robot considered here is shown in 
Figure 10. It has two driving wheels mounted on the 
same axis, and a front passive wheel for balance. 
The two driving wheels are controlled 
independently by DC motors. The dynamic property 
of the mobile robot and the kinematic relationships 
are given by the following equations [16, 20].  

 
 2 2r lI f b f bφ = −&&  (16) 
 r lmv f f= +&  (17) 
 ),(    lrirfpucI iiivit =−=+ θθ &&&  (18) 
 2rr v bθ φ= +& &  (19) 
 2lr v bθ φ= −& &  (20) 

 
where m is the mass of the mobile robot. fl and fr are 
the driving forces for the left and right wheels. 2b is 
the distance between left and right wheels. ф is the 
orientation of robot according to the absolute 
coordinate system OXY. I and It are the moment of 
inertia of the mobile robot and wheel, respectively. r 
is radius of the wheel. cv and p are viscous friction 

and stiffness coefficients, respectively. u  is driving 
input. θ is rotational angle of the wheel. v is velocity 
of the mobile robot.  

Using the equation sets given above, one can 
define the state variables for the mobile robot as;   
 

 [ ]Tvx φφ &    =  (21)
 

The manipulated input and output variables are 
constructed as; 
 

 [ ]Tlr uuu   =  [ ]Tvy φ  =  (22)
 

 
Fig.10. Model of the mobile robot. 

 
State space representation of the system is given  

as;  
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Equation (23) can be represented as; 
 

 
x Ax Bu
Y Cx
= +
=

&
 (24)

 
The governing equation for the mobile robot’s 

motion can be given as; 
 

 ( )1 1 r lv a v b u u= + +&  (25)
 ( )2 2 r la b u uφ φ= + −&& &  (26)
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5 Design of the Control System that 
Contains RBF-NN and Learning 
Mechanism  
The proposed radial basis function neural networks 
control system is given in Figure 11.  

The control system consists of the model, radial 
basis function neural networks controller, reference 
desired orientation generator, learning mechanism 
structure, controller parameters regulator and a 
reference model for generating the reinforcement 
learning signal. 

 

 
Fig. 11. Mobile robot motion control system [19]. 

 
 

5.1 Construction of Radial Basis Function 
Based Neural Networks  
The proposed radial basis function based neural 
networks is shown in Figure 12. ui is the inputs 
(i=1,2,…,n) and y=F(u) is the output as given in 
Equation (7). Here whole radial basis function 
neural networks in process are denoted by F(u). The 
input to the receptive field unit is u and its output is 
shown by )(uΓ  and given in Equation (28). The 
receptive field unit has award, iξ  
Let the receptive field unit be 
 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=Γ 2

2

exp)(
i

i
i

G

cu
u  (28)

 
where Gi  is Gauss spread function. 

The parameters of the neural networks should be 
regulated. These regulations are performed in order 
to obtain better response. The regulation conducted 
on the structure of the neural networks is to be 
related with modifying of the awards of the 
receptive field units continuously. It is assumed that 

the awards of the receptive field units have been 
regulated by the approach; 
 

 ( 1) ( ) ( 1) ( )i i ikT kT kT kTξ ξ+ = + + ΓD (29)
 
where ( )i kTΓ  is the output of the ith receptive field 
unit, ( )kTD  is the reinforcement signal. 
 

 
Fig. 12. Proposed radial basis function based neural 

networks model. 
 
 
5.2 Learning Process 
In order to obtain good response from the system 
that is controlled, reinforcement learning strategy is 
one of the preferred adaptive control approaches. In 
this study, a proper reinforcement learning 
procedure for the radial basis function neural 
networks has been developed. For this procedure, 
the basis of the mechanism is regulating the neural 
networks by reinforcement signal. That signal is 
generated via reinforcement function,D . The 
procedure guarantees that the mechanism tries to 
learn. It can achieve this task by evaluating the 
generated plant input and the measured plant output 
(plant denotes the mathematical model of the mobile 
robot). The reinforcement learning structure checks 
whether the action fails or not.  

After the action is performed, the response is 
evaluated by the target. In case of approaching the 
target, the award of the learning mechanism is 
weighted. If result is the direct contrary, the award 
of the signal is to be weakened. While the control 
system evaluates the relationship between the 
generated plant input and the measured plant output, 
it efforts to learn how the system behaves, how the 
system is detained into the range of desired field and 
how the action reaches the target. 

The reinforcement function, which generates the 
reinforcement signal, fulfills its mission using the 
data collected from the system. In order to create a 
reinforcement function generally a reference model 
is used [19,21,22]. The reference model is 
constructed for organizing the performance of the 
system. The model tries to generate signal which 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Gokhan Bayar, E. Ilhan Konukseven, 
A. Bugra Koku

ISSN: 1991-8763 1008 Issue 12, Volume 3, December 2008



corresponds the output of the plant. Reference 
model can be selected by the designer as a first, 
second or higher order transfer function. In this 
work, reference model has been selected as a first 
order transfer function for obtaining a smooth 
response and it is given in Equation (30).  

 

 ( ) bG s
s a

=
+

 (30)

 
Reference model can be given in discrete form as;  
 

 ( )
(2 ) ( ) ...1( )

( ) ( )2
rm

rm

aT y kT T
y kT

T R kT R kT TaT ξ

− − +⎛ ⎞
= ⎜ ⎟⎜ ⎟+ −+ ⎝ ⎠

 (31)

 
yrm and R denote input and output of the reference 
model in discrete form, respectively. After giving 
reference input, the difference between the response 
of the system and the response of the reference 
model produces the error. The error form is given 
as;  
 

 ( ) ( ) ( )error rmy kT y kT y kT= −  (32)
 

In order to characterize the performance of the 
system, the first derivative has been used for 
obtaining the error between the reference model 
output and plant output. 
 

 
( ) ( )( ) error error

p
y kT y kT Ty kT

T
− −

=  (33)

 
Let choose the reinforcement function (related with 
Equation (29)) as [19,20,21]; 
 

 ( ) ( ),error p error error p cy y y y= − −D h h h  (34)
 
where ,  ,  error ph h h  are the design parameters; 
 
 
6 Simulation Results 
In order to check the reliability of the radial basis 
function neural networks controller and learning 
mechanism developed for the mobile robot 
orientation adjustment control, a set of 
demonstrations has been constructed. Desired 
orientation for the mobile robot has been tried to 
track by using the developed controller. The overall 
system has been designed and implemented using 
Matlab environment. 

The physical parameters of the mobile robot are 
I=10kg.m2, M=200kg, b=0.15m, It=0.005kg.m2, 

cv=0.05kg/s, p=5, r=0.1m. Moreover, the reference 
heading velocity, v, is 1m/s [17, 18]. 
 

 
Fig.13. Schematic view of the control procedure   
 
Schematic view of the control procedure of the 

mobile robot orientation is given in Figure 13. In the 
simulation studies, the results of position, 
orientation, and angular velocities have been 
simulated. Desired and the actual orientation 
obtained using the neural networks controller with 
the parameters of the reference function (a= 
b=1/50) is given in Figure 14. In Figure 15, the 
parameters are changed to a=b=1/15. In order to 
obtain the best fit parameters of the reference 
model, the absolute error, which is obtained 
between desired and actual orientation, has been 
scanned. By this way the most appropriate model 
parameters have been determined. To emphasize the 
importance of the model parameters on the overall 
control, two different models are presented in the 
simulation studies. Using two different set of 
parameters, the model has been exposed to the 
desired orientation profile. As seen from Figure 15, 
with the second parameter set, control system, 
which is continuously modified by neural network, 
tries to track the desired profile. 

 

 
Fig. 14. Orientation of the mobile robot with the 

parameters of the reference function a=b=1/50. 
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Fig. 15. Orientation of the mobile robot with the 

parameters of the reference function a=b=1/15. 
 
In Figure 16, output of the proposed radial basis 

function based neural networks controller is given. 
Neural controller tries to keep the system at the 
desired orientation; meanwhile, the learning 
mechanism endeavors to adapt the controller to the 
coming portion of the desired trajectory. 

As seen from Figure 17, orientation error carried 
out from the actual and desired orientation has been 
given. Control system enhances itself via improved 
signal generated by the learning system. It can be 
emphasized that the improvement in the control 
system can be recognized. 

A neural control system has been constructed 
with employing the reinforcement learning 
mechanism. When reinforcement signal is very 
small, it is made to zero. Hence, reinforcement 
signal can not make a response to small fluctuations 
during regulating the neural controller. By this way 
the learning mechanism is only charged when the 
regulation is required. 

 

 
Fig. 16. Radial basis function neural networks 

controller output. 
  

 
Fig. 17. Orientation error between actual and 

desired one. 
  
The position of the mobile robot in the global 

frame {XOY} can be defined by the position of the 
mass center of the mobile robot system, denoted by 
Mc, which is the center of mobile robot, and the 
angle between robot local frame {XcMcYc} and 
global frame. 

Kinematic equations of the mobile robot are; 
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where x and y are coordinates of the center of the 
mobile robot, v and w are linear and angular 
velocities of the robot, vr and vl are velocities of 
right and left wheels. 

Position of the mobile robot in the global frame 
is given in Figure 18. Desired response obtained by 
the reference orientation trajectory, and the actual 
response obtained by the system controlled, have 
been get in quick succession. Time histories of X 
and Y coordinates are exhibited in Figure 19 and 20. 

In Figure 21, time histories of X and Y coordinate 
errors are given.  
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Fig. 18. Position of the mobile robot in the 

global frame. 
 

 
Fig. 19. Time history of X-Coordinate. 

 

 
Fig. 20. Time history of Y Coordinate. 

 

 
Fig. 21. X and Y coordinate errors. 

 
 

7 Conclusion 
In this paper, design of radial basis function neural 
networks controller and proper reinforcement 
learning mechanism for tracking of a desired 
orientation profile of the mobile robot have been 
presented. Neural controller has been charged to 
enhance the control system by adding some degrees 
of award. It has been achieved that neural networks 
system has learned the relationship between the 
desired directional orientation and the error position 
of the mobile robot. The radial basis function based 
neural networks have been trained via reinforcement 
learning. The performance of the proposed 
controller and the learning system have been 
investigated by using mobile robot that consists of a 
two driving wheels mounted on the same axis, and a 
front passive wheel for balance. For the modeling 
and simulation sections, both dynamic and 
kinematic models of the mobile robot have been 
utilized. The system has been exposed to a desired 
orientation trajectory profile. The proposed neural 
controller has enhanced itself with the cooperation 
of learning mechanism to track the given trajectory. 
Simulation results demonstrate the effectiveness of 
the proposed neural control system and the learning 
mechanism. It is planned that the procedure of 
which the details are given in this paper is going to 
be utilized on a real mobile robot. The simulation 
and the real-case results are going to be compared 
and presented for the researches who work on this 
subject. 
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