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Abstract: The purpose of this paper is to discuss the method of modeling and control system design for a

loitering aircraft of aileron-less folding wing. A nonlinear model of the aircraft was established, and then

linearized by small disturbance method. The lateral-directional stability augmentation options were analyzed

through the root locus plots. The pole placement method based on linear quadratic regulator (LQR) technology

was used to achieve desirable dynamic characteristics. In the analysis, the state parameters which represent

rapid oscillation states of the aircraft such as roll rate and yaw rate were set as primary control parameters in the

inner loop. The states oscillated slowly such as rolling angle and yaw angle were set as main control parameters

in the outer loop. Based on the self-organizing fuzzy control algorithm, the aircraft can be controlled to fly in a

desired path. Two types of course control plan were investigated and verified. The results show that the control

plans are feasible and the control system is adequately robust to meet the requirements of the course control

Key-words: loitering aircraft, pole placement, LQR, fuzzy control, bank-to-turn (BTT), skid-to-turn (STT)

Nomenclature

A State matrix

b Wing span

C Output matrix

D Direct matrix

Cy Lateral force coefficient

Cl Rolling moment coefficient

Ix Moment of inertia in roll

Ixz Product of inertia about ox and oz axes

K Feedback gain matrix

L Lift: Rolling moment

m Mass

N Yawing moment

p Roll rate

r Yaw rate

R Radius of turn

S Wing reference area
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u Input vector

v Lateral velocity

V Total velocity

x State vector

Y Lateral force

y Output vector

ζ Rudder angle

η Elevator angle

β Sideslip angle

Ф Roll angle

1 Introduction

A light weight small loitering aircraft of aileron-less

folding back wing as shown in Fig.1 has been

considered in this paper. It is designed to be carried

by a large aircraft and cast over the target area. It

could loiter autonomously in slow speed as a small

UAV when the wing and the tail are unfolded [1] as

illustrated in Fig.2. The aircraft loiters in the

anticipated course which is indicated by lines

between the contiguous navigation waypoints in the

loitering stage as illustrated in Fig.3. The crucial

task of the control system is to generate the control

command based on the aircraft position and

navigation deflection signal from the navigation

system. The ideal control command will make the

actual flight course identical to the desirable in

order to accomplish the scheduled flight mission.

Fig.1 A loitering aircraft

Fig.2 Loitering performing process

Heading

Bearing

North(0 deg)

East(90 deg)

LOP

Track

WP(n-1)

WP(n)

Fig.3 Navigation waypoints

The challenge of the control system design is

how to satisfy the requirements of lateral

maneuverability in order to accomplish the

scheduled flight mission. Due to the light weight,

small size and low velocity of the aircraft, it is

prone to disturbance airflow. The lift coefficient

varies with the angle of attack affected by the wing

deformation. These factors make it difficult to

achieve a satisfied controller design by classical

control theory. It is therefore necessary to utilize

flight control algorithm such as fuzzy logic, neural

network, genetic algorithm, pattern recognition or

other knowledge-base system to design the control

system.

This current investigation firstly focused on

establishing the lateral nonlinear model and the

lateral control strategy. Attention was then paid to

the design of the control system by utilizing the

LQR state feedback method and self-tuning fuzzy

control algorithm. Finally, mathematic simulation

was carried out in Matlab/Simulink environment.

2 The Equations of Motion
The Newton’s second law of motion for each of the

six degrees of freedom simply states:

mass*acceleration=disturbing force
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For the rotary degrees of freedom the mass and

acceleration become moment of inertia and

angular acceleration respectively whilst the

disturbing force becomes the disturbing moment

or torque. Thus the derivation of the equations of

motion can be expressed in terms of the motion

variable. The equations of motion in longitudinal

and lateral dynamics are fully coupled.

For the vast majority of aircrafts when small

perturbation transient motion is considered,

longitudinal-lateral coupling is usually negligible.

Consequently it is convenient to simplify the

equation by assuming that longitudinal and lateral

motions are in fact fully decoupled.

2.1 The lateral-directional equations of

motion
In the most general form, the dimensional decoupled

equations of lateral-directional motion is further

simplify as

( )p r emv Y Y p Y mU r mg Y Y           
    



p rx xzL I p L p I r L r L L          
    

  (1)

p rxz zN I p N p I r N r N N          
    

 

Where

21

2p
p yY C V Sb



, 2 21

2pp lL C V Sb


, 21

2
yY C V S
 



are lateral aerodynamic derivatives. For a small

perturbation, the rolling rate is related to the attitude

rate by p  .

The motion of the system is expressed in a state

space form:

x Ax Bu 

0
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Where the coefficients of state matrix A is the

aerodynamic stability derivatives in concise form and

the coefficients of the input matrix B are the control

derivatives also in concise form. For example,

y Y m 


, 2( ) ( )p z p xz p x z xzl I L I N I I I  
 

,

y Y m 


with more details in reference[2].

Lateral derivative data are obtained from wind

tunnel and used to illustrate the state equation. The

flight speed is Mach 0.3 and the altitude is 250m.

Table 1 presents some technical data of the aircraft.

The dimensionless lateral derivatives are given in

table 2. Any missing aerodynamic derivative is

assumed to be negligible, hence set zero.

Table 1. Technical data of the aircraft

m

(kg)

S

(m2)

Ix

(kgm2)

Iz

(kgm2)

Ixz

(kgm2)

b

(m)

V

(m/s)

60 2.2 84 50 9 4.2 89

Table 2. The dimensionless lateral derivatives

Cyβ Cyp Cyr Cyη Cyζ

-0.02 -0.188 0.876 -0.007 0.0822

Clβ Clp Clr Clη Clζ

-0.005 -0.443 0.063 0.051 0.015

Cnβ Cnp Cnr Cnη Cnζ

0.005 -0.052 -0.378 0.01 -0.045

Substituting the above values into the lateral state

equation (2), the linear decoupled state equation is:

x=Ax+Bu

y=Cx+Du


(3)

Where  x ,
T

p r  ， ， ，u
T

     ， .

0.1177 0.0077 0.9639 0.0327

27.2317 16.5995 2.1438 0
A

6.8119 1.4284 1.8904 0

0 1 0 0

  
  
  
 
 

－

0.0449 0.4836

40.3786 76.6806
B

5.3566 27.9850

0 0

 
  
  
 
 

4 4C eye  ,
4 2D zeros 

The transfer functions of rolling state parameters
corresponding to the control signals could be
obtained from the above state equation:

16.218.7539.4361.18

87.202.31301.604493.0
234

23










ssss

sss




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
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In factorized form the lateral-directional
characteristic equation is

    2 2( ) 16.22 0.02826 2 2.17 0.557s 2.17 0s s s s        

Therefore, there are three modes of lateral

movement [2]: one is a rolling converge mode

which attenuates rapidly corresponding to a big

negative root s=-16.22. The roll mode time constant

(Tr) is 0.062 s; The second is a spiral mode which

diverges slowly with rolls and yaws but without

sideslips corresponding to a characteristic root

closed to the origin s=0.0283. The spiral mode time

constant(Ts) is 35.36 s. Clearly, the spiral mode here

is unstable; The third is the dutch roll mode which

is oscillating in high frequency with medium

damping corresponding to a pair of characteristic

conjugate roots s1,2 = -1.2088 ± j1.8029.The dutch

roll damping ratio(ξd) is 0.557 and the dutch roll

undamped natural frequency ωd is 2.17rad/s.

2.2 Model analysis and Lateral-direction
stability augmentation

The lateral-directional stability augmentation

options are summarized in Fig.4 in which it is

implied that a negative feedback loop may be

closed between any of the motion variables and

either the difference or rudder.

In the following catalogue of root locus plots each

plot illustrates the effort of a single feedback loop

closure as a function of increasing feedback gain K.

Lateral directional
aircraft dynamics

Feedback
gain K

Feedback
gain K

(s)

(s)

(s)

(s)

(s)

p

r







Difference elevators

Rudder

-

-

(s)

(s)

Demand

Response
variables

Fig.4 Lateral-directional feedback options

(1) Roll attitude feedback to differential elevators

The open loop transfer function is

2 2

( ) ( 1.1311- 1.4096)( 1.1311 1.4096)

( ) ( 16.2213)( - 0.0283)( 2 0.557 2.17 2.17 )

s s j s j

s s s s s





  


    

The corresponding root locus is shown in Fig.5. The

dutch roll mode pole is approximately cancelled by

the numerator zero. This means that this mode is

insensitive to this feedback option. The roll mode

stability increases rapidly as the gain K is increased

since its pole moves to the left on the s-plane. The roll

mode is most sensitive to this feedback option.

However, the spiral mode remains unstable at all

values of K.

-30 -25 -20 -15 -10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Root Locus

Real Axis

Im
ag

in
ar

y
Ax

is Roll mode
locus

Spiral mode
locus

Dutch roll
mode locus

Fig.5 Roll attitude feedback (*-open loop poles, о

-open loop zeros)

(2) Roll attitude feedback to rudder

The open loop transfer function is

2 2

( ) ( 0.6989 - 4.0252)( 0.6989 4.0252)

( ) ( 16.2213)( - 0.0283)( 2 0.557 2.17 2.17 )

s s j s j

s s s s s





  


    

The corresponding roll attitude feedback to

rudder root locus plot is shown in Fig.6. The dutch

roll poles are approximately cancelled by the

numerator zeros which implies that the mode is

insensitive to this feedback option. As K is

increased the spiral mode pole moves to the left on
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the s-plane and its stability increases very rapidly.

At the value of K=0.642, the spiral and roll modes

couple to form a low frequency oscillatory

characteristic. Therefore, roll mode stability

decreases rapidly as the gain K is increased until its

poles couples with that of the spiral mode. The

negative roll attitude feedback to rudder is a kind of

lateral pendulum mode.

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2
-40

-30
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-10

0
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20
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40
Root Locus
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Im
ag
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ar

y
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is Roll mode
locus

Spiral mode
locus

Dutch roll
mode

locus

Coupled
roll-spiral
mode
locus

Fig.6 Roll attitude feedback

(3) Roll rate feedback to rudder

The open loop transfer function is

2 2

( ) ( 0.6989 - 4.0252)( 0.6989 4.0252)

( ) ( 16.2213)( - 0.0283)( 2 0.557 2.17 2.17 )

p s s s j s j

s s s s s

  


    

The corresponding roll attitude feedback to

rudder root locus plot is shown in Fig.7.The roll

mode stability increase rapidly as the gain K is

increased since its pole moves to the left on the

s-plane. The dutch roll mode is sensitive to this

feedback option too. However, the spiral mode

remains unstable at all values of K. So negative roll

rate feedback to rudder is equivalent to an increase

in the yaw damping properties of the wing.
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Fig.7 Roll rate

3 Control Strategy Design

To make sure the aircraft fly through the scheduled

navigation waypoints on the great circle flight path

as showed in Fig.3, an onboard navigation system

detects the track angle deflection  =

Track-Heading. The task of flight track control is to

minimize the deflection, and make the aircraft fly

through the scheduled navigation waypoints along

the shortest path.

3.1 Bank-to-turn control strategy
Bank-to-turn control means that the lift vector is

always towards the direction of target by banking

the fuselage during flight as shown in Fig.8. The

pitch angle and roll angle change together to make

the necessary maneuver and acceleration quickly in

the desirable direction. In the same time, the

sideslip angle should be reduced down to zero[3].



W

L

sinL

cosL

Fig.8 Force components during bank-to-turn

In Fig.8, the force equilibrium equations in the

direction Ozb and Oyb are expressed by:

  WYLFZ  sincos0 (4)

   sincos0
2

L
R

mV
YFy

(5)

When no sideslip angle is generated in the

band-to-turn process, the lateral maneuverable force

is provided by the horizontal component of the

lifting force rather than the side force. The above

equation becomes:

smv
R

mv
L  

2

sin
(6)

The relationship between the turning angle rate

s and roll angle is written as:
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vvL

L
s








g
g

cos

sin
 (7)

During the aircraft turning, the flight course

angle rate  equals to s , hence:

v




g
 (8)

Through Laplace transformation, the flight

course angle is expressed by:

 s
g

vs


 

(9)

When the flying direction needs to be altered or

the aircraft is hovering to turn, the autopilot

manipulates the rolling channel to make the

maneuvering. Then the primary lifting surface is

manipulated towards the target in order to produce

the acceleration in normal direction as great as

possible; the autopilot manipulates the yawing

channel to ensure the lateral acceleration nz and the

sideslip angle  equal to zero. To achieve the

aircraft rolling without ailerons, this paper presents

a method of control by operating the elevators

independently. The control strategy is shown in

Fig.9.

Fig.9. Bank-to-turn control strategy

Due to the structure attributes of the aircraft and

its manipulation process in the bank-to-turn, some

characteristics are noted: a significant coupling in

the channels of pitch, yaw and roll; a sideslip angle

close to zero and a strong maneuver capability

3.2 Skid-to-turn control strategy
For an axis symmetric aircraft in aerodynamic

configuration, STT control method is generally

adapted to alter sideslip angle and adjust the

horizontal navigation track by manipulating the

rudder. The aircraft using STT has a stable roll

channel and minimum coupling between pitch, yaw

and roll channels. For a plane-symmetric aircraft

considered in this paper, it is proposed to adapt a

skid-to-turn strategy as shown in Fig.10 to prove

the control capability. The difference elevator

control make the rolling angle equal to zero; the

rudder controls the horizontal maneuver of the

aircraft.

Fig.10 Skid-to-turn control strategy

When the aircraft flies at a large angle of attack

in the STT mode, a great sideslip angle generates

severely asymmetric eddy. This would produce a

big harmful roll and yaw moments, which might

exceed the allowed limit of the control system. In

addition, the pitch and the yaw autopilots utilize

their independent control systems and the direction

of maneuver lies in the composed direction of

attack angle vectors. When the angle of attack is

getting greater gradually, an increasing dynamic

coupling and an inertial coupling would be

generated in pitch channel and yaw channel.

Accordingly, the maneuver ability is undermined.

4 Control System Design

No matter which plan is adapted, the control system

design mainly includes a few control loops: the rate

damping loop, attitude stabilizing loop and flight path

track loop[4].

4.1 Rate damping design based on the pole

placement method
An alternative and very powerful method for
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designing the above feedback gains systems is the

pole placement method [5].

The state and output matrix equations are described

in equation(3).Assuming that augmentation is

achieved by negative feedback of the state vector x(t)

to the input vector u(t) then the control law may be

written

u(t)=v(t)-Kx(t) （10）

where,v(t) is a vector of input demand variables and K

is a matrix of feedback gains. The closed loop state

and output equations are:

x(t)=(A-BK)x(t)+Bv(t)

y(t)=(C-Dk)x(t)+Dv(t)


（11）

Now the characteristic equation of the augmented

aircraft is given by

( ) I (A-BK) 0s s   

Thus if the required stability and control

characteristics of the augmented system are specified,

the equation may be solved to find K. This means that

the poles of the closed loop system may be placed on

the s-plane exactly as required.

The LQR methodology is adapted in the design of

state feedback gains to improve the dynamic

characteristics and meet the predefined performance

index of the aircraft.

LQR optimal design may be described as if the

system departs from the equilibrium state x=0 for

some reason, the control will make the state x(t) return

to its equilibrium state x=0 in a optimal route or

manner. In addition, the demand for control power

will be constrained. The objective function can be

expressed in a general form as:

1

0

1
(u) [x ( ) ( )x( ) u ( ) ( )u( )]

2

t
T T

t
J t Q t t t R t t dt  （12）

Where Q(t) and R(t) are weight matrix for different

objectives of “returning to the equilibrium point” and

“minimum control power demand”[6].

The state feedback control law is u= -K * x, where

K is the gain matrix for the state feedback which

can be designed by using LQR function in

MATLAB. The weight matrix Q(t)＝diag[0,q1,0,q2]

is a diagonal with q1=500，q2=300. Then the optimal

state feedback gain matrix could be:

0.0866 10.3439 0.0408 8.0543
K

0.3088 19.6188 0.0055 15.3339

    
  
 

Fig.11 shows the step response of four states

corresponding to two control variables when there

is no control input. The step response closed loop

system with a state feedback is shown in Fig.12.

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

6

Fig.11 Step response(no control input)

Fig.12 Step response through state feedback

Obviously, after the configurations of poles are

accomplished through state feedback, the damping

traits had been improved, and responses of attitudes

had become stable to make the aircraft quickly

respond to the guidance command provided by the

fight path track loop.

4.2 Self-tuning fuzzy control design
Fuzzy control is suitable for a complicated control

object requiring fast and effective control

process[7,8]. For the current complicated system of

multiple variables, high-order, nonlinearity however,

it is difficult to summarize the practicable fuzzy

control law. In this case, a self-organizing fuzzy

controller which is capable of auto-adjusting and

enhancing the fuzzy control laws is desirable. To

design such a self-organizing fuzzy controller, the

0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

roll rate

roll attitude
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main tasks are to adjust the scaling factor and

tuning factor to meliorate the control performance

[9].

(1) Scaling factor

Let ke and kc denote the scaling factor of the

deflection and its change rate respectively. Its value

could be determined following a guideline in

general cases: when the deflection is large, a small

ke should be chosen to make the system respond

quickly but not result in too much overshoot; as the

deflection reduces, ke should be gradually increased

to improve the steady-state accuracy. The effect of

ke adjusting is equivalent to altering the universe of

deflection in order to achieve the dynamic

characteristic improvement and steady-state

accuracy enhancement.

Let ∆ke denote the increment of ke, it forms a

relationship with the gain of deflection ∆x. When ke

is increased up to kmax when the deflection is

stabilized in a steady-state deflection range, the

relationship between ∆ke and ∆x is purely linear. In

this case, ∆ke can be expressed as:

e
e

max

2
K

K k x
K

 
    

 

(13)

When △x→0，we could get the derivative format:

e
e

max

2
K

dK kdx
K

 
  

 

(14)

After integrating, we obtain:

max

e max 2

k x c

KK K e




 
  
 
 

(15)

Where c is an integral constant. When the

deflection becomes negligible, ke is equal to kmax

and kx+c=0. In this case, we may assume c=0 and

thus

max

e max 2

k
x

KK K e

 
  

 
 

(16)

When ke is affirmed, kc=βke, kmax, k and β are

optimized by a simplex method, where the

objective function is  
0

ft

t
J t x t dt  . Then kmax, k

and β could get their optimal value. Accordingly, as

a consecutive function of the deflection, the

self-adjusting functions of ke and kc can be

determined.

(2)Tuning factor

In the fuzzy control model with tuning factor, the

control signal could be set as:

 1 , (0,1)U x x  
 

       
 

(17)

Where,  is tuning factor; x and x are the

deflection and its change rate respectively. Tuning

the  magnitude could alter the weighting of the

deflection and its change rate. Similar to the

deduced process of self-adjusting scaling factor, the

self-adjusting tuning factor can be deduced

by 1 k x pe   .Similarly, by setting

 
0

ft

t
J t x t dt  as the objective function, k and

p could be optimized by a simplex method to

determine the function of self-adjusting tuning

factor.

From the basic theory of fuzzy controller, fuzzy

control has the attributes of proportional control and

derivative control without the integral process

compared to the classical PID control [10]. Thereby,

it is desirable to blend the integral into the fuzzy

controller design to improve the steady-state

accuracy of fuzzy control. Fig. 13 shows the control

loop diagram based on state feedback and

self-organizing fuzzy control methodology.

1

s
iK

eK (1 ) cE E  

s cK

x=Ax+Bu

y=Cx+Du

1

2

k

s k

u

Fig.13 Diagram of control loop

5 Simulations

A small aircraft nonlinear simulation model of six

degrees of freedom is built in the
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MATLAB/Simulink. The forces and moments are

the function of kinematic parameters such as

airspeed, angle of attack, sideslip angle, roll angle

and their derivatives. The nonlinear factors like

nonlinear change of lift are accounted when

building the model of aerodynamic forces and

moments.

The process of level maneuver of a small aircraft

is simulated at flight condition H0=350m and V0=80

m/s; the yaw, pitch and roll are initialized at 0o. The

time of simulation lasts 30s, t=30s. The control

command is given as: heading angleχ=5°.

5.1 Simulation results of bank-to-turn
Taking the nonlinear model of six degrees of

freedom as the control object, the bank-to-turn

simulation software is written in C-language and

built in Simulink as shown in Fig.14. MATLAB

calls the C-program utilizing mex-Function tool. To

account for the saturation of the actuator and

dynamic response characteristics, all of the

actuators are modeled as first-order lags with a gain

and limits on deflection and rates. The result of

control is shown as in Fig.15.

fuzzy controller

e1 UE1fcn

controller
MATLAB Function

e11 UE11fcn

controller

e2 UE2fcn

1
s

1
s

1
s

-1

K3

K1

K1

K2

Flight dynamics1

Aircraft Model

Demux

Demux

5

0

p

phi

v

p

q

r

phi

theta

psi

Fig.14 bank-to-turn simulation based on Simulink

（a）Heading angle (b) Sideslip angle

Fig.15 BTT simulation results

5.2 Simulation result of skid-to-turn
For the autopilot of the BTT aircraft, the most

important task is to restrict the sideslip angle in the

allowed range. Otherwise, when the sideslip angle

and the angle of attack are large enough, rolling

moment would be generated to aggravate the

coupling. For the autopilot of the STT aircraft, it is

necessary to reduce the rolling angle and its rate

down to zero to decouple the three control channels.

fuzzy controller

e_yaw UE_Yfcn

controller

e_roll UE_Rfcn
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1
s

-1

K3

K1

K1

K2

Flight dynamics1

Aircraft Model

Demux

Demux

5

0

psi

v

p

q

r

phi

theta

psi

p

phi

r

Fig.16 Skid-to-turn simulation

(a) heading angle (b) roll angle

Fig.17 STT simulation results

As shown in the above simulation results, the two

turning modes have their own advantages and

disadvantages: the bank-to-turn by a differential

movement of the elevators appears in a more steady

way. Due to a little rolling moment however, the

heading angle responds slowly to the commands, as

shown in Fig.15; the skid-to-turn by the deflection

of rudder responds to the commands rapidly and

could achieve steady state quickly. In the turning

process however, the aircraft flies in an unstable

state, and the heading angle has a large overshoot,

as shown in Fig.16.

Theoretically, bank-to-turn could provide greater

maneuver capability and faster response speed. For

the aircraft without ailerons studied in this paper

however, it is ineffective to accomplish

bank-to-turn by using the differential movement of

the elevators having a small control surface area.

Meanwhile, it is easy to produce significant

coupling among the three control channels and

affect the control process and effectiveness. If the

maneuverability demand is not too high, it is

desirable to adapt the relatively simple STT control

method.
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6 Conclusions
In this paper, a linear and a nonlinear aircraft model

without ailerons have been built for the aim of

controller design and performance simulation.

Firstly the flight track controller in a lateral

decoupling mode has been designed for two kinds

of turning modes. Based on the model and

controller, the attitude of the entire control system

was simulated.

The natures of the small aircraft such as

nonlinearity and time-variation partly due to

non-modularity in the aerodynamic characteristics

and random effect in the flight environments make

the control more complicated. The results show that

the control system will be the essence of challenge

for the small aircraft. Future work should focus on

the research of advanced control algorithm to

achieve optimal control.
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