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Abstract: - An interactive pareto optimal with advantage (IPOA) approach for bi-objective programming is 
proposed and applied on capacitor placement and sizing problem. Two main contradictory concerned which 
including cost and quality properties are considered as bi-objective programming formulation. The IPOA 
approach can provide a valuable trade-off pareto-optimal solution by following the intention of decision makers 
(DMs). Many nonlinear characteristics of distribution feeders, and their load, operating and expansion 
constraints could be all considered for practical operation. Also, both fixed and switched types of capacitors are 
included. The effectiveness and feasibility of the proposed approach were demonstrated by an actual feeder 
study systematically with particle swarm optimization method. The experiment showed encouraging results, 
suggesting that the proposed approach was capable of efficiently determining higher quality solutions about 
distribution planning problem. 
 
Key-Words: - Interactive pareto optimal with advantage, Capacitor placement and sizing, Particle swarm 
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1   Introduction 
Capacitors have been widely employed in radial 
distribution systems for reactive power compensation. 
The benefits greatly depend on how the capacitors 
are installed and dispatched in the system. This kind 
of problem is termed the general capacitor planning 
problem. It consists of determining the locations, 
types (fixed or switched) and sizes of capacitors to be 
installed in the system such that the cost profits and 
quality conditions of the system are improved 
considering the load, operating, and expansion 
constraints. Most previous studies [1-7] formulated 
the problem with a single objective. Generally, cost is 
employed as the objective function and the other 
possible objectives, such as voltage deviation and 
system capacity, are treated as constraints. However, 
power quality plays an important role for the loyalty 
of customers after the deregulation of power system. 
It is necessary for utilities to take not only the cost but 
also the quality into consideration. 
In the past decade, some evolutionary computational 
techniques, such as ant colony [2], genetic algorithms 
(GA) [4, 8-9], simulated annealing (SA) [5, 10] and 
tabu search (TS) [11] have been widely used to solve 
power optimization problems. These algorithms are 
in the form of probabilistic heuristics, with global 
search properties. Though GA methods have been 
employed successfully to solve complex 
optimization problems, recent research has identified 

deficiencies in GA performance. This degradation in 
efficiency is apparent in applications with highly 
epistatic objective functions (i.e., where the 
parameters being optimized are highly correlated) 
[the crossover and mutation operations can not 
ensure improved fitness of offspring because 
chromosomes in the population have similar 
structures and their average fitness is high toward the 
end of the evolutionary process][12]. Moreover, the 
premature convergence of GA degrades its 
performance and reduces its search capability, which 
leads to a higher probability for obtaining a local 
optimum [13]. 
Recently, the use of a global optimization technique 
called particle swarm optimization (PSO) [14]used to 
solve real world problems have aroused researchers' 
interest due to its flexibility and efficiency. 
Limitations regarding the form of the fitness function 
employed and the continuity of variables used for the 
classical greedy search technique can be completely 
eliminated. The PSO, first introduced by Kennedy 
and Eberhart [15], is one of the modern heuristic 
algorithms. It was developed through the simulation 
of a simplified social system and has been found to be 
robust in solving continuous nonlinear optimization 
problems.  
Therefore, this paper aims to develop a unified 
approach to solve general capacitor planning 
problem. A bi-objective formulation combined with 
PSO for the above problems is presented. In 
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bi-objective problems, the objectives are usually 
non-commensurable and conflict with each other. 
Hence, any improvement of one objective may be 
reached only by the reduction of another. The 
interactive pareto optimal with advantage (IPOA) 
method proposed in this paper is a powerful tool, 
which can provide a flexible best-advantage solution 
for capacitor planning problem by following the 
intention of decision makers. Two important 
objectives are included, one is the cost operation, and 
the other is the maximum voltage deviation of the 
system. The load, operating and expansion 
constraints of the system are considered. Also, the 
fixed and switched types of capacitors are included 
for increased realism. 
 
2   Problem Formulation 
In this section, a bi-objective formulation of the 
capacitor planning problem is proposed. It aims to 
simultaneously optimize each objective, while 
satisfying the equality and inequality constraints 
given below:  
 
2.1 Operating constraints 
The voltage magnitude at each bus of each load 
period has to lie in a permissible range. The current 
on each branch must stay within its capacity limits for 
security reasons. Also, the number of capacitors 
mounted on the buses should be below the total 
number of installed capacitors. These constraints are 
expressed as follows. 
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k
iV  voltage at bus i of period k, 
max

iV  maximum allowable voltage of bus i, 
min

iV  minimum allowable voltage of bus i, 
bN  total number of buses, 
pN  total number of different load periods for 

yearly load duration curve, 
lN  total number of branches, 

k
iI  current at bus i of period k, 
max
iI  maximum allowable current of feeder 

section i, 
k

icN ,  number of capacitor banks mounted on bus i 
of period k, 

ifN ,  number of fixed type capacitors installed at 
bus i, 

isN ,  number of switched type capacitors installed 
at bus i. 

 
2.2 Expansion constraints 
The number of capacitors installed at each bus should 
be limited due to some practical concerns. For 
example, it is impossible to install more capacitors if 
there is not enough space in the buses. These 
constraints are stated below. 
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where: 
max
,icN  upper limit of installed capacitors at bus i. 

 
2.3 Objective functions 
The objective functions considered in the study are: 
1). Cost Objective Function: The cost objective 
function employed is: 
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where: 
)(SE  annual cost of system under S configuration, 

eC  energy cost per kWh, 
iIC ,  installation cost at bus i, 

fC  fixed type capacitor cost per bank, 

sC  switched type capacitor cost per bank, 
iT  time duration of the ith load period, 
k

lossP  total power loss of load period k, 
Y  average lifetime of capacitors, 

(.)u  unit step function. 
 
In the right hand side of (5), the first term represents 
the annual cost of capacitor allocation, with two 
components: fixed installment cost and purchase cost. 
Generally, fixed type capacitors serve as the base 
compensation and they are cheaper than switched 
type capacitors that are used for additional 
compensation in different load periods. The second 
term represents the total annual cost of energy loss, 
where the energy loss is obtained by summing up the 
power losses for each load period multiplied by the 
duration of the load period. In fact, capacitors are 
grouped into banks of standard discrete capacities. 
Therefore, capacitor sizes are represented as discrete 
variables to meet the real situation.  
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2). Quality Objective Function: This objective is 
concerned with the voltage deviation of the system. 
Voltage deviation at bus i of period k is defined as: 
 

pb
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where: 
ideal

iV  ideal specific voltage at bus i. 
 
Voltage deviation is important for both the utilities 
and customers. The more voltage deviation a system 
has, the shorter the lifetime and the less efficient the 
operation of any equipment mounted onto the system. 
Moreover, voltage collapse may arise due to the 
voltage deviation of some fixed power equipment 
such as synchronous machines. Hence, voltage 
deviation in a system represents the quality of the 
power that the utilities supply to their customers. 
Electricity quality and cost conditions of its supply 
are somewhat non-commensurable. To avoid 
customers' dissatisfaction and to maintain the 
stability of systems, it is beneficial to tackle the 
voltage deviation problem as an objective function 
instead of a constraint. In this paper, we attempt to 
minimize the maximum term of the voltage deviation 
of all buses and periods as shown below: 
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3. The IPOA Approach 
Complex real-world decision-making problems are 
multifarious and their multiple objectives are usually 
non-commensurable and often in conflict. The 
ultimate goal in multi-objective optimization is to 
seek the most preferred solution from the set of 
pareto optimal solutions. Thus, in this paper, our goal 
was to develop an efficient interactive solution 
methodology for generating preferred solutions. 
Some literature translates the bi-objective 
characteristic into a single objective optimization 
model and, generally, in previous research, two 
methods have been commonly applied. In the “single 
objective with constraints” method, the most 
important item is selected as the main objective 
function, which is expressed by single objective 
programming. The other optimization objectives are 
treated with constraints. Although this method 
reduces solving difficulty, it does not provide 
complete programming for problems; thus, solved 
solutions may not conform to the principle of optimal 
benefit, especially when objective functions are in 
conflict with each other. To optimize the main 
objective function generally leads to the other 

objective function values being very close to the set 
constrained value. In other words, solved solutions 
can only meet the basic requirement of the objective 
function that is treated as a constraint. For example, 
suppose that one optimization problem seeks solution 
x , which can minimize the value of objective 
functions )(xOQ  and )(xOE  that are conflicting with 
each other. To apply the single objective with 
constraints approach, the problem is expressed as 
follows, where )(xOQ  is selected as the main 
objective: 
Minimize )(xOQ       such that  CxOE ≤)(   is satisfied. 
Because )(xOQ  and )(xOE  conflict with each other, 
to ensure the minimal value for objective function 

)(xOQ , the solved solutions may make the value of 
constraint )(xOE  very close to constraint value C , in 
which case the optimization of )(xOE  may not 
process properly. Moreover, it is also very difficult to 
choose ideal value C . Suppose that Fig. 1 shows the 
functions of  )(xOQ  and )(xOE  corresponding to x . 
As shown, constraint value 1C  is very close to 2C . 
The selection of the constraint value of )(xOE  
between 1C  and 2C  exerts insignificant influence on 

)(xOE , but considerable effect on )(xOQ ; if 1C  is 
selected as the constraint value of )(xOE , 1O  can 
only be obtained for )(xOQ  even in the best situation. 
On the other hand, if the constraint value of )(xOE  is 

2C , the optimal value 2O  can be obtained for )(xOQ . 
It is obvious that there is large difference between 1O  
and 2O ; thus, constraint value 2C  should be much 
better than 1C . However, for ordinary optimization 
problems, a curve similar to Fig. 1 cannot be obtained 
in advance, thus it is difficult to select an adequate 
constraint value C . 
 

  )(xOQ

)(xOCC1 C2

O1

O2

 
Fig. 1  Relational diagram of bi-objective functions 
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The other commonly used method for solving 
bi-objective programming problems is called the 
“weighting method”. It multiplies all objective 
functions by weighted value and then adds up all the 
functions, so as to transform bi-objective 
programming problems into single objective 
programming problems, as expressed below: 
 

)()( 21 xOWxOWT EQ ×+×=    (8) 
 
Whether )(xOQ  or )(xOE is selected, they are 
regarded as objective functions and are important to 
users. However, because the units of objective 
function )(xOQ  and )(xOE  may be different, and 
there is no direct corresponding transformation 
relationship, weighted value cannot be used merely 
to represent the importance of different objective 
functions. Hence, it is difficult to determine the 
weighted value ( 1W , 2W ) intuitionally. 
Based on the above discussion, this paper proposes 
the IBVT approach which uses a simple interactive 
method to satisfy users’ preferences and obtains the 
most valuable trade-off solution for the bi-objective 
function. In the solving process, users do not need to 
input a weighted value, but only need to make a 
choice of favorite objective function and the 
bi-objective problem can be solved smoothly. The 
main advantage of this method is in providing a 
larger programming space in the modeling process 
which is not limited to a single objective 
programming model. The problems of bi-objective 
programming can be easily solved so as to provide 
users with more favorable solutions and a more 
convenient operating environment. 
This paper first applied mathematical theoretical 
deduction to explain mathematical meaning of the 
most valuable advantage solution in bi-objective 
optimization, further construct a complete solving 
process of suggested IPOA method, and then assess 
its application value. 
 
3.1 Mathematical deduction and explanation  
Suppose that bi-objective function problem to be 
solved is as follows: 
 

Minimize 
⎩
⎨
⎧

)(
)(

SQ
SC

 and satisfy all constraints.          (9) 

 
Generally speaking, typical Pareto optimal front of 
bi-objective optimization function is shown as the 
thick solid line in Fig. 2. And CS  and QS  are two 
extreme solutions with mere consideration of single 
objective optimization. CS  is the single objective 

optimal solution with mere consideration of the 
objective function )(SC , thus corresponding idealC  
should be the optimal value of )(SC . Because the 
effect of )(SQ  is not considered, and based on 
reciprocal effect among objective functions, 
corresponding nonidealQ  should be the non-ideal value 
of )(SQ . Contrarily, QS  is the single objective 
optimal solution with mere consideration of 

)(SQ objective function, thus corresponding idealQ  is 
the optimal value of )(SQ . Because the effect of 

)(SC  is not considered, and based on reciprocal 
effect among objective functions, corresponding 

nonidealC  should be the non-ideal value of )(SC .  
 

)(SQ

)(SC
idealC nonidealC

nonidealQ

idealQ

iC

iQ

AdvantageBest 

CS

SQ

1m−

2m−
m−m−

3m− frontParetoOptimal   

 
Fig. 2 Typical pareto optimal front of bi-objective 

optimization problem 
 

The slope of the straight line connecting CS  and QS  

is: 
idealnonideal

idealnonideal
EE
QQ

m
−
−

−=− . Here, m  represents 

maximum scope ratio which can be reached in 
optimization process of two objective functions. 
When the unit and value ranges of objective 
functions are different, m also represents the 
relationship of improvable ratio of two objective 
functions. 
The slope of Pareto optimal close to CS  is 1m− , as 
shown in Fig. 2, and mm >1 . This shows that when 
solutions are close to CS , and if inferior Pareto 
optimal solution of objective function C  is sought, 
less ratio concession of objective function C  can 
improve Q  significantly because the slope near CS  
is mm >1 . The phenomenon still remains when the 
curve of Pareto optimal front deviates from CS . For 
example, for the point where curve slope is 2m− , as 
shown in Fig. 2, mm >2 , thus in solving bi-objective 
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functions, continuing to seek more adequate Pareto 
optimal solutions along the direction of QS  must be 
rational and advantageous. When Pareto optimal 
reaches iS , the slope of the point is m− . After Pareto 
optimal solution passes the point, the slope becomes 
less than m− . For example, the Pareto optimal 
solution shown in Fig. 2 has slope of 3m− , and 
because mm <3 , the descending Pareto optimal 
solution will possess less advantage. In other words, 
more ratio concession of objective function C  is 
needed to make some improvement of Q . Therefore, 
this method attempts to seek the solution iS  with 
best advantage among many Pareto optimal solutions 
as reference for users. Among these solutions, the 
curve slope at iS  is 1m− . 
Besides, to help users seeking adequate solutions 
with best advantage according to their own strategies, 
this method also can apply simple interactive method 
to provide solutions with best advantage suitable for 
users, in accordance with users’ requirements. 
How to find the pareto optimal solution iS ? In here 
we proposed a mathematical minimization 
programming below : 
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Find iS  such that (10) can be minimized. Assume the 
pareto optimal front can be represented as a function 

)(CQ , then rewrite (10) as : 
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Derivate the both sides of equation (11) and set 

)(' CT  to zero to get the minimized valve; 
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Rearrange (12), then we can get: 
 

m
CC
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idealnonideal
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Therefore, the solution of (10) represents the best 
advantage point shown iS  in Fig. 2.  
 
 

3.2 Solution procedure of IPOA 
According to the principle and discussion above, this 
section will explain the solving process of suggested 
IPOA method, and divide the process into 3 steps as 
follows: 
 
Step 1  
First, the optimal solution of single objective 
function is obtained one by one. Therefore, the CS  
and QS can both be got and the relative values idealC , 

nonidealC , idealQ  and nonidealQ  are found. 
 
Step 2 
Find the optimal solution of (10) subject to following 
constraints: 
 

⎪
⎩

⎪
⎨
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≤≤
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nonidealideal

nonidealideal

QSQQ
CSCC

Eqs
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Suppose that iS , solved in Eq.(10) and iS , iC  and 

iQ  are shown in Fig. 3. 
 

)(SQ

)(SCidealC nonidealC

nonidealQ

idealQ

iC

iQ iS

CS

QS

 
Fig. 3 Solution space of IPOA after iS  is solved. 

 
iS  can divide the shadow part in Fig. 3 into areas I, II, 

III and IV. If iS  is the optimal value of (10), no more 
other solutions S can be obtained to generate 
combinations of )(SC  and )(SQ  in area III. 
Therefore, the area can be called “unreachable 
solution space”. Contrarily, solutions of )(SC  or 

)(SQ  in area 1 are all inferior to iS , thus there is no 
need to consider this area. Compared with the value T 
of objective function of (10), though the values of 
area II are inferior to iS . The area possesses one 
characteristic, namely, )(SC  is superior to iC  
obtained by iS . But )(SQ  is always inferior to iQ . 
Similar situations also occur in area IV; and the 
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characteristic can help users searching the solutions 
they want. This part is detailed in Step 3. 
 
Step 3 
To reach interactive relation with users, if system 
decision-maker is not satisfied with iS  in Step 2, one 
may sacrifice one objective function to improve 
another objective function as follows:  
If it is intended to further improve )(SC , iC  obtained 
in Step 2 is regarded as new nonidealC , and iQ  is 
considered as new idealQ , as shown in (14). Thus at 
the time, the corresponding solution space is shown 
in Fig. 4: 
 

⎩
⎨
⎧

=
=

    iideal

inonideal

QQ
CC

              (14) 

 

)(SQ

)(SCidealC nonidealC

nonidealQ

idealQ

 
Fig. 4 Solution space of IPOA method after (14). 

 
Contrarily, if it is intended to further improve )(SQ , 

iQ  obtained in Step 2 is regarded as new nonidealQ , and 
iC  is considered as new idealC . Thus the 

corresponding solution space is within area IV. 
If users decide to further improve )(SC , the new 
solved solution with best advantage is iS  shown in 
Fig. 5. 
 
As shown from the above discussion, solving 
direction conforms to users’ requirements. Users 
only need to input objective function intended to be 
improved, and can find out an optimal comprised 
solution meeting requirement, without considering 
weighted value. As shown in Fig. 3-5, the whole 
space of feasible solution can automatically reduce 
its range according to the requirement of system 
decision-maker when search is done each time, thus 
the space turns to the direction appointed by system 
decision-maker gradually. Because each search may 
reduce the space of feasible solutions, 

CDis _ and QDis _  provided in the research are 

shown in (15), as reference to system decision-maker 
on determining the next search. 
 

⎩
⎨
⎧

−=
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idealnonideal

idealnonideal
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CCCDis

_
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                         (15) 

 
)(SQ

)(SC
idealC nonidealC

nonidealQ

idealQ

iC

iQ
Si

SE

QS

 
Fig. 5 Solution of IPOA after users decide to further 

improve )(SC  
 
As shown in Fig. 3-5, CDis _ and QDis _  in Eq.(15) 
represent the ranges of )(SE and )(SQ  in space of 
feasible solution, respectively. If EDis _ and QDis _  
are too small, there will be no big change in the next 
search, thus it is unnecessary to do next search. 
Contrarily, if EDis _ and QDis _  are too big, this 
reveals that there will be big change in the next 
search, thus it is necessary to do the next search. 
These 3 steps stated above constitute the IPOA 
method. It is obvious that in the whole process, users 
only need to decide the subsequent solution direction 
based on optimal comprised solutions provided by 
the solution method, and it is not necessary to 
consider the selection of weighted value and unit 
difference of objective functions. Thus, the work load 
of system decision-makers would be reduced, human 
errors can be avoided, and solution efficiency can be 
effectively increased. Fig. 6 is the complete flow 
chart of IPOA method in bi-objective programming. 
 
4. Implementation 
In this section, the PSO is used as the tool to find the 
IPOA formulation of capacitor planning problem as 
stated detail below: 
 
4.1 Representation of individual string 
Implementation of a problem in the PSO framework 
starts from the parameter encoding, i.e., the 
representation of the problem. In this study, integer 
representation is chosen for each particle. The 
individual string structure is represented in Fig. 7. 
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The parameter k
icN ,  describes the number of 

capacitor banks mounted on bus i of period k, as 
defined previously. The value of each chromosomes' 
position should be limited so that they are not 
violating the expansion constraints max

,icN . The value 
of each particle should be limited to 6 so that they are 
feasible solution. In the initial process, a random 
number from 1 to 6 will be generated to create the 
first positions of each individual. 

 
 

,CS ,idealC nonidealQ

)(SQ)(SC

,QS ,nonidealC idealQ

,iS ,iC iQ

inonideal

iideal

CC
QQ
=

=

iideal

inonideal

CC
QQ

=
=

idealnonideal

idealnonideal

QQQDis
CCCDis

−=
−=

_
_

iS

Yes

No

Yes

No

 

Fig. 6 The flowchart of IPOA method. 
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1,cN  1
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1, −bNcN  1

, bNcN
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. . ............... . . 
pN

cN 1,  pN
cN 2,  ............... p

b

N
NcN 1, −

 p

b

N
NcN ,

Fig. 7 The individual string structure. 
 
4.2 Evaluation function 
Implementation of an optimization problem in PSO is 
realized within the evolutionary process of an 

evaluation function. The function adopted is given 
below. 
 

} )( {)( PenaltySObjConstSFitness +−=              (16) 
where: 
Const a constant to convert minimized problem to 

maximum one, 
()Obj  the objective function, 

Penalty a penalty term. If any constraint is violated. 
then the penalty will be set to 1.5, otherwise 
1 is instead. 

 
4.3 Parameter selection and convergence 

criterion 
 If one of the following conditions is met, the PSO 
process is considered converged. 
(i). After 50 consecutive iterations, the best solution 

does not change. 
(ii). The total iterations exceed the upper limit of 

10000. 
 
5. Test Study 
To illustrate the performance of the proposed 
solution methodology, consider a practical 12-bus, 
11.4 kV distribution feeder, as shown in Fig. 8, that is 
a portion of the Taiwan Power Company's 
distribution system. The line and load date of the test 
system are shown in Table 1. Also, the load duration 
data for the test system is shown in Table 2. The 
parameters that are the average values according to 
the real conditions in Taiwan are shown in Table 3 
and each bank of capacitors is 300 kVar. The 
satisfaction rates for each objective are defined in 
(17). It represents the level of satisfaction within the 
attainable search region for each objective. 
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Fig. 8 The 12-bus distribution test system. 
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Table 1  Line and load date of the 12-bus Tai-power 
distribution feeder. 
Br. Parameter Rv. Bus LoadBr. 

No. 
Sd. 
Bus 

Rv. 
Bus r(Ω ) x(Ω ) P(kW) Q(kvar)

1 1 2 0.2784 0.4437 124.8 127.2
2 2 3 0.0753 0.1200 184.8 163.2
3 2 4 0.4440 0.7074 302.4 308.4
4 4 5 0.1131 0.1800 99.6 87.6 
5 4 6 0.1131 0.1800 319.2 326.4
6 6 7 0.2259 0.3597 216.0 190.8
7 7 8 0.2709 0.4317 1020.0 632.4
8 7 9 0.1506 0.2400 252.0 258.0
9 9 10 0.3630 0.5757 562.8 574.8

10 10 11 0.4818 0.7674 1214.4 753.6
11 9 12 0.5268 0.8394 886.8 783.6
12 12 13 0.2634 0.4197 672.0 686.4

 
Table 2  Load duration data for the Tai-power 

distribution feeder. 
Load levels (p.u.) Time intervals (h) 

Heavy Normal Light Heavy Normal Light
1.2 0.8 0.6 1200 6560 1000

 
The test results are summarized in Table 4, where the 
symbols F (fixed), or S (switched), represent the 
capacitor type, and H (heavy), N (normal), L (light), 
indicate the various load levels. The digits before the 
capacitor type and load level indicate the number of 
capacitors installed and the number mounted during 
different load levels, respectively. The second 
column represents the performance of the system 
before the capacitors were installed. Obviously, the 
voltage constraint is violated and the compensating 
capacitors are needed. The third and fourth columns 
each correspond to a single objective programming 
that minimizes voltage deviation and cost 
respectively. Columns five to seven show the results 
of the proposed bi-objective solution procedures that 
consider both cost and voltage deviation. In fourth 
column, to achieve the minimum cost, the minimum 
voltage is only 0.920, which is almost on the feasible 
margin (0.92~1.05). The fifth column represents the 
first result of the proposed algorithm. Comparing the 
fifth column and the fourth column, it is obvious that 

ESA  has degraded slightly from 100% to 82.95% but 
QSA  has greatly improved from 0% to 75.11%. 

Generally, it is beneficial to perform such an 
investment. 
The suitability of result 1 should be judged by the 
DMs of electricity utilities. If the DMs think that 
result 1 is not suitable for the policy of the utilities, 
then further compromise can be made according to 
the directions dictated by DMs. Unlike other 

approaches that indicate many unknown parameters 
such as weight values for further search, the DMs 
only have to choose one of the objectives (cost or 
voltage deviation) as the compromised term and then 
the proposed method can find a best-compromise and 
desirable solution for the bi-objective problem. 
Assume the DMs think that the power quality of 
result 1 should be further improved and decide to 
spend more money to reduce the voltage deviation of 
the system. The parameter of nonidealQ  in result 1 is 
then changed, because further improvement of 
voltage deviation is needed. Similarly, the idealE  is 
also changed, because further compromise will be 
made on the cost. Note that the decision region is 
changed simultaneously with the ideal and nonideal 
values of both E  and Q  such that it shifts toward the 
region of interest as indicated by DMs. The values 

EDis _  and QDis _  can help the DMs to understand 
the maximum improvement that a further step can 
achieve. If the DMs think that the maximum 
improvement in the desired term is too small to make 
further searching worthwhile, then they can stop the 
process. Assuming that the further step is allowed by 
the DMs, result 2 shows the consecutive result. Again, 
it is a flexible best-compromise solution within the 
decision region. However, if the DMs thought that 
the cost should be more reduced, similar procedure 
can be easy applied and the results shown in Result 1’ 
and 2’. 
The same procedure can be repeated again as shown 
in result 3. Gradually, the decision region will 
become smaller and focused on the intention of the 
DMs. 
 
6. Conclusion 
A bi-objective formulation for the general capacitor 
planning problem has been successfully applied. The 
objectives include both concerns of cost and quality. 
To get a more realistic solution, the load, operating, 
and expansion constraints of the system, together 
with the fixed and switched types of capacitors are 
considered. The IPOA method for solving general 
bi-objective optimization problems has been 
presented and tested on a real system. The results 
show that the proposed methodology can find a 
flexible best-compromise solution to be dictated by 
the DMs of the utilities. 
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Table 3. Parameters for the study system. 

ideal
iV  eC  iIC ,  fC  sC  min

iV  max
iV  max

,icN  Y  

1 p.u. 1.8NT/kWh 387278 NT 43362 NT/bank 66241 NT/bank 0.92 p.u. 1.05 p.u. 6 7 years
 

Table 4 : Numerical results. 
 Original Single objective Bi-objective programming 
 system Min Q Min E Result 1 Result 2 Result 3 Result 1’ Result 2’

)(SE  
(NT/year) 

6209146 6284417 3934274 4335098 5137890 4595468 4335098 4148589

)(SQ  (V) 1520 13 913 237 67 138 237 367 
k

iVmin (p.u.) 0.867 0.999 0.920 0.979 0.994 0.988 0.979 0.968 

ESA (%) ------------ 0 100 82.95 48.79 71.87 82.95 90.88 

QSA (%) ------------ 100 0 75.11 94.00 86.11 75.11 60.67 
Satisfy ? ------------ ------------ No No No Yes No Yes 

Compromised 
term ? 

------------ ------------ )(SE  )(SE  )(SQ  ------------ )(SQ  ------------

idealE  ------------ ------------ 3934274 4335098 4335098 ------------ 3934274 ------------
nonidealE  ------------ ------------ 6284417 6284417 5137890 ------------ 4335098 ------------

idealQ  ------------ ------------ 13 13 67 ------------ 237 ------------
nonidealQ  ------------ ------------ 913 237 237 ------------ 913 ------------

EDis _  ------------ ------------ 2350143 1949319 802792 ------------ 400824 ------------
QDis _  ------------ ------------ 900 224 170 ------------ 676 ------------

Continue ? ------------ ------------ Yes Yes Yes ------------ Yes ------------
Bus 2 None 2F, 2S 

4H, 3N, 2L 
None None None None None None 

Bus 3 None 1F, 2S 
3H, 1N, 1L 

None None None None None None 

Bus 4 None 1F, 0S 
1H, 1N, 1L 

None None None None None None 

Bus 5 None 1F, 0S 
1H, 1N, 1L 

None None None None None None 

Bus 6 None 1F, 0S 
1H, 1N, 1L 

None 0F, 5S 
5H, 0N, 0L

3F, 0S 
3H, 3N, 3L

None 0F, 5S 
5H, 0N, 0L 

0F, 5S 
5H, 0N, 0L

Bus 7 None 1F, 4S 
5H, 1N, 1L 

3F, 1S 
4H, 3N, 3L

None 3F, 0S 
2H, 0N, 3L

None None None 

Bus 8 None 2F, 4S 
6H, 2N, 3L 

None 3F, 3S 
6H, 4N, 3L

0F, 5S 
4H, 5N, 0L

0F, 6S 
6H, 4N, 0L 

3F, 3S 
6H, 4N, 3L 

None 

Bus 9 None 1F, 2S 
1H, 3N, 1L 

None None 0F, 4S 
4H, 0N, 0L

None None 3F, 2S 
5H, 4N, 3L

Bus 10 None 2F, 4S 
2H, 6N, 4L 

0F, 5S 
5H, 4N, 0L

0F, 4S 
4H, 1N, 0L

0F, 5S 
5H, 1N, 0L

3F, 2S 
5H, 3N, 3L 

0F, 4S 
4H, 1N, 0L 

None 

Bus 11 None 1F, 5S 
6H, 1N, 1L 

None 3F, 3S 
6H, 3N, 3L

4F, 0S 
4H, 4N, 4L

2F, 4S 
6H, 2N, 3L 

3F, 3S 
6H, 3N, 3L 

4F, 2S 
6H, 3N, 2L

Bus 12 None 2F, 3S 
5H, 3N, 2L 

5F, 0S 
5H, 5N, 5L

None 0F, 4S 
4H, 0N, 1L

0F, 6S 
6H, 1N, 0L 

None None 

Bus 13 None 2F, 3S 
5H, 3N, 2L 

None 5F, 1S 
6H, 6N, 5L

5F, 1S 
5H, 6N, 5L

5F, 1S 
5H, 6N, 5L 

5F, 1S 
6H, 6N, 5L 

4F, 2S 
6H, 5N, 4L
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