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Abstract: - This paper presents a real case customized flexible furniture production optimization. Such a make-to-order 
production must be flexible to meet the customer’s needs, which are changing frequently. Hence, a frequent review of 
the production process is needed to ensure near-optimal production schedule to meet the minimal makespan constraint. 
In such a case we are confronted with a tradeoff between makespan and optimization runtime to ensure efficient real-
time scheduling. The genetic algorithm production scheduling optimization is presented to solve a job shop scheduling 
problem with recirculation. Several initial population generators, selection methods, and crossover and mutation 
methods are discussed and tested. The visual model of the furniture production process was developed during the 
research. Such a model is closer to end-user perception and is used to clarify the results of numerical optimization. It 
also enables the implementation of end-user’s expert knowledge into the optimizer to reduce the GA search space with 
a goal of reducing the runtime to a minimum. 
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1   Introduction 
Scheduling is one of the most important issues in the 
planning and operation of manufacturing systems. In the 
classical job shop scheduling (JSS) problem, n jobs are 
processed to completion on m machines. Each job 
consists of k operations, one per machine, with known 
processing times and distinct technological ordering, and 
each machine is continuously available from time zero, 
processing one operation at a time without pre-emption. 
The operations are to be sequenced so as to minimize 
makespan. The introduction of recirculation complicates 
the already difficult JSS problem that is NP-hard. Hence, 
heuristics or artificial intelligence (AI) techniques seem 
to be unavoidable for JSS problems [2]. Several 
techniques to solve complex JSS problems are described 
in [4]. In our preliminary study, genetic algorithms (GA) 
were used to optimize the production schedule. They are 
known to search efficiently in a large search space, 
without explicitly requiring additional information (such 
as convexity, or availability of derivative information) 
about the objective function to be optimized [13]. For 
this reason, in the last decade, they have been applied to 
many (combinatorial) problems, including scheduling, 
yet only a few researches have been conducted to solve a 
JSS problem with recirculation using GA or the similar 
CLONALG (clonal selection-based algorithm) [10] [14] 
[15]. 

The production schedule produced by GA is a 
numerical solution that the end-users find hard to 
understand, especially as they are usually not interested 

in the methodology itself. Hence, the optimization 
results must be presented visually by a Gantt chart or 
some other visual technique. Therefore, a visual 
simulation model was developed that represents the 
furniture production process. Results produced by GA 
are imported into the visual simulation model that runs 
the simulation based on those results. Visual 
representation of optimization results is closer to the 
end-user’s perception and also enables the validation of 
the GA optimizer. Hence, many inconsistencies can be 
corrected. Furthermore, optimized schedule produced by 
GA is valid, but it may not be logical or close to end-
user comprehension of the scheduling problem. 
Therefore, visual simulation model provides a way 
where users can see many illogical schedule sequences 
that GA are producing, thus enabling end-users and the 
researchers to incorporate as much knowledge as 
possible into the optimization procedure. Hence, the 
problem search space is reduced to achieve real-time 
solutions as confirmed by Choi and Yang [3]. Reduction 
of a search space is crucial since GA is a multi-point 
search algorithm that requires a lot of computational 
time [20]. 
 
 
2   Methodology 
 
2.1 Problem formulation 
The case study is dealing with a make-to-order furniture 
production, where furniture is produced in very small 
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series or no series at all. Such a production demands a 
lot of flexibility since there are no big series where 
scheduling is easier to perform. Generally, each 
customer’s order is different in our case. Therefore, 
production scheduling has to be performed often to 
ensure the optimal/near-optimal production schedule 
with the objective to minimize makespan. 

The base for the scheduling is the bill of materials 
(BOM) needed to complete a product, e.g. a wardrobe. 
In this case, BOM would include a frame, drawers, a 
door etc. On the other hand, a drawer’s BOM would 
include, for example, four sides, one bottom, sliders, and 
so on. Such a BOM can be represented by a tree 
structure as shown in Fig. 1. 

 

 
Fig. 1. A part of a wardrobe BOM represented by a tree 

structure. 
 

 One can easily notice that certain parts have to be 
completed before assembling of other parts can begin 
(precedence). Such a tree structure is basically a set of n 
jobs J = { j1, j2, …, jn } that have to be performed on a 
given set of m machines M = { m1, m2, …, mm }. A job ji 
consists of a set of k operations Oi = { oi1, oi2, …, oik } 
that are performed on a subset of machines H⊆M. An 
operation oik is defined by the uninterrupted time period 
tik needed to perform this operation and a machine hik on 
which the operation is performed. In our case, a job can 
be repeated on the same machine (recirculation). 
Furthermore, jobs have to be processed in a given 
sequence as shown in an example presented by a tree 
structure in Fig. 1. The objective in our case is to 
produce a product in the shortest time possible, i.e. to 
minimize the makespan denoted by Cmax that is defined 
as the time when the last job leaves the system: 

  
),,...,max( 21max nCCCC =  (1) 

 
where Ci is the completion time of job ji.  

 
 
2.2 Solving job-shop scheduling problem by 

genetic algorithms 
The problem defined in the previous section can be 
described as the job-shop scheduling problem that is one 
of the best-known machine scheduling problems. A 

schedule is an allocation of the operations to time 
intervals on the machines. The problem is to find a 
schedule of minimum length [9]. The problem becomes 
even more complex if recirculation is introduced. 

 
 

2.2.1 GA representation of the JSS problem  
Lately, different GA representations for job-shop 
scheduling problems have been proposed, e.g. operation-
based, job-based, machine-based, and so on [9]. During 
our research, we have used operation-based 
representation that encodes a schedule as a sequence of 
operations, and each gene stands for one operation. All 
operations for a job are named with the same symbol and 
are then interpreted accordingly to the order of 
occurrence in the sequence for a given chromosome, as 
proposed by Gen, Tsujimura and Kubota [9].  

Consider the three-job four-machine problem given 
in Table 1. Jobs j1 and j2 have to be completed before the 
processing of job j3 takes place. Hence, a chromosome is 
divided into sections (see Fig. 2), and crossover and 
mutation can be performed only inside a section. 
 
Table 1. An example of a three-job four-machine 
problem - operation machine sequence for each job. 

 Operations 

Job 1 2 3 4 

j1 m1 m3 - - 

j2 m1 m3 m4 - 

j3 m1 m2 m1 m4 

 
Suppose a chromosome is given as [2 2 1 1 2 3 3 3 3], 

where 1 stands for job j1, 2 for job j2, and 3 for job j3. Job 
j1 has two operations (there are two 1’s in the 
chromosome), job j2 has three operations, and job j3 has 
four operations. For example, the first 2 corresponds to 
the first operation of job j2 which will be processed on 
machine m1, the second 2 corresponds to the second 
operation of job j2 which will be processed on machine 
m3, and the third 2 corresponds to the third operation of 
job j2 which will be processed on machine m2 as shown 
in Fig. 3 (respectively for jobs j1 and j3). Note that 
operations 1 and 3 of the job j3 are performed on 
machine m1 (recirculation). 
 
 

2 2 1 1 2 3 3 3 3 

Section 1 Section 2 

Fig. 2. A chromosome division into sections regarding 
the job precedence constraint. 
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2.2.2 Initial population 
Initial population of chromosomes was generated in two 
ways: randomly and by mirroring. Random generation is 
a commonly used technique to provide initial population 
of chromosomes in the absence of a priori information 
about the solution. In the first step, N equal individuals 
are created as described earlier. Next, the genes in each 
section are moved to the random position inside the 
same section thus providing a random schedule.  

Because random generation does not necessarily 
provide a good initial population, the mirroring of initial 
population was tested, inspired by the opposite-based 
population initialization proposed by Rahnamayan et al. 
[16]. They have proved that we can improve our chance 
of starting with a fitter solution by simultaneously 
checking the opposite solution. By doing this, the fitter 
one (random or opposite) can be chosen as an initial 
solution. In fact, according to probability theory, 50% of 
the time a guess is further from the solution than its 
opposite guess. Therefore, starting with the closer of the 
two guesses (as judged by its fitness) has the potential to 
accelerate convergence.  

Mirroring is performed as follows. In the first step, 
initial population of size N is generated randomly. Next, 
each individual in randomly generated population is 
mirrored, i.e. each section inside an individual is 
mirrored, thus obtaining another N individuals. 
Individuals of both populations are then grouped and 
ranked according to the fitness function. Finally, best N-
ranked individuals are taken as the initial population. By 
utilizing mirrored points, we can obtain fitter initial 
population even when there is no a priori knowledge 
about the solution(s). Here, the term “mirroring” is used 
intentionally instead of “opposite-based” because 
proving whether the mirrored schedule is actually an 
opposite-based schedule is exceeding the scope of this 
research.  

 
Chromosome: 2 2 1 1 2 3 3 3 3 

Machine:   1 2      

(a) 
 

Chromosome: 2 2 1 1 2 3 3 3 3 

Machine: 1 2   4     

(b) 
 

Chromosome: 2 2 1 1 2 3 3 3 3 

Machine:      1 2 1 4 

(c) 

Fig. 3. Operations of jobs and corresponding machines: 
(a) for job j1, (b) for job j2 and (c) for job j3. 

 
 

2.2.3 Selection 
Several selection methods to choose chromosomes for 
the next generation were tested: Roulette selection (see 
[9]), Fitness rank distribution [17], and Fibonacci 
selection [1]. Also, the elite selection is performed to 
preserve the best individuals. 

The Roulette selection is a fundamental selection 
method used in GA. In Roulette selection, the fitness 
function assigns a fitness value to chromosomes. This 
fitness value is used to associate a probability of 
selection with each individual chromosome. If fi is the 
fitness of an individual i in the population, its probability 
of being selected is: 

 

∑
=

= N
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j

i
i

f
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where N is the number of individuals in the 

population. While candidate solutions with a higher 
fitness will be less likely to be eliminated, there is still a 
chance that they may be.  

The Fitness rank distribution (FRD) was introduced 
by Reeves [17]. It selects parents according to the 
following probability distribution: 

 

)1(
2
+

=
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ipi  (3) 

 
where i refers to the i-th chromosome in descending 

order of makespan and M refers to the fittest one. This 
implies that the median value has a chance of 1/M of 
being selected, while the fittest one (the M-th 
chromosome) has a chance of 2/(M + 1), roughly twice 
the median.  

The Fibonacci selection was first introduced by 
Bernik [1] and uses Fibonacci sequence (0, 1, 1, 2, 3, 5, 
8, etc.) to select individuals. Fibonacci sequence is 
defined as follows: 
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Individuals from a population are selected according 

to the places defined by Fibonacci numbers. By applying 
this method, the fittest individuals are selected more 
often than the ones less fit. Hence, the variety of 
population is maintained and survival of the fittest 
concept is being applied, while the GA converges faster 
towards the solution. 
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2.2.4 Crossover 
To produce a new generation of chromosomes, a 
crossover is applied with a given probability pc. The one-
cut-point crossover (CUT) and linear order crossover 
(LOX) were tested. Note that crossover can be applied 
only inside a section (e.g. Section 1). 
 

 
Parent 1: 2 2 1 1 2 3 3 3 3 

Parent 2: 2 1 2 1 2 3 3 3 3 

Step 1: 

Child 1: 2 2 X X X 3 3 3 3 

Child 2: 2 1 X X X 3 3 3 3 

Step 2: 

Child 1: 2 2 1 2 1 3 3 3 3 

Child 2: 2 1 2 2 1 3 3 3 3 

 
 

Fig. 4. An example of the CUT crossover in Section 1. 
 
 

Step 1: 

Parent 1: 2 2 1 1 2 3 3 3 3 

Parent 2: 2 1 2 1 2 3 3 3 3 

Step 2: 

Parent 1: X 2 X 1 2 3 3 3 3 

Parent 2: 2 X 2 X 2 3 3 3 3 

Step 3: 

Parent 1: 2 1 X X 2 3 3 3 3 

Parent 2: 2 2 X X 2 3 3 3 3 

Step 4: 

Child 1: 2 1 2 1 2 3 3 3 3 

Child 2: 2 2 1 1 2 3 3 3 3 

 

 

Fig. 5. An example of the LOX in Section 1. 
 
Consider two parents and two child chromosomes for 

CUT crossover as shown in Fig. 4. In the first step, 
genes [2 2] are copied from Parent 1 to the Child 1 up to 
the crossover point. Respectively, genes [2 1] are copied 
from Parent 2 to the Child 2. Child 1 is missing the 
genes [1 1 2] and the Child 2 is missing the genes [2 1 
2]. The missing genes gap is filled in step 2. To produce 
a feasible schedule, the gap in each child must be filled 
with the missing genes by taking in order each legitimate 
gene from the other parent. For example, a gap in Child 
1 is filled with the sequence [1 2 1], while the gap in 

Child 2 is filled with the sequence [2 2 1]. Note that the 
number of 1’s and 2’s in both “fill” sequences is equal to 
the one in the missing genes sequence, only the order in 
which 1’s and 2’s appear is different. 

 
 

2.2.5 Mutation 
After applying crossover, two types of mutation were 
tested: exchange (EX) and shift (SH) mutation. 
Mutations are applied to a child with a varying 
probability pm (see [17]). The mutation rate is calculated 
as:  
 

child

best
m fit

fitp −=1  (5) 

 
where fitbest represents the fitness function value of 

the chromosome that has yielded the best result and 
fitchild the fitness function value of the child that requires 
mutation. The chromosome with the fitness function 
value closer to the fitbest would have a lower pm than the 
one with the fitness function value closer to the worst 
value. 

The exchange mutation is performed by swapping the 
places of genes (chosen randomly) to produce a feasible 
solution (see Fig. 6). The shift mutation performs a shift 
of one gene (chosen randomly) to the right or left a 
random number of places (see Fig. 7). Again, the 
mutation can only be performed inside a section. 

 
 

Parent: 2 2 1 1 2 3 3 3 3 

 
Child: 1 2 1 2 2 3 3 3 3 

Fig. 6. An example of EX mutation in Section 1. 

 

 
Parent: 2 2 1 1 2 3 3 3 3 

 
Child: 2 1 1 2 2 3 3 3 3 

Fig. 7. An example of SH mutation in Section 1. 

 

 
2.2.6 Population size 
The effects of setting the parameters of evolutionary 
algorithms (EA) has been the subject of extensive 
research by the EA community and recently there is 
much attention paid to self-calibrating EAs that can 
adjust their parameters on-the fly (see e.g., [5] [6] for 
review). The most attention and most publications have 
been devoted to the adjustment of parameters of 

Crossover point 

Crossover 
section 
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variation operators. Adjusting population size is much 
less popular, even though there are biological and 
experimental arguments to expect that this would be 
rewarding. Looking at it technically, population size is 
the most flexible parameter in natural systems: It can be 
adjusted much more easily than, for instance, mutation 
rate. In evolutionary computing, however, population 
size is traditionally a rigid parameter [7]. The new 
population resizing mechanism used here was introduced 
by Eiben et al. [7] and is based on improvements of the 
best fitness in the population. On fitness improvement 
the algorithm becomes more biased towards exploration 
increasing the population size, short term lack of 
improvement makes the population smaller, but 
stagnation over a longer period causes populations to 
grow again. Technically, this approach applies three 
kinds of changes in the population size: 

 
 1. If the best fitness in the population increases, the 

population size is increased proportionally to the 
improvement and the number of evaluations left until 
the maximum allowed. The formula used for 
calculating the growth rate GR1 for is: 

 

nessinitMaxFit
maxFitnessmaxFitness

mcurrEvalNumaxEvalNumincFactGR

oldnew −
⋅

⋅−⋅= )(1
 (6) 

 
where incFact is an external parameter from the 
interval (0,1), maxEvalNum and currEvalNum denote 
the given maximum number of fitness evaluations 
and the current evaluation number, maxFitnessnew, 
maxFitnessold and initMaxFitness are the best fitness 
values in the current generation, the same in the 
preceding generation and the best fitness value in the 
initial population. (Note that we assume the existence 
of maxEvalNum, which is very often present indeed. 
In case it is not given, a very large number can be 
used instead.) 

2. The population size is increased by a factor GR2 if 
there is no improvement during the last V number of 
evaluations. In principle, the mechanism to increase 
the population size in this step can be defined 
independently from the previous one, but in fact we 
use the same growth rate, i.e. GR1. 

3. If neither 1. nor 2. was executed, then the population 
size is decreased. For the decrease rate DR a little 
percentage of the current population size is used, e.g. 
(1-5%). 
 
In addition, we have added a war or disease process 

in the population growth process, similar to the one 
introduced by Shi et al. [17]. It is known, that natural 
environment does carry some capacity that cannot be 

exceeded; hence we shrink the population to its initial 
size after the population has exceeded some user defined 
maximum population size. 

 
 

2.3 Visual simulation model of the flexible 
furniture manufactory 

Computer-based simulation is seen as an integral 
business tool, giving flexibility and convenience to 
designing, planning and analyzing complex processes 
and/or systems. This is because computer-based 
modeling and simulation methods have the capability of 
representing the complex static structure as well as the 
dynamic behavior of systems [12][17]. Clearly, the 
imaginative and disciplined application of dynamic 
modeling and simulation provides a potentially useful 
mechanism through which users can gain a 
comprehensive understanding of system behavior [5]. 

Visual simulation model is used for validation of GA 
optimization algorithm that may produce a valid 
production schedule, yet this schedule may not be logical 
from the end-user’s perspective. Through visual 
simulation users can notice illogical sequences that can 
be eliminated in GA optimization by applying some 
constraints. Visual model also allows incorporating as 
many knowledge as possible from experts (end-users) 
into the optimization algorithm, thus reducing the 
problem search space [3]. Hence, optimization algorithm 
is able to find an optimal/near-optimal solution much 
faster or even in real-time. On the other hand, visual 
simulation model can provide users with information on 
how to improve the production process itself. Users can 
run different simulation scenarios to see how the 
production process would perform if some parameters 
would have been changed (what-if analysis). Similar 
conclusions were drawn by [11], who have also used GA 
to integrate process planning and scheduling in a job 
shop. 

Visual simulation model is presented in Fig. 8, 
representing only a fraction of the whole furniture 
production.  It was implemented using Flexsim software 
for discrete-event simulation (DES). The software 
enables 3D visual simulation, import of simulation 
parameters, and export and representation of simulation 
results. The simulation model consists of machines used 
in the actual production process. Input into the model are 
the production schedule as a result of GA optimization, 
and setup and process times for each operation on a 
given machine that are extracted from a database. 
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Fig. 8. A part of the furniture production as modeled 

with Flexsim simulation software 
 
 

3   Results 
The experiment was performed on a computer with Intel 
Core2 Quad 2.4GHz processor and 4GB RAM. The GA 
optimization algorithm was implemented with MS 
Visual Studio 2008 in C# technology.  

The number of machines needed to perform JSS is 
21. Three JSSP configurations were tested during the 
experiment: 

1. BOM1 – 96 jobs divided into 4 sections with a 
chromosome length of 447 genes. 

2. BOM2 – 101 jobs divided into 4 sections with a 
chromosome length of 558 genes. 

3. BOM12 – a combination of BOM1 and BOM2. 
 
Fig. 9 represents the distribution of jobs regarding the 

number of operations per job for BOM1 and BOM2. The 
job distribution for BOM1 is presented with a darker 
column and for BOM2 with a brighter one. Most jobs in 
both cases require six operations, while the minimum is 
one and maximum is 13 operations per job. Jobs with no 
operations are considered as assembly jobs that do not 
require any operation to be performed but are needed to 
satisfy the precedence constraint. Approximately 20% of 
jobs do not require recirculation. 

 
 

3.1 Initial population 
The first experiment was to determine whether mirroring 
of initial population yields fitter individuals. The 
experiment was performed with a population size of 50 
individuals where 100 initial populations were generated 
for each case. First, the average makespan of each 
population was calculated. Second, the average 
makespan of all populations was calculated for each 
case. The results are shown in Fig. 10, where the average 

makespan of random and mirrored initial population 
regarding BOM1, BOM2 and BOM12 is compared. One 
can notice that mirroring yields a fitter initial population 
in all cases, thus reducing the average initial makespan 
for 37 mins (4,13%) in case of BOM1, 45 mins (3,95%) 
in case of BOM2, and 66 mins (3,74%) in case of 
BOM12. Applying mirroring to generate the initial 
population does not significantly slow the optimization 
runtime because it is executed only once at the beginning 
of the optimization process; on the other hand, it 
provides a better starting point for optimization. 

 

 
Fig. 9. A job distribution regarding number of operations 

per job for BOM1 and BOM2. 
 

 
Fig. 10. The average initial makespan of random and 

mirrored initial population regarding each BOM. 
 
 

3.2 Selection 
The second experiment was performed to determine 
which selection method performs best in our case. Ten 
optimization runs were performed for each BOM. For 
each run, the optimization was performed until there was 
no makespan improvement for ten consecutive 
generations. Population size in this experiment was 100, 
with an EX variable mutation rate, CUT rate of 60%, 
and LOX rate of 40%. Fig. 11 represents the total 
makespan and runtime regarding the selection method. 
The makespan is presented as the total time to complete 
BOM1, BOM2, and BOM12; respectively for the 
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runtime. The makespan results are shown with a solid 
line, and runtime results with a dashed one.  

 

 
Fig. 11. The total makespan and runtime results 

regarding selection methods. 
 
The Roulette selection has achieved the longest 

makespan (3489 mins) while the other selection methods 
have achieved similar results. Between the latter, the 
FRD selection has slightly outperformed Fibonacci 
selection (3030 vs. 3045 mins).  

Optimization runtime is significantly affected by 
selection methods as shown in Fig. 11, where the total 
optimization runtime is presented. The Roulette selection 
has yielded shortest runtime (165s), yet it has also 
achieved significantly worst makespan results. The FRD 
selection has produced shorter runtime than Fibonacci 
selection (339 vs. 388s).  

We can conclude that Roulette selection provides the 
shortest runtime, yet it also provides the worst makespan 
that is significantly outperformed by FRD and Fibonacci 
selection. The results show that Roulette selection does 
not provide a population that would converge towards a 
global optimal solution in a satisfying way - it obviously 
gets stuck in some of the local optimums. Therefore, its 
execution is stopped very quickly, since there is no 
improvement from the local optimum. The FRD and 
Fibonacci selection obviously provide a population that 
converges significantly better towards the global 
optimum. Hence, the runtime is much longer than in case 
of Roulette selection, because more generations are 
needed to reach global optimum. For further experiments 
we have chosen the FRD selection which has provided 
better makespan and runtime results than Fibonacci 
selection in most aspects. 

 
 
3.3 Crossover and mutation 
The third experiment was performed to determine which 
crossover and mutation methods perform best with FRD 
selection that was chosen as a result of the second 

experiment. Ten optimization runs were performed for 
each BOM and for each combination of methods. For 
each run, the optimization was performed until there was 
no makespan improvement for ten consecutive 
generations. The Population size in this experiment was 
100, with an EX variable mutation rate, CUT rate of 
60%, and LOX rate of 40%. The comparison of applying 
different crossover and mutation methods is presented in 
Fig. 12. The makespan results are presented with a solid 
line, and runtime results with a dashed one. The 
makespan is presented as the total time to complete 
BOM1, BOM2, and BOM12; respectively for the 
runtime.  
 

 
Fig. 12. The comparison of different crossover and 

mutation methods regarding the makespan and runtime. 
 

 
Fig. 13. The comparison of relative difference between 

the best combination of methods regarding the makespan 
and runtime. 

 
The shortest total makespan was achieved by a 

combination of CUT+SH methods (2997 mins); the 
runtime was 430s. The longest makespan was achieved 
by a combination of LOX+EX methods (3055 mins); the 
runtime was 462s. The difference between the longest 
and shortest makespan is 58 mins (1,95%). Also worth 
mentioning is the total makespan of a combination of 
CUT+LOX+EX+SH methods (3030 mins) that is 1,1% 
slower than the shortest makespan. The shortest runtime 
(339s) was produced by a combination of 
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CUT+LOX+EX+SH methods, while the longest (522s) 
was produced by a combination of LOX+EX+SH 
methods. The difference between shortest and longest 
runtime is 183s (54%). Now, we will go into details 
about these differences. 

Fig. 13 represents the relative difference regarding 
the best total makespan and runtime. One can notice 
small differences (with a maximum deviation of 1,95% 
regarding the best result of CUT+SH methods) regarding 
makespan by using different crossover and mutation 
methods. On the other hand, there are significant 
differences while observing runtime with a maximum 
deviation of 54% regarding the best runtime result of a 
CUT+LOX+EX+SH combination of methods. The 
results clearly show that applying different combinations 
of methods does not significantly improve the makespan. 
On the other hand, it does significantly affect the 
runtime. Clearly, by applying CUT+LOX+EX+SH 
methods we achieve 1,1% worse result regarding 
makespan as if we would by applying the CUT+SH 
methods, yet the runtime is significantly shorter (26%). 
In this case we would opt for a combination of 
CUT+LOX+EX+SH methods because there is bigger 
benefit of runtime than makespan. 

 
 
3.4 Population size 
The fourth experiment was to determine the population 
size to use with FRD selection and a combination of 
EX+SH+CUT+LOX methods that have yielded the best 
makespan results (Fig. 14). Ten optimization runs were 
performed for each BOM and for each combination of 
methods. For each run, the optimization was performed 
until there was no makespan improvement for ten 
consecutive generations. In this experiment we have 
used the EX variable mutation rate, CUT rate of 60%, 
and LOX rate of 40%. Again, the makespan is 
represented by a solid line and runtime with a dashed 
one.  

Clearly, larger population produces a shorter 
makespan but also a longer runtime. The longest 
makespan (3052 mins) was produced by the smallest 
population of 50 individuals; in this case, runtime was 
177s. On the other hand, the shortest makespan (3007 
mins) was produced by the largest population of 150 
individuals; in this case, runtime was 554s. The timespan 
between the shortest and longest makespan is 45 mins, a 
difference that cannot be neglected. On the other hand, 
to achieve the shortest makespan, one would need 554s 
instead of only 177s; again, a difference that cannot be 
neglected. Yet we would opt for the middle solution 
where a population of 100 individuals has been tested 
(makespan 3030 mins; runtime 358s) because of the 
tradeoff between makespan and runtime; we try to 

achieve a good makespan result while maintaining an 
acceptable runtime to ensure real-time scheduling. 

The next experiment regarding population size was 
performed with a variable population size as described in 
Section 2.2.6. The test configuration was the same as 
with fixed population size and the results are shown in 
Fig. 15. The makespan results are presented with a solid 
line, and runtime results with a dashed one.  

 

 
Fig. 14. The comparison of results regarding the fixed 
population size of the GA with FRD selection and a 

combination of EX+SH+CUT+LOX. 
 
 

 
Fig. 15. The comparison of results regarding the variable 

population size of the GA with FRD selection and a 
combination of EX+SH+CUT+LOX. 

 
The longest runtime (3026) was achieved by initial 

population of 50 individuals; the runtime was 228s. The 
shortest makespan (3013 mins) was achieved by initial 
population of 150 individuals, yet the runtime here is 
considerably longer (661s). The difference between the 
shortest and longest makespan is not as prominent with 
variable population size (13 mins) as with fixed 
population size (45 mins). If we have opted for a fixed 
population size of 100 individuals, here we would opt 
for the initial population size of 50 individuals. First, 
shorter makespan (3026 vs. 3030 mins) has been 
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achieved by a smaller population size and second, and 
more important, a shorter makespan has been achieved 
by a considerably shorter runtime (228 vs. 358s). 

 
 

3.5 Crossover rate 
The final experiment was performed to determine the 
best CUT and LOX crossover rate with FRD selection, 
EX+SH+CUT+LOX methods, and a variable population 
size with initial value of 50 individuals (Fig. 16). Ten 
optimization runs were performed for each BOM and for 
each combination of methods. For each run, the 
optimization was performed until there was no makespan 
improvement for ten consecutive generations. We have 
used EX variable mutation rate in this experiment. 
Again, the makespan is represented by a solid line and 
runtime by a dashed one.  

The shortest makespan (3026 mins) was achieved if 
60% CUT crossover rate was applied; the runtime was 
221s. The longest timespan was achieved by a CUT 
crossover rate of 0%, i.e. when only LOX crossover was 
applied (3069 mins); in this case, runtime was also the 
longest – 255s. The timespan between the shortest and 
the longest makespan is 43 mins. The CUT crossover 
rate with the shortest runtime (207s) is 100%, yet the 
makespan (3052 mins) is significantly slower than the 
best one (3026 mins). If we opt for a 14s slower runtime 
(60% CUT crossover rate) we benefit 26 mins regarding 
makespan.  
 

 
Fig. 16. The comparison of results of the GA with FRD 
selection, EX+SH+CUT+LOX methods, and a variable 

population size, regarding the CUT crossover rate. 
 
 
4   Conclusion 
Results achieved in this preliminary study are promising 
since only the application of different GA operators had 
reduced the initial total makespan from 3489 mins to 
3026 mins, thus reducing the makespan by 15%. We 
could opt also for an even higher reduction to 3013 mins 
but on the account of significantly higher optimization 

runtime (661s instead of 221s). However, our opinion is 
that improvement of makespan by 0,7% could not be 
justified by increasing the optimization runtime by 
almost 300%. Nevertheless, it is the end-user that makes 
the final decision, but since daily optimization is 
required, the end-user would probably also opt for a 
shorter runtime and the makespan a bit longer. To 
emphasize the importance of a tradeoff between 
makespan and runtime, it must be stated that the 
optimization was done with only three BOMs. If more 
BOMs would be introduced, the optimization runtime 
would increase greatly, since the JSS problem would 
become even more complex and time consuming, yet 
very challenging to provide a solution implemented in an 
actual production process. 

However, still there are many GA operators that need 
to be explored. Also, the initial population could be 
generated by another method to provide an initial 
population that would produce even better results. 
Furthermore, GAs are only one method to solve JSS 
problem. There are many more methods that 
successfully solve such kind of problems, e.g. tabu 
search and ant colony optimization. 

The opposite-based concept is also intriguing and 
worth examining into detail in the scope of JSS. Our 
research has proved that mirroring yields a fitter initial 
population. Whether mirroring is the same as the 
opposite-based concept remains unanswered, because it 
is often hard to find an opposite, e.g. the opposite of a 
chess move. The same goes for the job shop schedule. 
Therefore, this intriguing problem is left for future 
research. 
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