
Application of Genetic Algorithms and Visual Simulation in a Real-Case
Production Optimization

DAVORIN KOFJAČ, MIROLJUB KLJAJIĆ

University of Maribor, Faculty of Organizational Sciences
Kidričeva cesta 55a, SI-4000 Kranj

SLOVENIA
{ davorin.kofjac, miroljub.kljajic }@fov.uni-mb.si http://kibernetika.fov.uni-mb.si

Abstract: - This paper presents a real case customized flexible furniture production optimization. Such a make-to-order
production must be flexible to meet the customer’s needs, which are changing frequently. Hence, a frequent review of
the production process is needed to ensure near-optimal production schedule to meet the minimal makespan constraint.
In such a case we are confronted with a tradeoff between makespan and optimization runtime to ensure efficient real-
time scheduling. The genetic algorithm production scheduling optimization is presented to solve a job shop scheduling
problem with recirculation. Several initial population generators, selection methods, and crossover and mutation
methods are discussed and tested. The visual model of the furniture production process was developed during the
research. Such a model is closer to end-user perception and is used to clarify the results of numerical optimization. It
also enables the implementation of end-user’s expert knowledge into the optimizer to reduce the GA search space with
a goal of reducing the runtime to a minimum.

Key-Words: Production scheduling, Job-shop, Recirculation, Genetic algorithms, Simulation, Optimization

1 Introduction
Scheduling is one of the most important issues in the
planning and operation of manufacturing systems. In the
classical job shop scheduling (JSS) problem, n jobs are
processed to completion on m machines. Each job
consists of k operations, one per machine, with known
processing times and distinct technological ordering, and
each machine is continuously available from time zero,
processing one operation at a time without pre-emption.
The operations are to be sequenced so as to minimize
makespan. The introduction of recirculation complicates
the already difficult JSS problem that is NP-hard. Hence,
heuristics or artificial intelligence (AI) techniques seem
to be unavoidable for JSS problems [2]. Several
techniques to solve complex JSS problems are described
in [4]. In our preliminary study, genetic algorithms (GA)
were used to optimize the production schedule. They are
known to search efficiently in a large search space,
without explicitly requiring additional information (such
as convexity, or availability of derivative information)
about the objective function to be optimized [13]. For
this reason, in the last decade, they have been applied to
many (combinatorial) problems, including scheduling,
yet only a few researches have been conducted to solve a
JSS problem with recirculation using GA or the similar
CLONALG (clonal selection-based algorithm) [10] [14]
[15].

The production schedule produced by GA is a
numerical solution that the end-users find hard to
understand, especially as they are usually not interested

in the methodology itself. Hence, the optimization
results must be presented visually by a Gantt chart or
some other visual technique. Therefore, a visual
simulation model was developed that represents the
furniture production process. Results produced by GA
are imported into the visual simulation model that runs
the simulation based on those results. Visual
representation of optimization results is closer to the
end-user’s perception and also enables the validation of
the GA optimizer. Hence, many inconsistencies can be
corrected. Furthermore, optimized schedule produced by
GA is valid, but it may not be logical or close to end-
user comprehension of the scheduling problem.
Therefore, visual simulation model provides a way
where users can see many illogical schedule sequences
that GA are producing, thus enabling end-users and the
researchers to incorporate as much knowledge as
possible into the optimization procedure. Hence, the
problem search space is reduced to achieve real-time
solutions as confirmed by Choi and Yang [3]. Reduction
of a search space is crucial since GA is a multi-point
search algorithm that requires a lot of computational
time [20].

2 Methodology

2.1 Problem formulation
The case study is dealing with a make-to-order furniture
production, where furniture is produced in very small

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 992 Issue 12, Volume 3, December 2008

series or no series at all. Such a production demands a
lot of flexibility since there are no big series where
scheduling is easier to perform. Generally, each
customer’s order is different in our case. Therefore,
production scheduling has to be performed often to
ensure the optimal/near-optimal production schedule
with the objective to minimize makespan.

The base for the scheduling is the bill of materials
(BOM) needed to complete a product, e.g. a wardrobe.
In this case, BOM would include a frame, drawers, a
door etc. On the other hand, a drawer’s BOM would
include, for example, four sides, one bottom, sliders, and
so on. Such a BOM can be represented by a tree
structure as shown in Fig. 1.

Fig. 1. A part of a wardrobe BOM represented by a tree

structure.

 One can easily notice that certain parts have to be
completed before assembling of other parts can begin
(precedence). Such a tree structure is basically a set of n
jobs J = { j1, j2, …, jn } that have to be performed on a
given set of m machines M = { m1, m2, …, mm }. A job ji
consists of a set of k operations Oi = { oi1, oi2, …, oik }
that are performed on a subset of machines H⊆M. An
operation oik is defined by the uninterrupted time period
tik needed to perform this operation and a machine hik on
which the operation is performed. In our case, a job can
be repeated on the same machine (recirculation).
Furthermore, jobs have to be processed in a given
sequence as shown in an example presented by a tree
structure in Fig. 1. The objective in our case is to
produce a product in the shortest time possible, i.e. to
minimize the makespan denoted by Cmax that is defined
as the time when the last job leaves the system:

),,...,max(21max nCCCC = (1)

where Ci is the completion time of job ji.

2.2 Solving job-shop scheduling problem by

genetic algorithms
The problem defined in the previous section can be
described as the job-shop scheduling problem that is one
of the best-known machine scheduling problems. A

schedule is an allocation of the operations to time
intervals on the machines. The problem is to find a
schedule of minimum length [9]. The problem becomes
even more complex if recirculation is introduced.

2.2.1 GA representation of the JSS problem
Lately, different GA representations for job-shop
scheduling problems have been proposed, e.g. operation-
based, job-based, machine-based, and so on [9]. During
our research, we have used operation-based
representation that encodes a schedule as a sequence of
operations, and each gene stands for one operation. All
operations for a job are named with the same symbol and
are then interpreted accordingly to the order of
occurrence in the sequence for a given chromosome, as
proposed by Gen, Tsujimura and Kubota [9].

Consider the three-job four-machine problem given
in Table 1. Jobs j1 and j2 have to be completed before the
processing of job j3 takes place. Hence, a chromosome is
divided into sections (see Fig. 2), and crossover and
mutation can be performed only inside a section.

Table 1. An example of a three-job four-machine
problem - operation machine sequence for each job.

 Operations

Job 1 2 3 4

j1 m1 m3 - -

j2 m1 m3 m4 -

j3 m1 m2 m1 m4

Suppose a chromosome is given as [2 2 1 1 2 3 3 3 3],

where 1 stands for job j1, 2 for job j2, and 3 for job j3. Job
j1 has two operations (there are two 1’s in the
chromosome), job j2 has three operations, and job j3 has
four operations. For example, the first 2 corresponds to
the first operation of job j2 which will be processed on
machine m1, the second 2 corresponds to the second
operation of job j2 which will be processed on machine
m3, and the third 2 corresponds to the third operation of
job j2 which will be processed on machine m2 as shown
in Fig. 3 (respectively for jobs j1 and j3). Note that
operations 1 and 3 of the job j3 are performed on
machine m1 (recirculation).

2 2 1 1 2 3 3 3 3

Section 1 Section 2

Fig. 2. A chromosome division into sections regarding
the job precedence constraint.

Wardrobe

Drawers Door

Top
drawer

Bottom
drawer

Panels

Frame

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 993 Issue 12, Volume 3, December 2008

2.2.2 Initial population
Initial population of chromosomes was generated in two
ways: randomly and by mirroring. Random generation is
a commonly used technique to provide initial population
of chromosomes in the absence of a priori information
about the solution. In the first step, N equal individuals
are created as described earlier. Next, the genes in each
section are moved to the random position inside the
same section thus providing a random schedule.

Because random generation does not necessarily
provide a good initial population, the mirroring of initial
population was tested, inspired by the opposite-based
population initialization proposed by Rahnamayan et al.
[16]. They have proved that we can improve our chance
of starting with a fitter solution by simultaneously
checking the opposite solution. By doing this, the fitter
one (random or opposite) can be chosen as an initial
solution. In fact, according to probability theory, 50% of
the time a guess is further from the solution than its
opposite guess. Therefore, starting with the closer of the
two guesses (as judged by its fitness) has the potential to
accelerate convergence.

Mirroring is performed as follows. In the first step,
initial population of size N is generated randomly. Next,
each individual in randomly generated population is
mirrored, i.e. each section inside an individual is
mirrored, thus obtaining another N individuals.
Individuals of both populations are then grouped and
ranked according to the fitness function. Finally, best N-
ranked individuals are taken as the initial population. By
utilizing mirrored points, we can obtain fitter initial
population even when there is no a priori knowledge
about the solution(s). Here, the term “mirroring” is used
intentionally instead of “opposite-based” because
proving whether the mirrored schedule is actually an
opposite-based schedule is exceeding the scope of this
research.

Chromosome: 2 2 1 1 2 3 3 3 3

Machine: 1 2

(a)

Chromosome: 2 2 1 1 2 3 3 3 3

Machine: 1 2 4

(b)

Chromosome: 2 2 1 1 2 3 3 3 3

Machine: 1 2 1 4

(c)

Fig. 3. Operations of jobs and corresponding machines:
(a) for job j1, (b) for job j2 and (c) for job j3.

2.2.3 Selection
Several selection methods to choose chromosomes for
the next generation were tested: Roulette selection (see
[9]), Fitness rank distribution [17], and Fibonacci
selection [1]. Also, the elite selection is performed to
preserve the best individuals.

The Roulette selection is a fundamental selection
method used in GA. In Roulette selection, the fitness
function assigns a fitness value to chromosomes. This
fitness value is used to associate a probability of
selection with each individual chromosome. If fi is the
fitness of an individual i in the population, its probability
of being selected is:

∑
=

= N

j
j

i
i

f

fp

1

 (2)

where N is the number of individuals in the

population. While candidate solutions with a higher
fitness will be less likely to be eliminated, there is still a
chance that they may be.

The Fitness rank distribution (FRD) was introduced
by Reeves [17]. It selects parents according to the
following probability distribution:

)1(
2
+

=
MM

ipi (3)

where i refers to the i-th chromosome in descending

order of makespan and M refers to the fittest one. This
implies that the median value has a chance of 1/M of
being selected, while the fittest one (the M-th
chromosome) has a chance of 2/(M + 1), roughly twice
the median.

The Fibonacci selection was first introduced by
Bernik [1] and uses Fibonacci sequence (0, 1, 1, 2, 3, 5,
8, etc.) to select individuals. Fibonacci sequence is
defined as follows:

1. n if
1; n if
0; n if

1
0

21 >
=
=

⎪
⎩

⎪
⎨

⎧

+
=

−− nn

n

FF
F (4)

Individuals from a population are selected according

to the places defined by Fibonacci numbers. By applying
this method, the fittest individuals are selected more
often than the ones less fit. Hence, the variety of
population is maintained and survival of the fittest
concept is being applied, while the GA converges faster
towards the solution.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 994 Issue 12, Volume 3, December 2008

2.2.4 Crossover
To produce a new generation of chromosomes, a
crossover is applied with a given probability pc. The one-
cut-point crossover (CUT) and linear order crossover
(LOX) were tested. Note that crossover can be applied
only inside a section (e.g. Section 1).

Parent 1: 2 2 1 1 2 3 3 3 3

Parent 2: 2 1 2 1 2 3 3 3 3

Step 1:

Child 1: 2 2 X X X 3 3 3 3

Child 2: 2 1 X X X 3 3 3 3

Step 2:

Child 1: 2 2 1 2 1 3 3 3 3

Child 2: 2 1 2 2 1 3 3 3 3

Fig. 4. An example of the CUT crossover in Section 1.

Step 1:

Parent 1: 2 2 1 1 2 3 3 3 3

Parent 2: 2 1 2 1 2 3 3 3 3

Step 2:

Parent 1: X 2 X 1 2 3 3 3 3

Parent 2: 2 X 2 X 2 3 3 3 3

Step 3:

Parent 1: 2 1 X X 2 3 3 3 3

Parent 2: 2 2 X X 2 3 3 3 3

Step 4:

Child 1: 2 1 2 1 2 3 3 3 3

Child 2: 2 2 1 1 2 3 3 3 3

Fig. 5. An example of the LOX in Section 1.

Consider two parents and two child chromosomes for

CUT crossover as shown in Fig. 4. In the first step,
genes [2 2] are copied from Parent 1 to the Child 1 up to
the crossover point. Respectively, genes [2 1] are copied
from Parent 2 to the Child 2. Child 1 is missing the
genes [1 1 2] and the Child 2 is missing the genes [2 1
2]. The missing genes gap is filled in step 2. To produce
a feasible schedule, the gap in each child must be filled
with the missing genes by taking in order each legitimate
gene from the other parent. For example, a gap in Child
1 is filled with the sequence [1 2 1], while the gap in

Child 2 is filled with the sequence [2 2 1]. Note that the
number of 1’s and 2’s in both “fill” sequences is equal to
the one in the missing genes sequence, only the order in
which 1’s and 2’s appear is different.

2.2.5 Mutation
After applying crossover, two types of mutation were
tested: exchange (EX) and shift (SH) mutation.
Mutations are applied to a child with a varying
probability pm (see [17]). The mutation rate is calculated
as:

child

best
m fit

fitp −=1 (5)

where fitbest represents the fitness function value of

the chromosome that has yielded the best result and
fitchild the fitness function value of the child that requires
mutation. The chromosome with the fitness function
value closer to the fitbest would have a lower pm than the
one with the fitness function value closer to the worst
value.

The exchange mutation is performed by swapping the
places of genes (chosen randomly) to produce a feasible
solution (see Fig. 6). The shift mutation performs a shift
of one gene (chosen randomly) to the right or left a
random number of places (see Fig. 7). Again, the
mutation can only be performed inside a section.

Parent: 2 2 1 1 2 3 3 3 3

Child: 1 2 1 2 2 3 3 3 3

Fig. 6. An example of EX mutation in Section 1.

Parent: 2 2 1 1 2 3 3 3 3

Child: 2 1 1 2 2 3 3 3 3

Fig. 7. An example of SH mutation in Section 1.

2.2.6 Population size
The effects of setting the parameters of evolutionary
algorithms (EA) has been the subject of extensive
research by the EA community and recently there is
much attention paid to self-calibrating EAs that can
adjust their parameters on-the fly (see e.g., [5] [6] for
review). The most attention and most publications have
been devoted to the adjustment of parameters of

Crossover point

Crossover
section

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 995 Issue 12, Volume 3, December 2008

variation operators. Adjusting population size is much
less popular, even though there are biological and
experimental arguments to expect that this would be
rewarding. Looking at it technically, population size is
the most flexible parameter in natural systems: It can be
adjusted much more easily than, for instance, mutation
rate. In evolutionary computing, however, population
size is traditionally a rigid parameter [7]. The new
population resizing mechanism used here was introduced
by Eiben et al. [7] and is based on improvements of the
best fitness in the population. On fitness improvement
the algorithm becomes more biased towards exploration
increasing the population size, short term lack of
improvement makes the population smaller, but
stagnation over a longer period causes populations to
grow again. Technically, this approach applies three
kinds of changes in the population size:

 1. If the best fitness in the population increases, the

population size is increased proportionally to the
improvement and the number of evaluations left until
the maximum allowed. The formula used for
calculating the growth rate GR1 for is:

nessinitMaxFit
maxFitnessmaxFitness

mcurrEvalNumaxEvalNumincFactGR

oldnew −
⋅

⋅−⋅=)(1
 (6)

where incFact is an external parameter from the
interval (0,1), maxEvalNum and currEvalNum denote
the given maximum number of fitness evaluations
and the current evaluation number, maxFitnessnew,
maxFitnessold and initMaxFitness are the best fitness
values in the current generation, the same in the
preceding generation and the best fitness value in the
initial population. (Note that we assume the existence
of maxEvalNum, which is very often present indeed.
In case it is not given, a very large number can be
used instead.)

2. The population size is increased by a factor GR2 if
there is no improvement during the last V number of
evaluations. In principle, the mechanism to increase
the population size in this step can be defined
independently from the previous one, but in fact we
use the same growth rate, i.e. GR1.

3. If neither 1. nor 2. was executed, then the population
size is decreased. For the decrease rate DR a little
percentage of the current population size is used, e.g.
(1-5%).

In addition, we have added a war or disease process

in the population growth process, similar to the one
introduced by Shi et al. [17]. It is known, that natural
environment does carry some capacity that cannot be

exceeded; hence we shrink the population to its initial
size after the population has exceeded some user defined
maximum population size.

2.3 Visual simulation model of the flexible
furniture manufactory

Computer-based simulation is seen as an integral
business tool, giving flexibility and convenience to
designing, planning and analyzing complex processes
and/or systems. This is because computer-based
modeling and simulation methods have the capability of
representing the complex static structure as well as the
dynamic behavior of systems [12][17]. Clearly, the
imaginative and disciplined application of dynamic
modeling and simulation provides a potentially useful
mechanism through which users can gain a
comprehensive understanding of system behavior [5].

Visual simulation model is used for validation of GA
optimization algorithm that may produce a valid
production schedule, yet this schedule may not be logical
from the end-user’s perspective. Through visual
simulation users can notice illogical sequences that can
be eliminated in GA optimization by applying some
constraints. Visual model also allows incorporating as
many knowledge as possible from experts (end-users)
into the optimization algorithm, thus reducing the
problem search space [3]. Hence, optimization algorithm
is able to find an optimal/near-optimal solution much
faster or even in real-time. On the other hand, visual
simulation model can provide users with information on
how to improve the production process itself. Users can
run different simulation scenarios to see how the
production process would perform if some parameters
would have been changed (what-if analysis). Similar
conclusions were drawn by [11], who have also used GA
to integrate process planning and scheduling in a job
shop.

Visual simulation model is presented in Fig. 8,
representing only a fraction of the whole furniture
production. It was implemented using Flexsim software
for discrete-event simulation (DES). The software
enables 3D visual simulation, import of simulation
parameters, and export and representation of simulation
results. The simulation model consists of machines used
in the actual production process. Input into the model are
the production schedule as a result of GA optimization,
and setup and process times for each operation on a
given machine that are extracted from a database.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 996 Issue 12, Volume 3, December 2008

Fig. 8. A part of the furniture production as modeled

with Flexsim simulation software

3 Results
The experiment was performed on a computer with Intel
Core2 Quad 2.4GHz processor and 4GB RAM. The GA
optimization algorithm was implemented with MS
Visual Studio 2008 in C# technology.

The number of machines needed to perform JSS is
21. Three JSSP configurations were tested during the
experiment:

1. BOM1 – 96 jobs divided into 4 sections with a
chromosome length of 447 genes.

2. BOM2 – 101 jobs divided into 4 sections with a
chromosome length of 558 genes.

3. BOM12 – a combination of BOM1 and BOM2.

Fig. 9 represents the distribution of jobs regarding the

number of operations per job for BOM1 and BOM2. The
job distribution for BOM1 is presented with a darker
column and for BOM2 with a brighter one. Most jobs in
both cases require six operations, while the minimum is
one and maximum is 13 operations per job. Jobs with no
operations are considered as assembly jobs that do not
require any operation to be performed but are needed to
satisfy the precedence constraint. Approximately 20% of
jobs do not require recirculation.

3.1 Initial population
The first experiment was to determine whether mirroring
of initial population yields fitter individuals. The
experiment was performed with a population size of 50
individuals where 100 initial populations were generated
for each case. First, the average makespan of each
population was calculated. Second, the average
makespan of all populations was calculated for each
case. The results are shown in Fig. 10, where the average

makespan of random and mirrored initial population
regarding BOM1, BOM2 and BOM12 is compared. One
can notice that mirroring yields a fitter initial population
in all cases, thus reducing the average initial makespan
for 37 mins (4,13%) in case of BOM1, 45 mins (3,95%)
in case of BOM2, and 66 mins (3,74%) in case of
BOM12. Applying mirroring to generate the initial
population does not significantly slow the optimization
runtime because it is executed only once at the beginning
of the optimization process; on the other hand, it
provides a better starting point for optimization.

Fig. 9. A job distribution regarding number of operations

per job for BOM1 and BOM2.

Fig. 10. The average initial makespan of random and

mirrored initial population regarding each BOM.

3.2 Selection
The second experiment was performed to determine
which selection method performs best in our case. Ten
optimization runs were performed for each BOM. For
each run, the optimization was performed until there was
no makespan improvement for ten consecutive
generations. Population size in this experiment was 100,
with an EX variable mutation rate, CUT rate of 60%,
and LOX rate of 40%. Fig. 11 represents the total
makespan and runtime regarding the selection method.
The makespan is presented as the total time to complete
BOM1, BOM2, and BOM12; respectively for the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 997 Issue 12, Volume 3, December 2008

runtime. The makespan results are shown with a solid
line, and runtime results with a dashed one.

Fig. 11. The total makespan and runtime results

regarding selection methods.

The Roulette selection has achieved the longest

makespan (3489 mins) while the other selection methods
have achieved similar results. Between the latter, the
FRD selection has slightly outperformed Fibonacci
selection (3030 vs. 3045 mins).

Optimization runtime is significantly affected by
selection methods as shown in Fig. 11, where the total
optimization runtime is presented. The Roulette selection
has yielded shortest runtime (165s), yet it has also
achieved significantly worst makespan results. The FRD
selection has produced shorter runtime than Fibonacci
selection (339 vs. 388s).

We can conclude that Roulette selection provides the
shortest runtime, yet it also provides the worst makespan
that is significantly outperformed by FRD and Fibonacci
selection. The results show that Roulette selection does
not provide a population that would converge towards a
global optimal solution in a satisfying way - it obviously
gets stuck in some of the local optimums. Therefore, its
execution is stopped very quickly, since there is no
improvement from the local optimum. The FRD and
Fibonacci selection obviously provide a population that
converges significantly better towards the global
optimum. Hence, the runtime is much longer than in case
of Roulette selection, because more generations are
needed to reach global optimum. For further experiments
we have chosen the FRD selection which has provided
better makespan and runtime results than Fibonacci
selection in most aspects.

3.3 Crossover and mutation
The third experiment was performed to determine which
crossover and mutation methods perform best with FRD
selection that was chosen as a result of the second

experiment. Ten optimization runs were performed for
each BOM and for each combination of methods. For
each run, the optimization was performed until there was
no makespan improvement for ten consecutive
generations. The Population size in this experiment was
100, with an EX variable mutation rate, CUT rate of
60%, and LOX rate of 40%. The comparison of applying
different crossover and mutation methods is presented in
Fig. 12. The makespan results are presented with a solid
line, and runtime results with a dashed one. The
makespan is presented as the total time to complete
BOM1, BOM2, and BOM12; respectively for the
runtime.

Fig. 12. The comparison of different crossover and

mutation methods regarding the makespan and runtime.

Fig. 13. The comparison of relative difference between

the best combination of methods regarding the makespan
and runtime.

The shortest total makespan was achieved by a

combination of CUT+SH methods (2997 mins); the
runtime was 430s. The longest makespan was achieved
by a combination of LOX+EX methods (3055 mins); the
runtime was 462s. The difference between the longest
and shortest makespan is 58 mins (1,95%). Also worth
mentioning is the total makespan of a combination of
CUT+LOX+EX+SH methods (3030 mins) that is 1,1%
slower than the shortest makespan. The shortest runtime
(339s) was produced by a combination of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 998 Issue 12, Volume 3, December 2008

CUT+LOX+EX+SH methods, while the longest (522s)
was produced by a combination of LOX+EX+SH
methods. The difference between shortest and longest
runtime is 183s (54%). Now, we will go into details
about these differences.

Fig. 13 represents the relative difference regarding
the best total makespan and runtime. One can notice
small differences (with a maximum deviation of 1,95%
regarding the best result of CUT+SH methods) regarding
makespan by using different crossover and mutation
methods. On the other hand, there are significant
differences while observing runtime with a maximum
deviation of 54% regarding the best runtime result of a
CUT+LOX+EX+SH combination of methods. The
results clearly show that applying different combinations
of methods does not significantly improve the makespan.
On the other hand, it does significantly affect the
runtime. Clearly, by applying CUT+LOX+EX+SH
methods we achieve 1,1% worse result regarding
makespan as if we would by applying the CUT+SH
methods, yet the runtime is significantly shorter (26%).
In this case we would opt for a combination of
CUT+LOX+EX+SH methods because there is bigger
benefit of runtime than makespan.

3.4 Population size
The fourth experiment was to determine the population
size to use with FRD selection and a combination of
EX+SH+CUT+LOX methods that have yielded the best
makespan results (Fig. 14). Ten optimization runs were
performed for each BOM and for each combination of
methods. For each run, the optimization was performed
until there was no makespan improvement for ten
consecutive generations. In this experiment we have
used the EX variable mutation rate, CUT rate of 60%,
and LOX rate of 40%. Again, the makespan is
represented by a solid line and runtime with a dashed
one.

Clearly, larger population produces a shorter
makespan but also a longer runtime. The longest
makespan (3052 mins) was produced by the smallest
population of 50 individuals; in this case, runtime was
177s. On the other hand, the shortest makespan (3007
mins) was produced by the largest population of 150
individuals; in this case, runtime was 554s. The timespan
between the shortest and longest makespan is 45 mins, a
difference that cannot be neglected. On the other hand,
to achieve the shortest makespan, one would need 554s
instead of only 177s; again, a difference that cannot be
neglected. Yet we would opt for the middle solution
where a population of 100 individuals has been tested
(makespan 3030 mins; runtime 358s) because of the
tradeoff between makespan and runtime; we try to

achieve a good makespan result while maintaining an
acceptable runtime to ensure real-time scheduling.

The next experiment regarding population size was
performed with a variable population size as described in
Section 2.2.6. The test configuration was the same as
with fixed population size and the results are shown in
Fig. 15. The makespan results are presented with a solid
line, and runtime results with a dashed one.

Fig. 14. The comparison of results regarding the fixed
population size of the GA with FRD selection and a

combination of EX+SH+CUT+LOX.

Fig. 15. The comparison of results regarding the variable

population size of the GA with FRD selection and a
combination of EX+SH+CUT+LOX.

The longest runtime (3026) was achieved by initial

population of 50 individuals; the runtime was 228s. The
shortest makespan (3013 mins) was achieved by initial
population of 150 individuals, yet the runtime here is
considerably longer (661s). The difference between the
shortest and longest makespan is not as prominent with
variable population size (13 mins) as with fixed
population size (45 mins). If we have opted for a fixed
population size of 100 individuals, here we would opt
for the initial population size of 50 individuals. First,
shorter makespan (3026 vs. 3030 mins) has been

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 999 Issue 12, Volume 3, December 2008

achieved by a smaller population size and second, and
more important, a shorter makespan has been achieved
by a considerably shorter runtime (228 vs. 358s).

3.5 Crossover rate
The final experiment was performed to determine the
best CUT and LOX crossover rate with FRD selection,
EX+SH+CUT+LOX methods, and a variable population
size with initial value of 50 individuals (Fig. 16). Ten
optimization runs were performed for each BOM and for
each combination of methods. For each run, the
optimization was performed until there was no makespan
improvement for ten consecutive generations. We have
used EX variable mutation rate in this experiment.
Again, the makespan is represented by a solid line and
runtime by a dashed one.

The shortest makespan (3026 mins) was achieved if
60% CUT crossover rate was applied; the runtime was
221s. The longest timespan was achieved by a CUT
crossover rate of 0%, i.e. when only LOX crossover was
applied (3069 mins); in this case, runtime was also the
longest – 255s. The timespan between the shortest and
the longest makespan is 43 mins. The CUT crossover
rate with the shortest runtime (207s) is 100%, yet the
makespan (3052 mins) is significantly slower than the
best one (3026 mins). If we opt for a 14s slower runtime
(60% CUT crossover rate) we benefit 26 mins regarding
makespan.

Fig. 16. The comparison of results of the GA with FRD
selection, EX+SH+CUT+LOX methods, and a variable

population size, regarding the CUT crossover rate.

4 Conclusion
Results achieved in this preliminary study are promising
since only the application of different GA operators had
reduced the initial total makespan from 3489 mins to
3026 mins, thus reducing the makespan by 15%. We
could opt also for an even higher reduction to 3013 mins
but on the account of significantly higher optimization

runtime (661s instead of 221s). However, our opinion is
that improvement of makespan by 0,7% could not be
justified by increasing the optimization runtime by
almost 300%. Nevertheless, it is the end-user that makes
the final decision, but since daily optimization is
required, the end-user would probably also opt for a
shorter runtime and the makespan a bit longer. To
emphasize the importance of a tradeoff between
makespan and runtime, it must be stated that the
optimization was done with only three BOMs. If more
BOMs would be introduced, the optimization runtime
would increase greatly, since the JSS problem would
become even more complex and time consuming, yet
very challenging to provide a solution implemented in an
actual production process.

However, still there are many GA operators that need
to be explored. Also, the initial population could be
generated by another method to provide an initial
population that would produce even better results.
Furthermore, GAs are only one method to solve JSS
problem. There are many more methods that
successfully solve such kind of problems, e.g. tabu
search and ant colony optimization.

The opposite-based concept is also intriguing and
worth examining into detail in the scope of JSS. Our
research has proved that mirroring yields a fitter initial
population. Whether mirroring is the same as the
opposite-based concept remains unanswered, because it
is often hard to find an opposite, e.g. the opposite of a
chess move. The same goes for the job shop schedule.
Therefore, this intriguing problem is left for future
research.

Acknowledgement: This research was supported by the
Ministry of Higher Education, Science and Technology
of the Republic of Slovenia (Contract No. Z5-0015-0586-
08). Our sincere thanks goes also to Mr. Bolčič and his
team who have initiated this research.

References:
[1] Bernik I., Multicriteria scheduling by applying

genetic algorithms and Petri nets visual simulation,
Doctoral Dissertation (in Slovene), University of
Maribor, Faculty of Organizational Sciences, 2001.

[2] Chen H., Ihlow J., and Lehmann C., A Genetic
Algorithm for Flexible Job-Shop Scheduling,
Proceedings of the 1999 IEEE International
Conference on Robotics & Automation, Detroit,
Michigan, May 1999, pp. 1120-1125.

[3] Chiu Hung-Pin H.P., Hsieh K.L., Tang Yi-Tsung
Y.T., and Chien Wan-Jung W.J., Employing a
genetic algorithm based on knowledge to address
the job shop scheduling problem, WSEAS

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 1000 Issue 12, Volume 3, December 2008

Transactions on Computers Research, Vol. 2, No.
2, 2007, pp. 215-221.

[4] Choi S.H. and Yang F.Y., A filter search algorithm
based on machine-order space for job-shop
scheduling problems, Journal of Manufacturing
Technology Management, Vol. 17, No. 3, 2006, pp.
376-392.

[5] Eiben A.E., Hinterding R., and Michalewicz Z.,
Parameter control in evolutionary algorithms, IEEE
Transactions on Evolutionary Computation, Vol. 3,
No. 2, 1999, pp. 124-141.

[6] Eiben A.E. and Smith, J.E., Introduction to
Evolutionary Computing, Springer, 2003.

[7] Eiben, A.E., Marchiori, E., and Valko, V.A.,
Evolutionary algorithms with on-the-fly population
size adjustment, Lecture Notes in Computer
Science, Vol. 3242, Parallel Problem Solving from
Nature - PPSN VIII, 8th International Conference
Proceedings, 2004, pp. 41-50.

[8] Fowler A., Systems modeling, simulation, and the
dynamics of strategy, Journal of Business
Research, Vol. 56, No. 2, 2003, pp. 135-144.

[9] Gen M. and Cheng R., Genetic Algorithms &
Engineering Design, John Wiley & Sons, Inc.,
1997.

[10] Ho N.B. and Tay J.C., GENACE: an efficient
cultural algorithm for solving the flexible job-shop
problem, Proceedings of the 2004 Congress on
Evolutionary Computation, Vol. 2, 2004, pp. 1759-
66.

[11] Hyung R.C. and Byung J.P., Genetic algorithm for
the integration of process planning and scheduling
in a job shop, WSEAS Transactions on Information
Science and Applications, Vol. 3, No. 12, 2006, pp.
2498-2504.

[12] Kljajić M., Bernik I., and Škraba A., Simulation
approach to decision assessment in enterprises,
Simulation, Vol. 74, No. 4, 2000, pp. 199-210.

[13] Naso D., Surico M., Turchiano B., and Kaymak U.,
Genetic algorithms for supply-chain scheduling: A
case study in the distribution of ready-mixed
concrete, European Journal of Operational
Research, Vol. 177, No. 3, 2007, pp. 2069-2099.

[14] Oliveira J.A., Scheduling the truckload operations
in automatic warehouses, European Journal of
Operational Research, Vol. 179, No. 3, 2007, pp.
723-735.

[15] Ong Z.X., Tay J.C., and Kwoh C.K., Applying the
Clonal Selection principle to find Flexible Job-
Shop schedules, Lecture Notes in Computer
Science, Vol. 3627, Artificial Immune Systems: 4th
International Conference, ICARIS 2005, pp. 442-
455.

[16] Rahnamayan S., Tizhoosh H.R., and Salama
M.M.A., Opposition-Based Differential Evolution,
IEEE Transactions on Evolutionary Computation,
Vol. 12, No. 1, 2008, pp. 64-79.

[17] Reeves C., A genetic algorithm for flow shop
sequencing, Computers and Operations Research,
Vol. 22, 1995, pp. 5-13.

[18] Shi, X.H., Wan, L.M., Lee, H.P., Yang, X.W.,
Wang, L.M., and Liang, Y.C., An improved genetic
algorithm with variable population-size and a PSO-
GA based hybrid evolutionary algorithm,
International Conference on Machine Learning and
Cybernetics, Vol. 3, 2003, pp 1735-1740.

[19] Wang Q. and Chatwin C.R., Key issues and
developments in modelling and simulation-based
methodologies for manufacturing systems analysis,
design and performance evaluation, The
International Journal of Advanced Manufacturing
Technology, Vol. 22, No. 8, 2004, pp. 720-729.

[20] Yoshikawa M. and Terai, H., Genetic algorithm
engine for scheduling problems, WSEAS
Transactions on Circuits and Systems, Vol. 5, No.
3, 2006, pp. 397-402.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Davorin Kofjac, Miroljub Kljajic

ISSN: 1991-8763 1001 Issue 12, Volume 3, December 2008

