
Optimal Reorganization of Agent Formations

DALILA B. M. M. FONTES
LIAAD-INESC Porto L.A. and

Faculdade de Economia
Universidade do Porto

Rua Dr. Roberto Frias, 4200-464 Porto
PORTUGAL

fontes@fep.up.pt

FERNANDO A. C. C. FONTES
ISR-Porto and

Universidade do Minho
Dep. de Matemática para a Ciência e Tecnologia

Campus de Azurém, 4800-058 Guimarães
PORTUGAL

ffontes@mct.uminho.pt

Abstract: In this article we address the problem of determining how a structured formation of autonomous
undistinguishable agents can be reorganized into another, eventually non-rigid, formation based on changes in
the environment, perhaps unforeseeable. The methodology can also be used to correctly position the agents
into a particular formation from an initial set of random locations. Given the information on the agents current
location and the final locations, there are n! possible permutations for the n agents. Among these, we seek one
that minimizes a total relative measure, e.g. distance traveled by the agents during the switching. We propose
a dynamic programming methodology to solve this problem to optimality. Possible applications can be found
in surveillance, damage assessment, chemical or biological monitoring, among others, where the switching to
another formation, not necessarily predefined, may be required due to changes in the environment.

Key–Words: Combinatorial optimization, dynamic programming, formation reorganization.

1 Introduction

Research in coordination and control of teams of
several agents (that may be robots, ground, air or
underwater vehicles) has been growing fast in the
past few years. The main reason behind such growth
is the wide range of military and civil applications
where such teams can be used efficiently. Appli-
cations of cooperative teams include surveillance,
patrol, intruder detection, containment of chemical
spills, forest fires, etc. For a recent survey in coop-
erative control of multiple vehicles systems, see for
example the work by Murray [8].

Team formation is a common and critical task
in many cooperative agent applications, since shape
formation may be considered as the starting point
for a team of agents to perform cooperative tasks.
Also, formation switching or reconfiguration arises
at a variety of applications due to the need to adapt
to environmental changes or to new tasks, possibly
determined by the accomplished ones. The problem
addressed is, therefore, to determine the actions that
have to be taken by each individual agent so that
the overall group moves into a specific formation.
Among the possible actions to reorganize the forma-

tion into a new desired geometry, we are interested
in finding the ones that optimize a pre-determined
performance measure.

The goal of this work is to develop an ap-
proach for modeling formation switching of mul-
tiple agents. While we realize the importance of
dynamic analysis of the control trajectory of each
agent, our focus here is on the static optimization
problem of deciding where each agent should go
rather than how it should go. The problem ad-
dressed here should be seen as a component of a
framework for multiagent coordination, incorporat-
ing also the trajectory control component [5], that
allows to maintain or change formation while fol-
lowing a specified path in order to perform coopera-
tive tasks.

Possible applications arise from reactive forma-
tion switching or reconfiguration of a team of au-
tonomous agents. For example, when a team of
agents that moves in formation through a trajectory
has to change to another formation to avoid obsta-
cles and change then back to the original formation.
A possible example, depicted in Figure 1, is the need
to perform a reorganization when the formation has
to go through a narrow passage.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
 DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

789

Issue 9, Volume 3, September 2008

Figure 1: Reconfiguration of a formation to avoid
obstacles.

Desai et al., in [3], model mobile robots for-
mation as a graph. The authors use the so-called
“control graphs” to represent the possible solutions
for formation switching. In this method, for a graph
having n vertices there are n!(n− 1)!/2n−1 control
graphs, and switching can only happen between pre-
defined formations.

Some application examples are the following.
Consider that a team of agents is performing surveil-
lance using a specific formation and detects some
intrusion. In such event it should change to another
formation more appropriate to the new task in hands.
This new formation may, or may not, be a predefined
or structured formation. An example of a non prede-
fined case is described by Yamagishi in [14]. In this
work, the formation mission involves containment
of chemical spillage. The agents task, which initially
is monitoring, after detection occurs becomes to de-
termine the perimeter of the spill. Another type of
application requiring switching within specific for-
mations happens, for example, when a robot soccer
team looses the ball. In such event the team has to
switch from an attack formation to a defense forma-
tion with a different geometry more appropriate to
the new task.

A similar problem, where a set of agents must
perform a fixed number of different tasks on a set of
targets, has been addressed by several authors. The
methods developed include exhaustive enumeration
(see Ramussen et al. [11]), branch-and-bound (see
Rasmussen and Shima [10]), network models (see
Schumacher et al. [12, 13]), and dynamic program-
ming (see Jin et al. [6]). See also the recent works

in this journal using Cooperative/decentralized con-
trol [4, 7] and the dynamic programming technique
[9].

We propose a dynamic programming approach
to solve the problem of formation switching, that is
the problem of deciding which agent moves to which
place in the next formation. Conditions spotted dur-
ing the execution of the current task are used to
determine the following tasks and therefore forma-
tion, at least partially. The formation switching per-
formance is given by the cumulative agents perfor-
mance. The performance can be measured through
any separable and additive function.

This paper is organized as follows. In the next
section, the problem of optimal reorganization of
agent formations is described and a dynamic pro-
gramming formulation of such problem is given and
discussed. In Section 3, we discuss computational
implementation issues of the dynamic programming
algorithm, namely an efficient implementation of the
main recursion as well as efficient data representa-
tions. A detailed description of the algorithms is
provided. Computational experiments are reported
in Section 4, where the computational implementa-
tion options are analyzed and justified. Also, some
examples are explored. Some conclusions are drawn
in the final section.

2 Problem Description and Formu-
lation

In our problem a team of n identical agents has to
switch from their current formation to some other
formation, possibly unstructured. Our approach can
be used either centralized or decentralized, depend-
ing on the agents capabilities. In the latter case, all
the agents would have to run the algorithm, which
outputs an optimal solution, always the same if
many exist, since the proposed method is determin-
istic.

Regarding the new formation, it can be either a
pre-specified formation or a formation to be defined
according to the information collected by the agents.
In both cases, we do a pre-processing analysis that
allows us to come up with the desired locations for
the next formation.

Collision avoidance can be addressed at this
level either by not allowing trajectories that lead
to path crossing or simply by considering that, in
such cases, the distance of the trajectory must be in-
creased.

This problem can be restated as the problem of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

790

Issue 9, Volume 3, September 2008

allocating to each new position exactly one of the
agents, located in the old positions.

Consider n agents and a set I of cardinality n
indexing the agents in the present location. To each
agent i ∈ I associate a vector containing the ini-
tial location coordinates, e.g. a triplet (xi, yi, zi) for
each i ∈ I if we consider the agent to move in a 3D
space. Consider also a set J indexing the n possible
target locations. Again a triplet (xj , yj , zj) is asso-
ciated to each j ∈ J . Let d(i, j) denote the value
of the function of the desired performance measure
between positions i in the current formation and j
in the next formation, for example the trajectory dis-
tance.

We want to allocate to each position in the new
formation, that is to each j ∈ J , exactly one of the
agents in the current formation, that is i ∈ I . In
total there are n! possibilites, that is n! feasible so-
lutions, from which we want to choose the one that
has the best performance according to some given
performance criterion.

Dynamic programming provides a framework
for decomposing certain optimization problems into
a nested family of subproblems, thus providing an
effective method to solve combinatorial problems of
a sequential nature.

Consider the sets S ⊆ I and S′ ⊆ J . Define
f(S, S′) as a best solution of allocating the agents
in S to the targets in S′. In order to compute its
value efficiently we decompose the problem into a
nested family of subproblems. This nested struc-
ture suggests a recursive approach for solving the
original problem using the solution of the subprob-
lems. The recursion expresses an intuitive principle
of optimality for sequential decision processes; that
is, once we have reached a particular state, a nec-
essary condition for optimality is that the remaining
decisions must be chosen optimally with respect to
that state. This is the fundamental principal of dy-
namic programming, first appearing in the seminal
work of Bellman [2].

This approach is computationally advantageous
since it combines the solution of subproblems in or-
der to find an optimal solution to the original prob-
lem. Subproblem solutions are stored in order to
avoid recomputation.

The recursion of our problem is then written as
in equation (1), for which the initial conditions are
provided by equation (2). (All other states being ini-
tialized as ∞.)

f(S, S′) = min
i∈S
j∈S′

{
f

(
S \ {i}, S′ \ {j}

)
+ d(i, j)

}
.

(1)

f({i}, {j}) = d(i, j). (2)

Hence the optimal value for the performance
measure is given by f∗ = f(I, J).

In any dynamic programming model, the state
depicts the status of a multistage decision system
at an intermediate point of the sequential process.
The states in such a sequential decision process of-
ten group themselves into stages, with a transition
occurring from a stage k to a later stage l, with l > k.
Therefore, it is convenient to label each stage and to
think of the process as evolving along the stages.

In the dynamic programming model, equations
(1) and (2), a state is represented by s ≡ (S, S′) and
consists of two state variables: the set of agents S
(S ⊆ I) and the set of target locations S′ (S′ ⊆ J)
. The sets S and S′ refer to, respectively, the agents
and target locations that have not yet been allocated.
The model of the formation switching problem con-
sists of n stages, 1, 2, . . . , n, where n is the num-
ber of agents in the problem. A stage k contains
all states si ≡ (S, S′) such that |S| = |S′| =
k. Thus, the set of states at stage k is defined as
Fk = {si | si ≡ (S, S′) , |S| = k, |S′| = k}, for all
k = 1, 2, . . . , n. The set of all states in the model is
called the state space, V = {s1, s2, . . . , sλ}, where
λ represents the cardinality of V (i.e. the total num-
ber of states).

3 Computational Implementation

A pure forward Dynamic Programming (DP) algo-
rithm is easily derived from the DP recursion, equa-
tions (1) and (2). Such implementation may result
in considerable waste of computational effort since,
generally, complete computation of the state space is
not required. Furthermore, since the computation of
a state requires information contained in other states,
rapid access to state information should be seek.

The DP procedure we have implemented ex-
ploits the recursive nature of the DP formulation
by using a backward-forward procedure. Its main
advantage is that the exploration of the state space
graph, i.e. the solution space, is based upon the part
of the graph which has already been explored. Thus,
states which are not feasible for the problem are not
computed, since only states which are needed for the
computation of a solution are considered. The algo-
rithm is dynamic as it detects the needs of the par-
ticular problem and behaves accordingly.

States at stage 1 are either nonexistent or ini-
tialized as given in equation (2). The DP recursion,
equation (1), is then implemented in a backward-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

791

Issue 9, Volume 3, September 2008

forward recursive way. It starts from the final state
(I, J) and while moving backward visits, without
computing, possible states until a state already com-
puted is reached. (In the first iteration, the states
already computed are just the ones initialized by Eq.
(2).) Then, the procedure is performed in reverse
order, i.e. starting from the state last identified in
the backward process, it goes forward through com-
puted states until a state (S, S′) is found which has
not yet been computed. At this point, again it goes
backward until a computed state is reached. This
procedure is repeated until the final state (I, J) is
reached with a value that cannot be bettered by any
other alternative solution. The main advantage of
this backward-forward recursive algorithm is that
only intermediate states needed are visited and from
these only the feasible ones that may yield a better
solution are computed. As it will be shown later,
the number of states computed using this method is
very small. For our test problems it varies between
12% (for the smallest problems) and 0.05% (for
the largest problems) of the state space, i.e. states
represented. Furthermore, the subproblems com-
puted, whose solutions are then combined in order
to find an optimal solution, correspond to 112.5%
and 0.005% of the total number of problem feasible
solutions (i.e. n!), for the smallest and largest prob-
lems, respectively.

As said before, due to the recursive nature of
equation (1), state computation implies frequent ac-
cess to other states. Recall that a state is represented
by two sets. Therefore, set operations like searching,
deletion, and insertion of a set element must be per-
formed efficiently. A computationally efficient way
of storing and operating sets is the bit-vector rep-
resentation, also called the boolean array, whereby
a computer word is used to keep the information re-
lated to the elements of the set. In this representation
a universal set U = {1, 2, . . . , n} is considered. Any
subset of U can be represented by a binary string (a
computer word) of length n in which the ith bit is
set to 1, if i is an element of the set and set to 0,
otherwise. So, there is a one-to-one correspondence
between all possible subsets of U (in total 2n) and
all binary strings of length n. Since there is also
a one-to-one correspondence between binary strings
and integers, the sets can be efficiently stored and
worked out simply as integer numbers. A major ad-
vantage of such implementation is that the set opera-
tions, location, insertion or deletion of a set element
can be performed by directly addressing the appro-
priate bit. For a detailed discussion of this represen-
tation of sets see, for example, the book by Aho et

al. [1].
The flow of the algorithm is managed by Algo-

rithm 1, which starts by labeling all states (subprob-
lems) as not yet computed, that is assigned to them
a ∞ value. Then, it initializes states in stage 1, that
is subproblems involving sets with cardinality 1, as
given by equation (2). After that, it calls algorithms
2 and 3 in turn with parameters (I, J).

Algorithm 2 is a recursive algorithm that com-
putes the optimal solution cost, i.e. it implements
equation (1) . This function receives two arguments:
the set of agent current locations and the set of tar-
get locations, both represented by integer numbers
(using bit-vector representation, as discussed previ-
ously). It starts by checking whether the specific
state (S, S′) has already been computed. If so the
program returns to the point where the function was
called, otherwise the state is computed. To compute
state (S, S′), all possible target locations j ∈ S′ that
might lead to a better subproblem solution are iden-
tified. The function is then called with arguments
(S′

j , j), where S′
j represents the set S′ \ {j}. The

computation of f(S, x) involves determining two
terms that are then added: a subproblem represented
by f(S′

j , j) and the value of the performance mea-
sure if the agent currently positioned in location i
is to be moved to target location j, d(i, j). If the
latter term d(i, j) by itself exceeds the current best
then we move on to another target location without
computing subproblem (S′

j , j).
For each subproblem solved, this algorithm also

stores the state variables, i.e. the subset of agents
and the subset of targets no yet allocated, associated
with its best solution. This information is needed
to retrieve the solution structure, that is which agent
moves to which target location. This is done by al-
gorithm 3.

Algorithm 3 is also a recursive algorithm and
it backtracks through the information stored while
solving subproblems, in order to retrieve the solu-
tions structure, i.e. the actual agent target alloca-
tion. This algorithm works backward from the final
state (I, J), corresponding to the optimal solution
obtained, and finds the partition by looking at the
information stored for this state, namely agent and
target, with which it can build the structure of the
solution found. Algorithm 3 also receives two ar-
guments: the set of agent current locations and the
set of target locations. It starts by checking whether
the agent current locations set is empty. If so, the
program returns to the point where the function was
called; Otherwise the backtrack information of the
state is retrieved and the other needed states evalu-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

792

Issue 9, Volume 3, September 2008

Algorithm 1: DP for finding agent-target allocations.

Input: The agent set and locations, the target set and locations, and
the performance functions;

Compute performance measure for every pair agent-target (dij);

Label all states as not yet computed

f(S, S′) = ∞ for all S ∈ I and S′ ∈ J ;

Initialize states at stage one as in equation (2);

Call f(I, J);
Output: Solution performance;

Call Allocation(I, J);
Output: Solution structure;

ated.
At the end of the algorithm, f(I, J) gives the

performance associated with the best agent-target al-
location.

4 Computational Experiments

We consider several standard structured formations
for a team of agents: line, column, square, diamond,
and wedge. We also considered non-rigid forma-
tions, which are randomly generated. The agents ini-
tial positions were randomly generated and are fixed
for all experiments, see Table 1.

Location
xi yi

Agent 1 48 374
Agent 2 15 106
Agent 3 183 64
Agent 4

348 349

Table 1: Agents random initial location.

The target positions of the new formation are
given in Tables 2 and 3.

In our experiments we have decided to use the
Euclidian distance although any other measure may
be used. It should be noticed that the performance
function can be any function as long it is separable
and additive.

Target 1 Target 2
Formation x y x y

Line 95 258 328 258
Column 95 258 95 348
Square 95 258 207 258
Diamond 95 258 294 258
Wedge 95 258 221 258
Random 95 258 147 78

Table 2: Target locations 1 and 2, for each forma-
tion.

Target 3 Target 4
Formation x y x y

Line 172 258 356 258
Column 95 4 95 55
Square 95 370 207 370
Diamond 195 169 195 347
Wedge 158 293 158 368
Random 248 362 293 228

Table 3: Target locations 3 and 4, for each forma-
tion.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

793

Issue 9, Volume 3, September 2008

Algorithm 2: Recursive function: compute optimal performance.

Recursive Compute(S, S′);

if f (S, S′) 6= ∞ then
return f (S, S′) to caller;

end

Set min = ∞;

i is first element in S;

Si = S − {i};

for each j ∈ S′ do
S′

j = S′ − {j};
if di,j ≤ min then

Call Compute
(
S′

j , j
)
;

if f
(
S′

j , j
)

+ di,j ≤ min then

min = f
(
S′

j , j
)

+ di,j;

ag=i;
tar=j;

end
end

end

Store information on:
agent(S, S′) = ag,
target(S, S′) = tar,
f (S, S′) = min.

Return: f (S, S′);

In figures 2 to 7 we have plotted the initial and
final positions of the agents as well as the assign-
ments of the agents to the target positions.

The algorithm was implemented in Matlab and
all examples run in between 0.016 seconds (column)
and 0.063 seconds (line). We note that the Matlab
functions were interpreted and not compiled. In the
case of faster solutions being required the code could
be compiled.

A question that might arise is whether for small
dimensional systems a complete enumeration search
would be feasible or even faster. So, for problems
of different dimensions (number of agents), with the
agents generated in random location, we have also
implemented a total enumeration search. The results

are shown in Table 4. It can be seen that for lower
dimension problems both algorithms are very fast,
with the DP starting to outperform the total enumer-
ation for problems with 6 or more agents. For larger
problems the better efficiency of DP becomes ob-
vious being almost 2000 times faster for problems
including 10 agents.

Regarding the memory requirements, there is
also a considerable difference as problem dimension
grows. The full representation of the state space
comprises (2n − 1)2 states. However, in our imple-
mentation, the percentage of the state space actually
computed is very small and decreases with problem
size. Therefore, if memory requirements become a
problem we can change the way the state space is

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

794

Issue 9, Volume 3, September 2008

Algorithm 3: Recursive function: retrieve agent-target allocation.

Recursive Allocation(S, S′);

if S 6= ∅ then
i =agent(S, S′);
j =target(S, S′);
Alloc(i) = j;
Si = S − {i};
S′

j = S′ − {j};
CALL Allocation(Si, S

′
j);

end

Return: Alloc;

Figure 2: Line formation.

Number DP Total enum.
of agents running time running time
4 0.031 0.015
5 0.032 0.016
6 0.047 0.125
7 0.062 0.937
8 0.14 8.781
9 0.281 93.359
10 0.562 1095.2
11 1.344

-

Table 4: DP algorithm running time vs. total enu-
meration running time (in seconds).

Figure 3: Column formation.

represented. Currently, all state space is represented,
however we can represent the state space dynami-
cally, as needed, which drastically reduces the mem-
ory requirements.

In Table 5 we report on the total percentage of
the state space used in the implementation proposed
in this work, i.e the percentage ratio between the
number of states computed and the total number of
states represented.

As explained before, the original problem is
solved by combining, in an efficient way, the solu-
tion to some subproblems. The method efficiency
improves with the number of times the subproblems
are reused, which obviously increases with the num-
ber of feasible solutions.

In order to evaluate the efficiency of our method,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

795

Issue 9, Volume 3, September 2008

Figure 4: Square formation.

Figure 5: Diamond formation.

Agents State space percentage
number computed initialized
4 12.00 7.11
5 5.31 2.60
6 2.34 0.91
7 1.05 0.30
8 0.48 0.09
9 0.22 0.03
10 0.11 0.019
11 0.05 0.003

Table 5: Used states as a percentage ratio of the state
space.

Figure 6: Wedge formation.

Figure 7: Random formation.

Agents Feasible solutions percentage
number computed initialized
4 112.50 66.67
5 42.50 20.83
6 12.92 5.00
7 3.35 0.97
8 0.77 0.16
9 0.16 0.02
10 0.03 0.003
11 0.005 0.0003

Table 6: Used states as a percentage ratio of the
number of feasible solutions.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

796

Issue 9, Volume 3, September 2008

we compute the ratio between the number of sub-
problems used and the number of feasible solutions
for the problem(n!). These ratios are reported in Ta-
ble 6. As it can be seen, for very small problems
the complete enumeration would provide a better
method (ratio over 100). However, as problem size
grows the advantage of our method becomes clear.
The percentage ratios of initialized states is also re-
ported in this table.

The benefits of our particular implementation
can be seen both from (1) the fact that computing
an optimal solution with it is much faster than a total
computation implementation (Table 4); and (2) from
the fact that only a small part of the states is actually
computed, either when this number is compared to
the total number of states in our representation (Ta-
ble 5), or when when it is compared to the number
of possible feasible solutions (Table 6).

5 Conclusion

We have developed an optimization algorithm to de-
cide how to reorganize a formation of vehicles into
another formation of different shape. The method
proposed here should be seen as a component of a
framework for multiagent coordination/cooperation,
which must necessarily include other components
such as a trajectory control component. The algo-
rithm proposed is based on dynamic programming
which performs efficiently for small dimensional
problems and is much more efficient than total enu-
meration search as the problem dimension increases.
For problems with 10 agents, it is already 2000 times
faster than total enumeration. Another advantage is
that the dynamic programming formulation structure
is independent of the particular performance func-
tions considered (as long as they are separable and
additive). Moreover, constraints on each agent —
such as maximum displacement or nonadmissible
locations for each agent — might be easily incor-
porated.

Acknowledgements: The research was sup-
ported by FCT/POCI 2010/FEDER through project
POCTI/EGE/61823/2004.

References:

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.
Data Structures and Algorithms. Addison-
Wesley, 1983.

[2] R. Bellman. Dynamic Programming. Prince-
ton University Press, Princeton, USA, 1957.

[3] J. P. Desai, P. Ostrowski, and V. Kumar. Mod-
eling and control of formations of nonholo-
nomic mobile robots. IEEE Transactions
on Robotics and Automation, 17(6):905–908,
2001.

[4] A. Errahmani, H. Ouakka, M. Benyakhlef,
and I. Boumhidi. Decentralized adaptive
fuzzy control for a class of nonlinear systems.
WSEAS Transactions on Systems and Control,
2(8):411–418, 2007.

[5] F. A. C. C. Fontes, D. B. M. M. Fontes, and
A. C. D. Caldeira. Model predictive control of
vehicle formations. In P. Pardalos M.J. Hirsch,
C.W. Commander and R. Murphey, editors,
Optimization and Cooperative Control Strate-
gies, Lecture Notes in Control and Information
Sciences , Vol. 381 ISBN: 978-3-540-88062-2.
Springer Verlag, Berlin, 2009.

[6] Z. Jin, T. Shima, and C. J. Schumacher. Op-
timal scheduling for refueling multiple au-
tonomous aerial vehicles. IEEE Transactions
on Robotics, 22(4):682–693, 2006.

[7] Adrian Korodi, Alexandru Codrean, Liviu
Banita, and Constantin Volosencu. Aspects re-
garding the object following control procedure
for wheeled mobile robots. WSEAS Transac-
tions on Systems and Control, 3(6):537–547,
2008.

[8] R. M. Murray. Recent research in coopera-
tive control multivehicle systems. Journal of
Dynamic Systems, Measurement and Control,
129:571–583, 2007.

[9] Monica Parvan, Florian Ghionea, and Cristina
Flaut. The relevant request determination in
the public transport system. WSEAS Transac-
tions on Systems and Control, 3(6):517–527,
2008.

[10] S. J. Rasmussen and T. Shima. Branch and
bound tree search for assigning cooperating
UVAs to multiple tasks. Minneapolis, Min-
nesota, USA, 2006. Institute of Electrical and
Electronic Engineers, American Control Con-
ference 2006.

[11] S. J. Rasmussen, T. Shima, J. W. Mitchell,
A. Sparks, and P. R. Chandler. State-space

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

797

Issue 9, Volume 3, September 2008

search for improved autonomous UAVs assign-
ment algorithm. Paradise Island, Bahamas,
2004. IEEE Conference on Decision and Con-
trol.

[12] C. J. Schumacher, P. R. Chandler, and S. J.
Rasmussen. Task allocation for wide area
search munitions via iterative network flow.
Reston, Virginia, USA, 2002. American Insti-
tute of Aeronautics and Astronautics, Guid-
ance, Navigation, and Control Conference
2002.

[13] C. J. Schumacher, P. R. Chandler, and S. J.
Rasmussen. Task allocation for wide area
search munitions with variable path length.
New York, New York, USA, 2003. Institute of
Electrical and Electronic Engineers, American
Control Conference 2003.

[14] M. Yamagishi. Social rules for reactive forma-
tion switching. Technical Report UWEETR-
2004-0025, Department of Electrical Engi-
neering, University of Washington, Seattle,
Washington, USA, 2004.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DALILA B. M. M. FONTES,FERNANDO A. C. C. FONTES

ISSN: 1991-8763

798

Issue 9, Volume 3, September 2008

