
Robot pose estimation by means of a stereo vision system 
 
 

J. SOGORB, O. REINOSO, A. GIL, L. PAYA 
Automation, Robotics and Computer Vision 

Systems Engineering and Automation Department 
University Miguel Hernández 

Av. Universidad 0, 03202 - Elche (Alicante) 
SPAIN 

{jsogorb, o.reinoso, arturo.gil, lpaya}@umh.es  http://isa.umh.es/arvc/ 
 
 
Abstract: Mobile robots are characterised by their capacity to move autonomously in an environment that is 
either known or unknown or only partially known. Their uses and applications are wide and are incorporated 
into a great many fields including underground and submarine work, space missions, security systems, 
military applications, and many more. It is for this reason that that a mobile robot is rarely fitted with only 
one sensor to carry out all of its multiple tasks, being much more frequent the use of various sensors 
combined within the system that complement one another to complete their different functions. In this way it 
is possible to find robots where estimation of position1 and the updating of the map is carried out by video 
cameras or laser scanners, while obstacle detection is achieved using sonar. In this respect it is important to 
highlight the close relationship that exists between the problem of position estimation and that of the 
construction of a map of the surroundings, with exact localisation of the robot necessary to be able to carry 
out map construction and vice versa. In this work we focus solely on the problem of localisation, comparing 
different estimation algorithms of the trajectory taken by a robot from the observations and readings obtained 
by the robot itself. In our problem, we will work with images taken by a stereoscopic vision system of 
uncalibrated cameras, we will assume that the movement of the robot is on a flat surface and we will use 
natural landmarks. As we will see, the information obtained from this type of sensor allows a robust 
estimation of movement taken between each pair of observations without the need to use the information 
from the robot’s propioceptive sensors. The solution of this problem, known as visual odometry, is critical 
within the majority of subsequent navigation processes. 
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1. Introduction 
 

Mobile robots are characterised by their 
capacity to move autonomously in an environment 
that is either known or unknown or only partially 
known. Their uses and applications are wide and 
are incorporated into a great many fields including 
underground and submarine work, space missions, 
security systems, military applications, and many 
more. It is for this reason that a mobile robot is 
rarely fitted with only one sensor to carry out all of 
its multiple tasks, being much more frequent the 
use of various sensors combined within the system 
that complement one another to complete their 
different functions. [1].  

 
 

________________________ 
1. Throughout this work the expression “estimation of 
position” is used to refer to both the obtainment of the 
position and to the orientation of the vehicle. 

In this way it is possible to find robots 
where estimation of position1 and the updating of 
the map is carried out by video cameras or laser 
scanners, while obstacle detection is achieved 
using sonar [2] [9]. In this respect it is important to 
highlight the close relationship that exists between 
the problem of position estimation and that of the 
construction of a map of the surroundings, with 
exact localisation of the robot necessary to be able 
to carry out map construction and vice versa.  

 
In general terms, determining the position 

of a mobile robot is equivalent to finding the 
components of movement (tx, ty, tz) and rotation 
(θx, θy, θz) of the system of coordinates 
supportive of the robot (and therefore mobile) with 
respect to an absolute system. Specifically, in this 
work a bi-dimensional case is considered (by far 
the most common application of mobile robots 
today), where the robot moves with three possible 
degrees of freedom. In this way, the problem is 
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reduced to finding the three values (tx, ty, θ) 
associated to the mobile system of the vehicle, 
where (tx, ty) represent its position and θ 
represents its orientation. 

 
The majority of mobile robots are fitted 

with encoders on the movement axles that allow 
constant localisation estimation through the use of 
a locomotion model. However, this estimation is 
not sufficiently exact for the majority of 
applications. The reason is not due  to the errors 
that can be made, but is more a result of the 
accumulation of these errors throughout the 
navigation process, something that means that the  
region of uncertainty associated with the robot’s 
position and orientation increases progressively as 
the robot moves [3]. Because of this, each time 
certain limits are passed, the robot needs the help 
of an “external” positioning system to reduce this 
uncertainty [4]. 

 
In this work a technique to estimate the 

actions carried out by the robot from the stereo 
observations obtained throughout the trajectory is 
presented. To achieve this, only the geometric 
information from the obtained observations will be 
used. As mentioned previously, the only 
supposition made is that the robot always moves 
on a flat surface, so we have 3 degrees of freedom.                   

 

 
Fig. 1: Inner reference coordinate system of robot 

 
 
In order to quantify the goodness of these 

estimations different criteria are used that can be 
interpreted through some statistical indexes. In this 
way, the estimation problem can be formulated as 
a problem of optimization of a determined index. 
Amongst the most used criteria are least squares 
and maximum verisimilitude [5], [6], [7], [10]. 

 
In the criteria of least squares we try to 

obtain an estimation of the vector of L parameters 
that minimize the index: 
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being y = (y1, y2, . . .,yn)T a collection of N 

measurements and  ŷ = (ŷ1, ŷ2, ..., ŷn)T values 
calculated from the model adapted to the system. 
For example, for a lineal static system we have: 
 
  y M θ= ⋅

))  (2) 
 
where M is a matrix of N rows and L columns, 
with N ≥ L. 

The estimation of least squares also allows 
the grading scale of errors or residues, in this case 
using the index: 
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where ei is the error or residue 

corresponding to the measurement yi, and W is a 
diagonal matrix of consideration whose elements 
are wi, i=1, …, N. 

 
The criteria of maximum verisimilitude is 

based on the definition of a function L(y,θ) 
denominated as “verisimilitude” that is normally 
the function of conditional probability p(y|θ). 
Supposing we have a group of independent 
measurements y = (y1, y2, . . .,yn)T, we try to find 
the parameters that make the measurements have a 
greater probability of occurring.  

 
Bearing in mind that  
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, |
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θ

θ θ
θ

= =     (4) 

 
The problem can be resolved from 

knowledge of the function of probability density 
grouping p(y, θ) and some previous knowledge of 
θ that permits the establishment of the function of 
probability density p(θ). 

 
It is important to note that when the noise 

associated with the measurements is modelled as 
Gaussian white noise with invalid media and  
diagonal covariance matrix, it can be demonstrated 
that the estimator of maximum verisimilitude is 
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equivalent to the estimator of non-linear least 
squares given by the equation (3) [7], [8], [11]. 

 
As well as these, there also exists other 

estimation criteria based on a posteriori conditional 
probability p(θ | y) [5], [7]. 
 
 
2.  Estimation of movement 

 
The objective consists in determining, in 

each instant, the transformation matrix related to A 
that indicates the position and orientation of the 
stereo pair in an instant t + ∆t with respect to the 
stereo pair in an immediately previous instant t. 
   
              

 
 

 Fig. 2: Movement & rotation of the camera on a plane 
 
 
The matrix of transformation A presents the 
following structure: 
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Given that we have 4 unknowns and each 
point P contributes 2 equations, we need to know, 
in each pair of consecutive instants, the X and Z 
coordinates of two points, in a way in which the 
system of equations has a single solution. 
 
In this way, the system of equations to resolve is 
the following: 

 

1 1
1 1 1

1 1
1 1 1

1 1
2 2 2

1 1
2 2 2

1 0
0 1
1 0
0 1

Ct Ct Ct
P P P

Ct Ct Ct
P P P

Ct Ct Ct
XP P P

Ct Ct Ct
ZP P P

aX Z X
bZ X Z
tX Z X
tZ X Z

+ +

+ +

+ +

+ +

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (6) 

 
denoting a = cosθ and b = senθ . 
 

To be able to obtain the unknowns 
(parameters of the matrix A) it is necessary to 
recognise two points in two pairs of stereo images 
taken in two consecutive instants. 
 

 
 
Fig. 3: Space of coordinates (a , tX , tZ) 
 
 
It is important to note that each pair of 

points allows us to determine the parameters of 
movement a = cosθ, tX y tZ, which represent a point 
in the space of coordinates (a , tX , tZ). 

 
In a situation in which we have three 

points, then we could resolve (3 2) = 3 systems of 
four equations, with the result of 3 points in the 
space (a, tX, tZ). 
 

Generally speaking, if we know the 
coordinates XYZ (in reality only the X and Z 
coordinates are necessary, given that we have done 
a previous transformation of coordinates and, after 
that, we assume the movement of the robot is flat) 
of N points in two consecutive instants, we can 
resolve (N 2) systems of 4 equations, with the 
result of a cloud formed by (N 2) points in the 
space of coordinates (a , tX , tZ). 

 
Each point represents a single solution to 

the problem of movement determination of the 
stereo pair, and by extension the robot. 
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    Fig. 4: Optimum point (a , tX , tZ)  
 
 
Once this cloud of points is obtained, an 

algorithm must be used that allows us to adjust this 
cloud of points to a model, that is to say, that 
provides us with the optimum point (a , tX , tZ). 
This point will represent the incremental 
movement of the robot between two consecutive 
instants. 
 
 
2.1. Selection of the optimum point (tx, ty, θ) 
 

In this section we will implement and 
compare three methods to select the optimum point 
from the cloud of points obtained as a result of 
resolution of the system of equations studied in the 
previous section. 

 
 

RANSAC Algorithm 
 

In this section we will describe a general 
robust algorithm known as RANdom SAmple 
Consensus (RANSAC), specific to the case in 
question in which we wish to obtain three 
parameters (a , tX , tZ). 
 
To give more detail, the steps of the RANSAC 
algorithm are the following: 
 
1) Select a random point Pi = (a, tX , tZ)i. 
 
2) Determine the group of points S that are 

located within the sphere drawn by radius T 
centred on Pi. 

 
                     i jP P T j i< ∀ ≠      (7) 

 

3) If the number of points in S, that we shall call 
s, is above a threshold t, then this point will be 
stored. 

 
4) If the number of points in S is less than t, then 

this point will be rejected. 
 
5) The four previous steps are repeated until the 

point that meets the conditions of step 3) is 
found. 

 
Figure 4 shows graphically the steps of RANSAC 
algorithm. 
 

       
          Fig. 5: RANSAC Algorithm 

 
 
Selection of the threshold  

 
The threshold is selected in a way that with 

probability α the point will be an “inlier”. This 
calculation needs a probability distribution for the 
distance of an “inlier” from the model. In practice, 
this distance is usually chosen empirically. 
However, if it is assumed that the measurement 
error is Gaussian with media zero and typical 
deviation σ, then 

 
2 1 2( )mt F α σ−= ⋅  (8) 

 
being F a chi-squared distribution with m 

degrees of freedom. The values calculated for the 
case of  α = 0.95 are:  

 
- In the adjustment of a line or a 

fundamental matrix, we have m = 1, 
then t2 = 3.84σ2.  

 
- In the adjustment of a homography or 

the matrix of a camera, we have m = 2, 
then t2 = 5.99σ2.  
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Number of readings  
 
It is not necessary to treat all of possible 

readings. However, a sufficiently high number of 
readings must be taken to guarantee, with 
probability p, that at least one of the random 
groupings of S points is free of variant points. If 
we suppose that  ε is the probability that a point is 
variant, then this value will be a percentage of the 
total number of points, it can be proven that for the 
given probabilities p and ε, the size of the number 
of readings to be taken is given by the expression, 

 
( ) ( )log 1 / log 1 (1 )SN p ε= − − −  (9) 

 
 Normally the value of ε will not be known 

beforehand; therefore it is necessary to use an 
iterative algorithm that readapts the values of ε and 
N at the same time as new readings are obtained. 
 
 
Mean 
 

A quick and easy way to obtain the 
optimum point consists in calculating the mean of 
the points (a, tX , tZ) recorded. 

 
For the parameters that determine the 

vector of movement, we simple work out: 
 

      
1 1

1 1              
i i

N N

X X Z Z
i i

t t t t
N N= =

= =∑ ∑          (10) 

 
However, the parameter “a” of each point 

only varies between -1 and 1, so we don’t calculate 
the mean of the different values of “a”, but we first 
discover the value of angle θ and then determine 
the mean of the angles. 
 

     
1

1arccos( )           
N

i i i
i

a
N

θ θ θ
=

= → = ∑       (11) 

 
 
Median 
 

Just as with the mean, the median quickly 
and easily provides the optimum value of the 
parameters that represent the robot’s movement. 

 
As we know, the median of a distribution 

(group of values) is the value that equally divides 
the distribution, 50% above and the other 50% 
below. 

 
Therefore, to discover the median we simple have 
to place the different values from each parameter 
in a vector, order them and select the central value. 
 

( )*
1 2 1... ... N Ntx tx tx tx tx−  (12) 

 

( )*
1 2 1... ... N Ntz tz tz tz tz−  (13) 

 
( )*

1 2 1... ... N Na a a a a−  (14) 

 
 

2.2. Movement updating 
 

The optimum parameters (a , tX , tZ) 
obtained previously represent the incremental 
movement of the robot between two instants or 
consecutive captures. 

 
Evidently, this incremental movement is 

expressed with respect to the system of coordinates 
of the camera in the immediately previous instant. 
Given that the system of coordinates of the camera 
moves with the robot, we must express the 
incremental movement calculated in each iteration 
with respect to a system of fixed reference. 

 
In agreement with equation (5), 

 

   

1 1

1 1

cos

cos

t t t
P X P P

t t t
P Z P P

X t X Z sen

Z t Z X sen

θ θ

θ θ

+ +

+ +
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⎪
⎨
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        (15) 

 
Then, the equations that let us obtain the 

absolute parameters with respect to a system of 
fixed reference, are the following: 

 
1)    1 cost t t t

X X X Zt t t t senθ θ+ = + ∆ ⋅ + ∆ ⋅      (16) 
 

2)    1 cost t t t
Z Z Z Xt t t t senθ θ+ = + ∆ ⋅ − ∆ ⋅        (17) 

 
3)     1t tθ θ θ+ = + ∆   (18) 

 
where, 

 
- (a , tX , tZ)t+1 represent the position and 

orientation of the robot in the present instant 
with respect to system of fixed reference. 
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This system of fixed reference is the system of 
coordinates of the camera in the initial instant, 
that is, the moment in which the robot begins 
to move. 

 
- (a , tX , tZ)t represent the position and 

orientation of the robot instant immediately 
previous with respect to a system of fixed 
reference. 

 
- (∆a , ∆tX , ∆tZ) represent the position and 

orientation of the robot in the present instant 
with respect to the system of previous 
coordinates. That is, they represent the 
incremental movement, obtained for each 
iteration by the procedure described above. 

 
 
3.  Experiments 
 

In this section we are going to put forward 
the results obtained for each of the three methods, 
visualizing the optimum point chosen from the 
cloud of points generated in each iteration, as well 
as a comparison between the estimated trajectory 
of the robot and the real trajectory. 

 
 

3.1. Algorithm RANSAC 
 

The parameters that influence the correct 
functioning of the RANSAC algorithm are: 

 
- Parameter T:  this parameter determines the 

radius of the sphere that contains a sufficiently 
large number of points. 

 
- Parameter t: this parameter determines the 

minimum number of points that the   sphere, 
defined by the above parameters, must contain 
to be able to consider that the point that 
occupies the centre is the optimum. 

 
After numerous experiments it was 

concluded that the most appropriate value for the 
previous values is: 

 
     T = 0.01   t = 3 points 

 
With these values results were obtained 

such as those shown in figure 6. 
 

            
  Fig. 6: Points in the space of parameters (tx, tz, theta)  

 
The key used in the graphs is: 

 
+  Points obtained after the resolution of the 

proposed system of equations. 
 

x   Points found within the sphere drawn by 
radius T. 

 
O  Optimum point. Represents the centre of 

the sphere described above. 
 
To give a more complete vision of the 

estimation of movement process, the following 
charts show the trajectory followed by the robot 
during a sequence of images. Various experiments 
were carried out, trying different trajectories: a 
straight line and a curved line. 

 
In all of the charts the estimated trajectory 

is represented in blue, while the real trajectory 
appears in red. 
   

       
 

Fig. 7: Estimation of straight line trajectory (RANSAC) 
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      Fig. 8: Estimation of curved trajectory (RANSAC) 
    
         
3.2.  Mean 
 

As we know, the mean method consists in 
calculating the arithmetical mean of each of the 
parameters corresponding to the cloud of points 
generated in the resolution of the proposed system 
of equations. 
 

In this case, the mean of all the points is 
calculated. It seems evident that this method will 
function correctly when the points are grouped 
closely together and that it will produce incorrect 
results when there are deviant points separated 
from the principle grouping, given that these points 
are also taken into consideration when calculating 
the mean. Therefore, it is easy to arrive to the 
conclusion that the mean method produces worse 
results than the RANSAC method. However, the 
principal advantage of this method is its speed. 

 
Below are shown the results obtained in 

the estimation of robot movement in the same 
trajectories as before, using the mean method. 
 

 
 

    Fig. 9: Estimation of straight line trajectory (mean) 

 
 

       Fig. 10: Estimation of curved trajectory (mean) 
 
 
3.3.  Median 
 

In this case, as with the mean, all of the 
points are taken into consideration. Therefore, just 
as before, this method will function correctly when 
the collection of points is grouped closely together 
and will produce incorrect results when variant 
points exist situated far from the principal 
grouping, because these points are also considered 
when the median is calculated. 

 
Therefore, we can conclude that the 

median method produces worse results than the 
RANSAC method, just the same as the mean. 
However, the principal advantage of this method is 
also its speed. 
 
The results obtained were as follows: 
    

  
 

   Fig. 11: Estimation of straight line trajectory (median) 
 
This figure shows that median method generates less 
error in horizontal axis that mean method. This result is 
similar for vertical axis, as next figure shows. 
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       Fig. 12: Estimation of curved trajectory (median) 
 
 
3.4.  Comparison of methods 

 
In this section we will compare the three 

above methods, analyzing the degree of precision 
obtained and the computational cost for each. 

 
- To evaluate the precision of each method, we 

will calculate the root mean square error in the 
two trajectories, straight and curved. 

 
- To measure the computational cost of each 

method we will estimate the execution time of 
an iteration of the algorithm, with the result 
expressed in milliseconds. 

 
In this way we will have quantitative 

criteria to help us select one of the three proposed 
methods. Firstly, we calculate the root mean square 
error, for which we will need to know the error, 
that is to say, the difference between the estimated 
trajectory and the real trajectory. After several 
experiments, the following results were obtained: 

 

 
 

Fig. 13: Error estimation of line trajectory (RANSAC) 

 
 

Fig. 14: Error estimation of curved trajectory (RANSAC) 
 
For the mean method, the results obtained were the 
following: 
 

 
 

Fig. 15: Error estimation of line trajectory (mean) 
 

 
 

Fig. 16: Error estimation of curved trajectory (mean) 
 
For the median method, the results obtained were 
the following: 
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Fig. 17: Error estimation of line trajectory (median) 
 

 
 

Fig. 18: Error estimation of curved trajectory (median) 
 
 

Once the error committed in each iteration 
or reading instant is obtained, we calculate the  
root mean square error. 

 

 ( )2 2

1 1

1 1
i i

N N

estimated real i
i i

Error x x e
N N= =

= − =∑ ∑      (19) 

 
The results were: 
 

Method Straight line  Curve 
Ransac 0.0235 0.0453 
Mean 0.0782 0.155 

Median 0.0078 0.0248 
 

            Table 1: Root mean square error 
 
The obtained results are also represented in 

a bar chart in Figure 19. 
 
 

   
 
        Fig. 19: Comparison of root mean square error 

 
As can be seen, the Ransac and median 

methods present a root mean square error less than 
the mean method, with the median method 
producing the lowest error. 
 

Finally, the execution time per iteration for 
each of the methods is as follows: 

 
Method Time (ms) 
Ransac 26.366 
Mean 19.715 

Median 19.002 
 

 Table 2: Execution time per iteration 
 

As we can see the lowest computational 
costs were obtained by the median method 
followed by the mean. 

 
Therefore, we can conclude that the 

median is the best method of the three due to its 
more exact precision and its lower computational 
cost. 

 
 

4.  Conclusions and future works 
 

From the obtained results the conclusion 
was arrived at that it is possible to successfully 
achieve estimation of movement in three different 
ways: Ransac, mean and median. 
 

Comparing the three proposed algorithms 
with the previously mentioned analysis criteria, the 
median method provided the best results, followed 
by Ransac and the mean method. 
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Due to the satisfactory results obtained, it 
is feasible to use this system to complement the 
internal odometric sensors of the robot in those 
situations in which the said system does not turn 
out to be sufficiently precise.  

 
The successes achieved in the development 

of the system throughout the Project permit its 
incorporation to the more complex algorithms of 
SFM y SLAM. 
 

Recuperation of the structure from 
movement is a typical problem in computerised 
vision, one that has traditionally been bypassed 
with the extensive use of multiple vista geometry 
and of numerical techniques of robust estimation.  

 
In mobile robots it is a double problem, 

localisation and simultaneous map construction. In 
both cases two linked estimation problems exist:  
 
- In SFM (structure from motion), they are the 

recuperation of the scene structure and the 
movement of the camera. 

 
- In SLAM (simultaneous localization and 

mapping) they are the map construction and 
the self localisation of the mobile robot within 
this map. 

 
Therefore, an interesting work for the 

future would be the integration of the estimation of 
movement algorithm that we have developed, to 
SFM y SLAM processes, constituyendo una de las 
múltiples parts que los componen. 
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