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Abstract: - Tentacle manipulators produce changes of configuration using a continuous backbone made of 
sections which bend. In this paper, a new project for controling a continuum robot is presented. The robotic 
structure uses cables to transmit forces to the elements of the arm. This new robot is actuated by stepper 
motors. Due to the difficulties of using distributed sensors along the manipulator structures, it was decided to 
use a vision system. The vision system is composed by two pan / tilt / zoom cameras and a frame grabber. A 
graphical simulator was designed and implemented in order to test the robot behavior under certain 
circumstances.  The camera calibration using this graphic simulator is also presented. The term of “camera 
calibration” in the context of this paper refers to positioning and orienting the two cameras at imposed values.  
 
Key-Words: - Hyperredundant robots, Visual Control, Graphic Simulator  
 
1   Introduction 
A tentacle manipulator is a hyper-redundant or 
hyper-degree-of-freedom manipulator and there has 
been a rapidly expanding interest in their study and 
construction lately. The control of these systems is 
very complex and a great number of researchers 
have tried to offer solutions for this difficult 
problem [8]. The inverse kinematics problem is 
reduced to determining the time varying backbone 
curve behavior. New methods for determining 
“optimal” hyper-redundant manipulator 
configurations based on a continuous formulation of 
kinematics are developed. The difficulty of the 
dynamic control is determined by integral-partial-
differential models with high non-linearity that 
characterize the dynamic of these systems [4], [9]. 
      In a paper presented at RAAD 2007, the problem 
of a class of tentacle arms of variable length was 
discussed [10]. First, the dynamic model of the 
system was inferred. The method of artificial 
potential was developed for these infinite 
dimensional systems. In order to avoid the 
difficulties associated with the dynamic model, the 
control law was based only on the gravitational 
potential and a new artificial potential. Servoing was 
based on binocular vision, a continuous measure of 
the arm parameters derived from the real-time 
computation of the binocular optical flow over the 
two images, and is compared with the desired 
position of the arm. The control error function was 
built in 3D Cartesian space by the visual information 
obtained by two cameras in two image planes. The 

two 2D errors obtained in the two image planes were 
determined by the two differences between the 
actual and desired continuous angle values that 
define the projections of the arm shape. The plane 
errors can be considered as the errors of the arm 
shape. These errors were used to calculate the spatial 
error and a control law was synthesized.  
      A tentacle arm prototype was designed and the 
practical realization is now running. It is a cable 
based mechanism having, in the first 
implementation, three segments. The tentacle arm is 
designed to be actuated by 3-phase stepper motors. 
4-Axis Stepper Motion Controller boards are used.      
In order to implement the visual-servoing system, a 
benchmark was organized based on two color 
camera with 0.05lux low light sensitivity and the 
DT3162 frame grabber from Data Translation. 
     The cameras have motorized Pant/Tilt/Zoom 
(10x optical zoom) and are mounted in 
perpendicular planes offering the input for the frame 
grabber. The Pant/Tilt/Zoom precision is sufficient 
for this step of the application development (Pan: 
range +135, 10 50/sec; Tilt: range +90 45, 7 25 /sec; 
Zoom: 1x~10x optical zoom). Two white screens are 
placed in front of the cameras in order to increase 
the images contrast. The tentacle arm is placed 
between each camera and its screen. 
     The image processing tasks are performed using 
Global LAB Image2 from Data Translation. The 
robot control algorithms are implemented in a C++ 
program running on a Pentium IV PC. In order to 
facilitate the image feature extraction, a set of 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
  

DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 759 Issue 9, Volume 3, September 2008



markers are placed on joints along the backbone 
structure (see Fig. 1). 

2   Cameras Calibration 
Two video cameras provide two images of the 
whole robot workspace. The two image planes are 
parallel with XOY and ZOY planes from robot 
coordinate frame, respectively.  
      The cameras provide the images of the scene that 
are stored in the frame grabber’s video memory.  
Respective to the image planes are defined two 
dimensional coordinate frames, called screen 
coordinate frames or image coordinate systems. 
Denote 

1SX ,
1SY  and 

2SZ ,
2SY , respectively, the axes 

of the two screen coordinate frames provided by the 
two cameras. The spatial centers for each camera are 
located at distances D1 and D2, with respect to the 
XOY and ZOY planes, respectively. The orientation 
of the cameras around the optical axes with respect 
to the robot coordinate frame, are noted by ψ  and 
φ , respectively [5], [6], [7]. 
      The control system is an image – based visual 
servo control where the error control signal is 
defined directly in terms of image feature 
parameters. The desired position of the arm in the 
robot space is defined by the curve Cd, or, in the two 
image coordinate frames 

111 SSS YOZ  and 
222 SSS YOZ , 

by the projection of the curve C.  
      The control problem of this system is a direct 
visual servo-control, but the classical concept of the 
position control, in which the error between the 
robot end-effector and target is minimized, is not 
used. In this application the control of the shape of 
the curve in each point of the mechanical structure is 
used [1], [2]. The method is based on the particular 
structure of the system defined as a “backbone with 
two continuous angles )(sθ  and q(s)”.  
        The control of the system is based on the 
control of the two angles )(sθ  and q(s) (see Fig. 2). 

Fig. 1. a. Visual Control benchmark 
b. “Old” experimental segment 

c. CAD image of the tentacle design 
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Fig. 2 Camera calibration system 
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Fig. 4 Relation between arching angle and angle at 
center Legend: center – center of the circle, alfa – 

angle at the center, beta – arching angle. 

These angles are measured directly or indirectly. 
The angle )(sθ   is measured directly by the 
projection on the image plane 

111 SSS YOZ  and q(s) is 
computed from the projection on the image plane 

222 SSS YOZ . 
      A very important task in developing this 
application is to control the camera position and 
orientation [3]. From this point of view, the 
calibration operation assures that the two cameras’ 
axes are orthogonal. In the beginning, the tentacle 
manipulator receives the needed commands in order 
to stand in a test pose (imposed position and 
orientation).  
      The same commands are sent to the Graphic 
Simulator. Two different sets of images are 
obtained: real images acquired by the real cameras 
and simulated images offered by the Graphic 
Simulator. From these two sets of images, two sets 
of parameters are computed: real parameters are 
computed from real images and, respectively, ideal 
parameters are computed from synthetic images.  
        Comparing the two sets of parameters and 
knowing the image/parameters behavior for the 
camera orientation, the cameras are orientated 
(pan/tilt/zoom) in order to minimize the error. 
 

 
3   Graphic Simulator 
A graphical simulator was designed and 
implemented in order to test the robot behavior 
under certain circumstances.  
 
3.1 Simulation 
A graphical simulator was designed and 
implemented in order to test the robot behavior 
under certain circumstances. The simulator 
approximates the curved segments of the 
hyperredundant robot and considers constant the 
length of the median arc of each segment (Fig. 3). 

     To ease the presentation, the term segment will 
be used in all that follows referring to the median 
segment (arched or un-arched). For the arched 
segment, its median arc remains constant. 
      The inputs for the simulator are: robot 
configuration; robot initial position; control laws for 
each of the segments of the hyperredundant robot. 
      The robot configuration consists of the number 
of segments the hyperredundant robot has, the 
length of each segment and the angles that the cords 
make with the Ox axis. The arching angles are 
computed from these angles. An arching angle is 
defined as the angle made by the cord (determined 
by the ends of the arched segment) and the original 
un-arched segment.  
     For the direct kinematics problem, the control of 
the robot simulation is accomplished by giving the 
Ox angles for each of the segments in their final 
position and the output of the simulation is the 
hyperredundant robot’s end-effector final position in 
the operation space.  
       In order to compute the final position of the end-
effector and the hyperredundant robot’s behavior 
during its motion, a few elements must be 
computed: the relation between the arching angle 
and the angle at centre determined by the arched 
segment (this angle determines the length of the 
arc); the cord length; the relation between an Ox 
angle and an arching angle; the final arching angles 
– recurrent set. 
      The computation of the relation between the 
arching angle and the angle at centre determined by 
the arched segment is determined by the following 
axiom: 
 
Axiom 1: Consider a cylindrical segment of the 
hyperredundant robot described in the first part. The 
median line of the arched segment is tangent in its 
origin to the median line of the un-arched segment. 

 

Fig. 3 An arched segment 

median arc 
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Cord k 
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Fig. 5 Relation between arching angles of consecutive 
segments  
Legend: center – center of the circle for segment k, alfa 
– angle at the center for segment k, beta – arching angle 
for segment k. 
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 Based on Axiom 1, it results that the arching angle 
is given by: 
 

2
center

arching
α

α =                            (1) 

 
where: archingα  is the arching angle; centerα  is the 
circle angle at centre (see Fig. 4). 
     Considering that the length of a circle arc is: 
 

Rl centerarc ∗= α                            (2) 
 
and the length of a circle cord is: 
 

⎟
⎠

⎞
⎜
⎝

⎛∗∗=
2

sin2 center
cord Rl

α                  (3) 

 
where: arcl  is the length of the arc, cordl  is the 
length of the cord, R  is the circle radius. 
      For a robot that has only rotation joints, the Ox 
angle increases (or decreases, depending on the 
selected positive direction) for each segment with 
the sum of rotation angles of each of the previous 
segments (including the current segment). This is 
true because the orthogonal system attached to the ith 
segment is obtained from its initial position and 
applying all the anterior transformations (the 
rotations of the segments 1 to i): 
 

0
0

*ORotO
ik

ki ∏
=

=                           (4) 

where: iO  is the column vector defining the 
position of the ith segment’s origin; kRot  is the 
rotation matrix of the kth segment.  
     For a hyperredundant robot the things are 
different (see Fig. 5). The arching angle is double 
the sum of each previous arching angle plus the 
current arching angle, because the un-arched 
segment is a prolongation of the previous segment. 
It yields that the Ox angle of a segment is given by: 
 

n
arching

nk

k

k
archingOx

n
Ox αααα −⎟

⎠

⎞
⎜
⎝

⎛
∗−= ∑

−=

=

1

0

0 2                       (5) 

 
where: i

Oxα  is the angle the ith segment makes with 
Ox axis; i

archingα  is the arching angle of the ith 
segment. 
     From Eq. (1), (2), (3) and considering that the arc 
length remains constant (and equal to the segment 
length), it yields: 
 

( )
n
arching

n
archingn

arc
n
cord ll

α
αsin

∗=                     (6) 

 
      Using Eq. (6), the coordinates of the base points 
of each segment are computed: 
 

( )111 cos −−− ∗+= n
Ox

n
cord

nn lxx α                 (7) 
( )111 sin −−− ∗+= n

Ox
n
cord

nn lyy α                (8) 
 

where: 
nx  is the x coordinate of the nth segment’s 

base point; 
ny  is the y coordinate of the nth 

segment’s base point. 
     Eq. (5), (6), (7) and (8) yield through iterative 

Fig. 6 The initial position of the hyperredundant 
robot. 
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calculus: 

 
     Once the values for the basis points are 
computed, an interpolation must be used in order to 
create the intermediate points that describe the 
arched segments. 
 
 
3.2 Results 
Many experiments were realized in order to test the 
simulator’s behavior under different input conditions 
(different number of segments for the 
hyperredundant robot, different segments lengths, 
different final arching angles). One representative 
experiment is presented. 
     The hyperredundant robot has 8 segments, the 
base of the robot is situated in the origin (0,0), the 
segments have lengths of 2, 3, 1, 2, 4, 2, 1, 1 
respectively and initially the robot is linear, aligned 

along the Oy axis (see Fig. 6). 
    In the final configuration, the cords make the 
following angles with Ox axis: 

• segment 1: π∗55.0 ; 
• segment 2: π∗65.0 ; 
• segment 3: π∗8.0 ; 
• segment 4: π ; 
• segment 5: π∗15.1 ; 
• segment 6: π∗9.0 ; 
• segment 7: π∗8.0 ; 
• segment 8: π∗65.0 . 

     Fig. 7 presents and intermediate position 
acquired during the simulation, while Fig. 8 presents 
the final (obtained) position and the coordinates of 
the end-effector for this situation – E(-10.738, 
5.201). 
     The simulator behaved correctly under all test 
conditions, creating a realistic motion simulation. 

 
 
3.3 Implementation 
The simulator was implemented in Microsoft Visual 
C++ .NET 2005 [13], [14]. It used the Microsoft 
DirectX SDK library for graphical purposes [12]. In 
order to simulate the circular arched segments a 
series of intermediate points (that are connected by 
lines) between the segment origins must be 
determined. The Catmull-Rom interpolation 
algorithm [11] was used for this simulator because it 
was need an interpolation algorithm that passes 
through the control points. Catmull-Rom splines are 
a family of cubic interpolating splines formulated 
such that the tangent at each point ip  is calculated 
using the previous and next point on the splines, 

( )11 −+ − ii ppτ .  

 
(9) 
 
 
 
 
 
 
 
(10) 

( ) 

⎟
⎟
⎠

⎞
⎜ 
⎜ 
⎝ 

⎛ 
− ⎟ ⎟ 
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∗ ∗ + = 
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Fig. 7 An intermediate position of 
the hyperredundant robot. 

Fig. 8 The final position of the 
hyperredundant robot. 
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      The geometry matrix is given by: 
 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−
−∗−−∗

−
∗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

+

−

−

1

1

2

3

2

22
2332

00
00101

i

i

i

i
T

p
p
p
p

u
u
u

sp

ττττ
ττττ

ττ                  (11) 

where the parameter τ  is known as “tension” and it 
affects how sharply the curve bends at the 
(interpolated) control points. 
      Designing and implementing algorithms to also 
solve inverse kinematics problems, designing and 
implementing algorithms that consider the dynamic 
components in solving direct and inverse kinematics 
problems are other features of the Graphic 
Simulator. 
 
 
3.4 Calibration 
Taking into account the presented structure of the 
tentacle - vision system, in order to apply the tested 
visual servoing algorithm, the two cameras must be 
positioned and oriented as: 
- both focus on the robot, 
- their axes are orthogonal, 
- both have the same zoom factor. 

Two different algorithms were implemented: 
- one uses the graphical simulator.  
- other uses a cylindrical etalon. 
     First, the algorithm working together with the 
graphic simulator will be presented. 
     It was proven that the two camera axes are 
orthogonal if, when both cameras are looking at the 
tentacle successively bended as circle's arcs in two 
orthogonal planes, are seeing also two circle's arcs. 
    The previous condition is fulfilled if each camera 
looks at the center of the circle containing the arc 
and the view line is orthogonal on the plane's circle 
(see Fig. 9). 

Three calibration steps must be performed: 

- Horizontal calibration - positioning and orienting 
the camera horizontally (pan), 
- Vertical calibration - positioning and orienting the 
camera vertically (tilt), 
- Zoom calibration -  tuning the two cameras as both 
look at the robot from virtual equal distances. 
      The calibration algorithm has the following 
steps: 
1. The graphic simulator computes the necessary 
bending and rotating arcs in order to transform the 
tentacle into an arc in the XOY plane. 
2. The robot's control commands are generated in 
order to achieve the imposed positions and 
orientations.  
3. The first camera acquires an image. 
4. The image is segmented. 
5. If the detected curve (the median axis of the 
tentacle) verifies the circle's equation then the 
algorithm continues from step 7. 
6. Else the first camera is moved and algorithm 
returns to the step 3. 
7. The graphic simulator computes the necessary 
bending and rotating arcs in order to transform the 
tentacle into an arc in the ZOY plane. 
8. The robot's control commands are generated in 
order to achieve the imposed positions and 
orientations.  
9. The second camera acquires an image. 
10. The image is segmented. 
11. If the detected curve (the median axis of the 
tentacle) verifies the circle's equation then the 
algorithm continues from step 13. 
12. Else the second camera is moved and algorithm 
returns to the step 9. 
13. The optical correlation for the equalization of 
"virtual" zoom factors is performed. 
     How to “move” the camera in the steps 6 & 12? 
The image behavior in accordance with camera’s 
movements was studied. The effect of pan and tilt 
rotations on two points placed in a quadratic 
position on a circle was geometrically described. 
Matrix for coordinate transformations corresponding 
to rotations with pan and tilt angles, respectively for 
perspective transformation were used.  
     The following plot shows how is transformed a 
rectangle (inscribed in the circle and having the 
edges parallel with the axes OX and OY) when a tilt 
rotation is performed (Fig. 10). 
      Theoretically, by zooming, the distance between 
the two points varies in a linear way, as it is in Fig. 
11. 
      The variation of the distance between the two 
points, placed in a quadratic position on the circle, 
and the centre of the circle, depending of the tilt 
angle X, are plotted in Fig. 12.  Fig. 9 Camera calibration 
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Fig. 14 Cylindrical etalon 
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      Theoretically, by zooming, the distance between 
the two points varies in a linear way, as it is shown 
in Fig. 13. 
     Second, the algorithm using a cylindrical etalon 
will be presented. 
     Special starting conditions were imposed in order 
to support the image processing tasks (Fig. 14):  
- white background,  
- dark grey cylinder,  
- red vertical equidistant (90 degrees) axes,  
- friendly initial camera's positions and orientations,  
- zoom x1. 
      Three succesive and dependent calibrations are 
performed: 
- Horizontal (pan): position and orientation are 
obtained in two successive, but dependent steps. 
- Vertical (tilt): position and orientation are obtained 
in two successive, but dependent steps. 
- Zoom: tuning the two cameras as both look to the 
cylinder from virtual equal distances. 
     Horizontal orientation: 
1. Image acquisition & segmentation using 
histogram threshold, 

2. Counting for each line in the image the number of 
black and respectively white pixels, 
3. For the line with the greater number of black 
pixels, compute oriz

stp  and oriz
drp , 

the number of white pixels from the left and 
respectively from the right,  Fig. 11 
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4. Compute the offset oriz
dr

oriz
st

oriz pp −=Δ , 

5. IF oriz
accept

oriz ε≤Δ  THEN stop rotating the camera, 
6. ELSE rotate the camera to the left or to the right 
using ( )oriz

dr
oriz
st pp −sgn , 

7. Back to begin, 1.  
     Horizontal positioning: 
1. Image acquisition & segmentation using 
histogram threshold, 
2. Scanning the image horizontally, the axes are 
detected; if two axes are detected then the camera is 
rotated so the most lateral axes goes outside the 
image, 
3. Counting for each line in the image the number of 
black and respectively white pixels, 
4. For each line, the number of white pixels on the 
left of the axes is pozoriz

stp −  and the number of white 

pixels on the right of the axes is pozoriz
drp − , 

5. The horizontal offset is computed                                     
pozoriz

dr
pozoriz

st
pozoriz pp −−− −=Δ , 

6. IF pozoriz
accept

pozoriz −− ≤Δ ε  THEN stop translating the 
camera, 
7. ELSE translate the camera to the left or to the 
right using ( )pozoriz

dr
pozoriz

st pp −− −sgn , 
8. Back to begin, 1.  
    The full horizontal calibration is performed in the 
following steps: 
1. Horizontal orientation, 
2. Horizontal positioning,  
3. The offset for horizontal orientation is computed                          

oriz
dr

oriz
st

oriz pp −=Δ ,  

4. IF oriz
accept

oriz ε≤Δ  THAN the algorithm stops,  
5. ELSE it goes to step 1. 
    Both offsets must be under the accepted 
thresholds. Else, the positioning destroyed the 
orientation and the procedure must be repeated. 
     Vertical orientation: 
1. Image acquisition & segmentation using 
histogram threshold, 
2. Counting for each column in the image the 
number of black and respectively white pixels, 
3. For the column with the greater number of black 
pixels, compute vert

susp  and vert
josp  the number of white 

pixels above and respectively under the cylinder,  
4. Compute the offset vert

jos
vert
sus

vert pp −=Δ , 

5. IF vert
accept

vert ε≤Δ  THEN stop rotating the camera, 
6. ELSE rotate the camera up and down using                    

( )vert
jos

vert
sus pp −sgn , 

7. Back to begin, 1.  
    Vertical positioning: 
1. Image acquisition & segmentation using 
histogram threshold, 
2. Scanning the image vertically up-down until the 
object is detected, 
3. Scanning the image vertically down-up until the 
object is detected, 
4. For each of this two lines the number of black 
pixels is computed, pozvertp −

inf and  pozvertp −
sup , 

5. The vertical offset is computed                    

Fig. 15 Images from calibration procedure 
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pozvertpozvertpozvert pp −−− −=Δ infsup , 

6. IF pozvert
accept

pozvert −− ≤Δ ε  THEN stop translating the 
camera, 
7. ELSE translate the camera to up or down using                                

( )pozvertpozvert pp −− − infsupsgn ,    
8. Back to begin, 1.  
       The full vertical calibration is performed in the 
following steps: 
1. Vertical orientation, 
2. Vertical positioning,  
3. The offset for vertical orientation is computed                          

vert
jos

vert
sus

vert pp −=Δ ,  

4. IF pozvert
accept

pozvert −− ≤Δ ε  THAN the algorithm stops,  
5. ELSE it goes to step 1. 
      Both offsets must be under the accepted 
thresholds. Else, the positioning destroyed the 
orientation and the procedure must be repeated. 
      Zoom calibration algorithm is performed in 
following steps: 
1. Image segmentation using histogram threshold, 
2. The white pixels are counted in both images, 

zoomp1  and zoomp2 ,  
3. The zoom offset is computed 

zoom

zoom
zoom

p
p

1

2=Δ , 

4. IF supinf −− ≤Δ≤ zoom
accept

zoomzoom
accept εε  THEN the 

algorithm stops,  
   
5. ELSE zoom-in one of the cameras. If  

1
1

2 <zoom

zoom

p
p , the second camera is chosen, else the 

first camera is chosen. 
6. Back to begin, 1. 
     The image’s segmentation is basically a threshold 
procedure applied to the image’s histogram.  
     All the procedures included in the calibration 
algorithms were mathematically proven. 
      If the calibration algorithm was successfully 
applied then the system is ready to perform the 
visualservoing tasks. 
 
 
4   Conclusions 
This paper deals with a project for building and 
controlling a hyperredundant robot which is 
currently developing.  
     Different control methods and algorithms were 
proposed by the team members. A new tentacle 
manipulator using cables and stepper motors was 
designed and is under construction and a visual 
control using two video cameras is benchmarked.  

     A graphic simulator was created in order to 
support the system implementation. A virtual 
graphical simulator was designed and implemented 
in order to test hyperredundant robots behavior 
under certain circumstances for kinematics problems 
and to aid in the camera calibration process. The 
application was developed in Microsoft Visual C++ 
.NET 2005. It used the Microsoft DirectX SDK 
library for graphical purposes. 
     Algorithms for computing the positions of each 
segment base point were designed. The circular 
form of the segments was approximated using a 
cubic interpolating splines algorithm that passes 
through the control points: Catmull-Rom. A linear 
interpolation algorithm was developed for the 
motion simulation. 
     Several test scenarios were simulated. The cost 
reduction is one of the main advantages of using this 
application. In order to test the behavior of different 
hyperredundant robots – with different 
configurations -  in real life, these robots must be 
built, the costs (high enough just for one robot) 
increasing with the number of test configurations. 
     Also, certain control laws could be proven to be 
harmful for the robot integrity (ex. too big arching 
angle), thus damaging the real robot. If the control 
laws are first tested in the simulator, such cases can 
be avoided. 
     Another advantage is the educational one, the 
simulator proving to be a useful tool in the process 
of teaching robot control and robot behavior. 
     In this paper, camera calibration using this 
graphic simulator was presented. 
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