
Graphic Simulator for the Visual Control of Hyperredundant Robots

DORIAN COJOCARU*, RĂZVAN TUDOR TĂNASIE**
* Mechatronics Department, ** Software Engineering Department

University of Craiova
Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj

ROMANIA
cojocaru@robotics.ucv.ro, http://robotics.ucv.ro/

Abstract: - Tentacle manipulators produce changes of configuration using a continuous backbone made of
sections which bend. In this paper, a new project for controling a continuum robot is presented. The robotic
structure uses cables to transmit forces to the elements of the arm. This new robot is actuated by stepper
motors. Due to the difficulties of using distributed sensors along the manipulator structures, it was decided to
use a vision system. The vision system is composed by two pan / tilt / zoom cameras and a frame grabber. A
graphical simulator was designed and implemented in order to test the robot behavior under certain
circumstances. The camera calibration using this graphic simulator is also presented. The term of “camera
calibration” in the context of this paper refers to positioning and orienting the two cameras at imposed values.

Key-Words: - Hyperredundant robots, Visual Control, Graphic Simulator

1 Introduction
A tentacle manipulator is a hyper-redundant or
hyper-degree-of-freedom manipulator and there has
been a rapidly expanding interest in their study and
construction lately. The control of these systems is
very complex and a great number of researchers
have tried to offer solutions for this difficult
problem [8]. The inverse kinematics problem is
reduced to determining the time varying backbone
curve behavior. New methods for determining
“optimal” hyper-redundant manipulator
configurations based on a continuous formulation of
kinematics are developed. The difficulty of the
dynamic control is determined by integral-partial-
differential models with high non-linearity that
characterize the dynamic of these systems [4], [9].
 In a paper presented at RAAD 2007, the problem
of a class of tentacle arms of variable length was
discussed [10]. First, the dynamic model of the
system was inferred. The method of artificial
potential was developed for these infinite
dimensional systems. In order to avoid the
difficulties associated with the dynamic model, the
control law was based only on the gravitational
potential and a new artificial potential. Servoing was
based on binocular vision, a continuous measure of
the arm parameters derived from the real-time
computation of the binocular optical flow over the
two images, and is compared with the desired
position of the arm. The control error function was
built in 3D Cartesian space by the visual information
obtained by two cameras in two image planes. The

two 2D errors obtained in the two image planes were
determined by the two differences between the
actual and desired continuous angle values that
define the projections of the arm shape. The plane
errors can be considered as the errors of the arm
shape. These errors were used to calculate the spatial
error and a control law was synthesized.
 A tentacle arm prototype was designed and the
practical realization is now running. It is a cable
based mechanism having, in the first
implementation, three segments. The tentacle arm is
designed to be actuated by 3-phase stepper motors.
4-Axis Stepper Motion Controller boards are used.
In order to implement the visual-servoing system, a
benchmark was organized based on two color
camera with 0.05lux low light sensitivity and the
DT3162 frame grabber from Data Translation.
 The cameras have motorized Pant/Tilt/Zoom
(10x optical zoom) and are mounted in
perpendicular planes offering the input for the frame
grabber. The Pant/Tilt/Zoom precision is sufficient
for this step of the application development (Pan:
range +135, 10 50/sec; Tilt: range +90 45, 7 25 /sec;
Zoom: 1x~10x optical zoom). Two white screens are
placed in front of the cameras in order to increase
the images contrast. The tentacle arm is placed
between each camera and its screen.
 The image processing tasks are performed using
Global LAB Image2 from Data Translation. The
robot control algorithms are implemented in a C++
program running on a Pentium IV PC. In order to
facilitate the image feature extraction, a set of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 759 Issue 9, Volume 3, September 2008

markers are placed on joints along the backbone
structure (see Fig. 1).

2 Cameras Calibration
Two video cameras provide two images of the
whole robot workspace. The two image planes are
parallel with XOY and ZOY planes from robot
coordinate frame, respectively.
 The cameras provide the images of the scene that
are stored in the frame grabber’s video memory.
Respective to the image planes are defined two
dimensional coordinate frames, called screen
coordinate frames or image coordinate systems.
Denote

1SX ,
1SY and

2SZ ,
2SY , respectively, the axes

of the two screen coordinate frames provided by the
two cameras. The spatial centers for each camera are
located at distances D1 and D2, with respect to the
XOY and ZOY planes, respectively. The orientation
of the cameras around the optical axes with respect
to the robot coordinate frame, are noted by ψ and
φ , respectively [5], [6], [7].
 The control system is an image – based visual
servo control where the error control signal is
defined directly in terms of image feature
parameters. The desired position of the arm in the
robot space is defined by the curve Cd, or, in the two
image coordinate frames

111 SSS YOZ and
222 SSS YOZ ,

by the projection of the curve C.
 The control problem of this system is a direct
visual servo-control, but the classical concept of the
position control, in which the error between the
robot end-effector and target is minimized, is not
used. In this application the control of the shape of
the curve in each point of the mechanical structure is
used [1], [2]. The method is based on the particular
structure of the system defined as a “backbone with
two continuous angles)(sθ and q(s)”.
 The control of the system is based on the
control of the two angles)(sθ and q(s) (see Fig. 2).

Fig. 1. a. Visual Control benchmark
b. “Old” experimental segment

c. CAD image of the tentacle design

q

θ

F
F

X

Desired test
projection

values

Control
law

Z

Y
O

Image of the
real

manipulator

Real parameters
computation

d

d

q
θ

Grapfic simulator
Image of the

simulated
manipulator Ideal parameters

computation

Σ

Pan/tilt/zoom
control law

-

+

Fig. 2 Camera calibration system

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 760 Issue 9, Volume 3, September 2008

center

Original segment

Arched segment

Cord

alfa

beta

Fig. 4 Relation between arching angle and angle at
center Legend: center – center of the circle, alfa –

angle at the center, beta – arching angle.

These angles are measured directly or indirectly.
The angle)(sθ is measured directly by the
projection on the image plane

111 SSS YOZ and q(s) is
computed from the projection on the image plane

222 SSS YOZ .
 A very important task in developing this
application is to control the camera position and
orientation [3]. From this point of view, the
calibration operation assures that the two cameras’
axes are orthogonal. In the beginning, the tentacle
manipulator receives the needed commands in order
to stand in a test pose (imposed position and
orientation).
 The same commands are sent to the Graphic
Simulator. Two different sets of images are
obtained: real images acquired by the real cameras
and simulated images offered by the Graphic
Simulator. From these two sets of images, two sets
of parameters are computed: real parameters are
computed from real images and, respectively, ideal
parameters are computed from synthetic images.
 Comparing the two sets of parameters and
knowing the image/parameters behavior for the
camera orientation, the cameras are orientated
(pan/tilt/zoom) in order to minimize the error.

3 Graphic Simulator
A graphical simulator was designed and
implemented in order to test the robot behavior
under certain circumstances.

3.1 Simulation
A graphical simulator was designed and
implemented in order to test the robot behavior
under certain circumstances. The simulator
approximates the curved segments of the
hyperredundant robot and considers constant the
length of the median arc of each segment (Fig. 3).

 To ease the presentation, the term segment will
be used in all that follows referring to the median
segment (arched or un-arched). For the arched
segment, its median arc remains constant.
 The inputs for the simulator are: robot
configuration; robot initial position; control laws for
each of the segments of the hyperredundant robot.
 The robot configuration consists of the number
of segments the hyperredundant robot has, the
length of each segment and the angles that the cords
make with the Ox axis. The arching angles are
computed from these angles. An arching angle is
defined as the angle made by the cord (determined
by the ends of the arched segment) and the original
un-arched segment.
 For the direct kinematics problem, the control of
the robot simulation is accomplished by giving the
Ox angles for each of the segments in their final
position and the output of the simulation is the
hyperredundant robot’s end-effector final position in
the operation space.
 In order to compute the final position of the end-
effector and the hyperredundant robot’s behavior
during its motion, a few elements must be
computed: the relation between the arching angle
and the angle at centre determined by the arched
segment (this angle determines the length of the
arc); the cord length; the relation between an Ox
angle and an arching angle; the final arching angles
– recurrent set.
 The computation of the relation between the
arching angle and the angle at centre determined by
the arched segment is determined by the following
axiom:

Axiom 1: Consider a cylindrical segment of the
hyperredundant robot described in the first part. The
median line of the arched segment is tangent in its
origin to the median line of the un-arched segment.

Fig. 3 An arched segment

median arc

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 761 Issue 9, Volume 3, September 2008

Arched segment k

Cord k

alfa

beta

center
Fig. 5 Relation between arching angles of consecutive
segments
Legend: center – center of the circle for segment k, alfa
– angle at the center for segment k, beta – arching angle
for segment k.

2*bet

Un-arched segment

Un-arched segment

 Based on Axiom 1, it results that the arching angle
is given by:

2
center

arching
α

α = (1)

where: archingα is the arching angle; centerα is the
circle angle at centre (see Fig. 4).
 Considering that the length of a circle arc is:

Rl centerarc ∗= α (2)

and the length of a circle cord is:

⎟
⎠

⎞
⎜
⎝

⎛∗∗=
2

sin2 center
cord Rl

α (3)

where: arcl is the length of the arc, cordl is the
length of the cord, R is the circle radius.
 For a robot that has only rotation joints, the Ox
angle increases (or decreases, depending on the
selected positive direction) for each segment with
the sum of rotation angles of each of the previous
segments (including the current segment). This is
true because the orthogonal system attached to the ith
segment is obtained from its initial position and
applying all the anterior transformations (the
rotations of the segments 1 to i):

0
0

*ORotO
ik

ki ∏
=

= (4)

where: iO is the column vector defining the
position of the ith segment’s origin; kRot is the
rotation matrix of the kth segment.
 For a hyperredundant robot the things are
different (see Fig. 5). The arching angle is double
the sum of each previous arching angle plus the
current arching angle, because the un-arched
segment is a prolongation of the previous segment.
It yields that the Ox angle of a segment is given by:

n
arching

nk

k

k
archingOx

n
Ox αααα −⎟

⎠

⎞
⎜
⎝

⎛
∗−= ∑

−=

=

1

0

0 2 (5)

where: i

Oxα is the angle the ith segment makes with
Ox axis; i

archingα is the arching angle of the ith
segment.
 From Eq. (1), (2), (3) and considering that the arc
length remains constant (and equal to the segment
length), it yields:

()
n
arching

n
archingn

arc
n
cord ll

α
αsin

∗= (6)

 Using Eq. (6), the coordinates of the base points
of each segment are computed:

()111 cos −−− ∗+= n
Ox

n
cord

nn lxx α (7)
()111 sin −−− ∗+= n

Ox
n
cord

nn lyy α (8)

where:
nx is the x coordinate of the nth segment’s

base point;
ny is the y coordinate of the nth

segment’s base point.
 Eq. (5), (6), (7) and (8) yield through iterative

Fig. 6 The initial position of the hyperredundant
robot.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 762 Issue 9, Volume 3, September 2008

calculus:

 Once the values for the basis points are
computed, an interpolation must be used in order to
create the intermediate points that describe the
arched segments.

3.2 Results
Many experiments were realized in order to test the
simulator’s behavior under different input conditions
(different number of segments for the
hyperredundant robot, different segments lengths,
different final arching angles). One representative
experiment is presented.
 The hyperredundant robot has 8 segments, the
base of the robot is situated in the origin (0,0), the
segments have lengths of 2, 3, 1, 2, 4, 2, 1, 1
respectively and initially the robot is linear, aligned

along the Oy axis (see Fig. 6).
 In the final configuration, the cords make the
following angles with Ox axis:

• segment 1: π∗55.0 ;
• segment 2: π∗65.0 ;
• segment 3: π∗8.0 ;
• segment 4: π ;
• segment 5: π∗15.1 ;
• segment 6: π∗9.0 ;
• segment 7: π∗8.0 ;
• segment 8: π∗65.0 .

 Fig. 7 presents and intermediate position
acquired during the simulation, while Fig. 8 presents
the final (obtained) position and the coordinates of
the end-effector for this situation – E(-10.738,
5.201).
 The simulator behaved correctly under all test
conditions, creating a realistic motion simulation.

3.3 Implementation
The simulator was implemented in Microsoft Visual
C++ .NET 2005 [13], [14]. It used the Microsoft
DirectX SDK library for graphical purposes [12]. In
order to simulate the circular arched segments a
series of intermediate points (that are connected by
lines) between the segment origins must be
determined. The Catmull-Rom interpolation
algorithm [11] was used for this simulator because it
was need an interpolation algorithm that passes
through the control points. Catmull-Rom splines are
a family of cubic interpolating splines formulated
such that the tangent at each point ip is calculated
using the previous and next point on the splines,

()11 −+ − ii ppτ .

(9)

(10)

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ⎟ ⎟

⎠

⎞
⎜ ⎜
⎝

⎛
∗ − ∗

∗ ∗ + =

∑

∑

−=

=

−

=

n
arching

1n k

0k
k
arching

0
Ox

1 n

0 i
i
arching

i
archingi

arc 0 n

2 cos

sin
l x x

α α α

α
α

()

⎟⎟
⎠

⎞
⎜ ⎜
⎝

⎛
− ⎟

⎠

⎞
⎜
⎝

⎛
∗ − ∗

∗ ∗ + =

∑

∑

− =

=

−

=

n
arching

n k

k
k
archingOx

n

i
i
arching

i
archingi

arc n l y y

α αα

α

α

1

0
0

1

0
0

2 sin

sin

Fig. 7 An intermediate position of
the hyperredundant robot.

Fig. 8 The final position of the
hyperredundant robot.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 763 Issue 9, Volume 3, September 2008

 The geometry matrix is given by:

()
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−
−∗−−∗

−
∗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

+

−

−

1

1

2

3

2

22
2332

00
00101

i

i

i

i
T

p
p
p
p

u
u
u

sp

ττττ
ττττ

ττ (11)

where the parameter τ is known as “tension” and it
affects how sharply the curve bends at the
(interpolated) control points.
 Designing and implementing algorithms to also
solve inverse kinematics problems, designing and
implementing algorithms that consider the dynamic
components in solving direct and inverse kinematics
problems are other features of the Graphic
Simulator.

3.4 Calibration
Taking into account the presented structure of the
tentacle - vision system, in order to apply the tested
visual servoing algorithm, the two cameras must be
positioned and oriented as:
- both focus on the robot,
- their axes are orthogonal,
- both have the same zoom factor.

Two different algorithms were implemented:
- one uses the graphical simulator.
- other uses a cylindrical etalon.
 First, the algorithm working together with the
graphic simulator will be presented.
 It was proven that the two camera axes are
orthogonal if, when both cameras are looking at the
tentacle successively bended as circle's arcs in two
orthogonal planes, are seeing also two circle's arcs.
 The previous condition is fulfilled if each camera
looks at the center of the circle containing the arc
and the view line is orthogonal on the plane's circle
(see Fig. 9).

Three calibration steps must be performed:

- Horizontal calibration - positioning and orienting
the camera horizontally (pan),
- Vertical calibration - positioning and orienting the
camera vertically (tilt),
- Zoom calibration - tuning the two cameras as both
look at the robot from virtual equal distances.
 The calibration algorithm has the following
steps:
1. The graphic simulator computes the necessary
bending and rotating arcs in order to transform the
tentacle into an arc in the XOY plane.
2. The robot's control commands are generated in
order to achieve the imposed positions and
orientations.
3. The first camera acquires an image.
4. The image is segmented.
5. If the detected curve (the median axis of the
tentacle) verifies the circle's equation then the
algorithm continues from step 7.
6. Else the first camera is moved and algorithm
returns to the step 3.
7. The graphic simulator computes the necessary
bending and rotating arcs in order to transform the
tentacle into an arc in the ZOY plane.
8. The robot's control commands are generated in
order to achieve the imposed positions and
orientations.
9. The second camera acquires an image.
10. The image is segmented.
11. If the detected curve (the median axis of the
tentacle) verifies the circle's equation then the
algorithm continues from step 13.
12. Else the second camera is moved and algorithm
returns to the step 9.
13. The optical correlation for the equalization of
"virtual" zoom factors is performed.
 How to “move” the camera in the steps 6 & 12?
The image behavior in accordance with camera’s
movements was studied. The effect of pan and tilt
rotations on two points placed in a quadratic
position on a circle was geometrically described.
Matrix for coordinate transformations corresponding
to rotations with pan and tilt angles, respectively for
perspective transformation were used.
 The following plot shows how is transformed a
rectangle (inscribed in the circle and having the
edges parallel with the axes OX and OY) when a tilt
rotation is performed (Fig. 10).
 Theoretically, by zooming, the distance between
the two points varies in a linear way, as it is in Fig.
11.
 The variation of the distance between the two
points, placed in a quadratic position on the circle,
and the centre of the circle, depending of the tilt
angle X, are plotted in Fig. 12. Fig. 9 Camera calibration

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 764 Issue 9, Volume 3, September 2008

Fig. 14 Cylindrical etalon

0 0.5 1 1.5
0

5

10

15

FRx1 f α, () FRx0 f α, ()−

α

0 0.5 1 1.5
0

1

2

3

4

5

6

FRx2 f α, () FRx0 f α, ()−

α

Fig. 12

0 0.5 1 1.5
1

1.1

1.2

1.3

1.4

1.5

FRx1 f α, () FRx0 f α, ()−

FRx2 f α, () FRx0 f α, ()−

α

Fig. 13

 Theoretically, by zooming, the distance between
the two points varies in a linear way, as it is shown
in Fig. 13.
 Second, the algorithm using a cylindrical etalon
will be presented.
 Special starting conditions were imposed in order
to support the image processing tasks (Fig. 14):
- white background,
- dark grey cylinder,
- red vertical equidistant (90 degrees) axes,
- friendly initial camera's positions and orientations,
- zoom x1.
 Three succesive and dependent calibrations are
performed:
- Horizontal (pan): position and orientation are
obtained in two successive, but dependent steps.
- Vertical (tilt): position and orientation are obtained
in two successive, but dependent steps.
- Zoom: tuning the two cameras as both look to the
cylinder from virtual equal distances.
 Horizontal orientation:
1. Image acquisition & segmentation using
histogram threshold,

2. Counting for each line in the image the number of
black and respectively white pixels,
3. For the line with the greater number of black
pixels, compute oriz

stp and oriz
drp ,

the number of white pixels from the left and
respectively from the right, Fig. 11

10− 5− 0 5 10
0

2

4

6

8

10

Z df P1, ()

df

Fig. 10

2− 1− 0 1 2
3−

2−

1−

0

1

2

yp i

yni

xpi xni,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 765 Issue 9, Volume 3, September 2008

4. Compute the offset oriz
dr

oriz
st

oriz pp −=Δ ,

5. IF oriz
accept

oriz ε≤Δ THEN stop rotating the camera,
6. ELSE rotate the camera to the left or to the right
using ()oriz

dr
oriz
st pp −sgn ,

7. Back to begin, 1.
 Horizontal positioning:
1. Image acquisition & segmentation using
histogram threshold,
2. Scanning the image horizontally, the axes are
detected; if two axes are detected then the camera is
rotated so the most lateral axes goes outside the
image,
3. Counting for each line in the image the number of
black and respectively white pixels,
4. For each line, the number of white pixels on the
left of the axes is pozoriz

stp − and the number of white

pixels on the right of the axes is pozoriz
drp − ,

5. The horizontal offset is computed
pozoriz

dr
pozoriz

st
pozoriz pp −−− −=Δ ,

6. IF pozoriz
accept

pozoriz −− ≤Δ ε THEN stop translating the
camera,
7. ELSE translate the camera to the left or to the
right using ()pozoriz

dr
pozoriz

st pp −− −sgn ,
8. Back to begin, 1.
 The full horizontal calibration is performed in the
following steps:
1. Horizontal orientation,
2. Horizontal positioning,
3. The offset for horizontal orientation is computed

oriz
dr

oriz
st

oriz pp −=Δ ,

4. IF oriz
accept

oriz ε≤Δ THAN the algorithm stops,
5. ELSE it goes to step 1.
 Both offsets must be under the accepted
thresholds. Else, the positioning destroyed the
orientation and the procedure must be repeated.
 Vertical orientation:
1. Image acquisition & segmentation using
histogram threshold,
2. Counting for each column in the image the
number of black and respectively white pixels,
3. For the column with the greater number of black
pixels, compute vert

susp and vert
josp the number of white

pixels above and respectively under the cylinder,
4. Compute the offset vert

jos
vert
sus

vert pp −=Δ ,

5. IF vert
accept

vert ε≤Δ THEN stop rotating the camera,
6. ELSE rotate the camera up and down using

()vert
jos

vert
sus pp −sgn ,

7. Back to begin, 1.
 Vertical positioning:
1. Image acquisition & segmentation using
histogram threshold,
2. Scanning the image vertically up-down until the
object is detected,
3. Scanning the image vertically down-up until the
object is detected,
4. For each of this two lines the number of black
pixels is computed, pozvertp −

inf and pozvertp −
sup ,

5. The vertical offset is computed

Fig. 15 Images from calibration procedure

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 766 Issue 9, Volume 3, September 2008

pozvertpozvertpozvert pp −−− −=Δ infsup ,

6. IF pozvert
accept

pozvert −− ≤Δ ε THEN stop translating the
camera,
7. ELSE translate the camera to up or down using

()pozvertpozvert pp −− − infsupsgn ,
8. Back to begin, 1.
 The full vertical calibration is performed in the
following steps:
1. Vertical orientation,
2. Vertical positioning,
3. The offset for vertical orientation is computed

vert
jos

vert
sus

vert pp −=Δ ,

4. IF pozvert
accept

pozvert −− ≤Δ ε THAN the algorithm stops,
5. ELSE it goes to step 1.
 Both offsets must be under the accepted
thresholds. Else, the positioning destroyed the
orientation and the procedure must be repeated.
 Zoom calibration algorithm is performed in
following steps:
1. Image segmentation using histogram threshold,
2. The white pixels are counted in both images,

zoomp1 and zoomp2 ,
3. The zoom offset is computed

zoom

zoom
zoom

p
p

1

2=Δ ,

4. IF supinf −− ≤Δ≤ zoom
accept

zoomzoom
accept εε THEN the

algorithm stops,

5. ELSE zoom-in one of the cameras. If

1
1

2 <zoom

zoom

p
p , the second camera is chosen, else the

first camera is chosen.
6. Back to begin, 1.
 The image’s segmentation is basically a threshold
procedure applied to the image’s histogram.
 All the procedures included in the calibration
algorithms were mathematically proven.
 If the calibration algorithm was successfully
applied then the system is ready to perform the
visualservoing tasks.

4 Conclusions
This paper deals with a project for building and
controlling a hyperredundant robot which is
currently developing.
 Different control methods and algorithms were
proposed by the team members. A new tentacle
manipulator using cables and stepper motors was
designed and is under construction and a visual
control using two video cameras is benchmarked.

 A graphic simulator was created in order to
support the system implementation. A virtual
graphical simulator was designed and implemented
in order to test hyperredundant robots behavior
under certain circumstances for kinematics problems
and to aid in the camera calibration process. The
application was developed in Microsoft Visual C++
.NET 2005. It used the Microsoft DirectX SDK
library for graphical purposes.
 Algorithms for computing the positions of each
segment base point were designed. The circular
form of the segments was approximated using a
cubic interpolating splines algorithm that passes
through the control points: Catmull-Rom. A linear
interpolation algorithm was developed for the
motion simulation.
 Several test scenarios were simulated. The cost
reduction is one of the main advantages of using this
application. In order to test the behavior of different
hyperredundant robots – with different
configurations - in real life, these robots must be
built, the costs (high enough just for one robot)
increasing with the number of test configurations.
 Also, certain control laws could be proven to be
harmful for the robot integrity (ex. too big arching
angle), thus damaging the real robot. If the control
laws are first tested in the simulator, such cases can
be avoided.
 Another advantage is the educational one, the
simulator proving to be a useful tool in the process
of teaching robot control and robot behavior.
 In this paper, camera calibration using this
graphic simulator was presented.

References:
[1] Walkera, I.D., Darren M. Dawsona, a.o. 2005.

Continuum Robot Arms Inspired by
Cephalopods, DARPA Contr. N66001-C-8043,
http://www.ces.clemson.edu/~ianw/spie05.pdf

[2] Davies, J.B.C., Lane, D.M., a.o. 1998. Subsea
applications of continuum robots, Underwater
Technology, Proceedings of the 1998
International Symposium on Volume, Issue 15-
17 Apr 1998 Page(s):363 – 369

[3] Walker, I.D. and Carlos Carreras. 2006.
Extension versus Bending for Continuum
Robots, International Journal of Advanced
Robotic Systems, Vol. 3, No.2 (2006), ISSN
1729-8806, pp. 171-178.

[4] Hannan, M.W. and I. D. Walker. 2005. Real-
time shape estimation for continuum robots
using vision, Robotica, volume 23, pp. 645–
651. © 2005 Cambridge University Press.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 767 Issue 9, Volume 3, September 2008

[5] Kelly, R. 1996. Robust Asymptotically State
Visual Servoing, Proc. IEEE Int. Conf. on Rob.
and Autom., vol. 22, no. 15, pp. 759-765.

[6] Hutchinson, S., Hager, G. D. and Corke, P. F.
1996. A Tutorial on Visual Servor Control,
IEEE Trans. on Robotics and Automation, vol.
12, no. 15, pp. 651-670.

[7] Grosso, E., Metta, G., a.o. 1996. Robust Visual
Servoing in 3D Reaching Tasks, IEEE Trans.
on Rob. and Autom., vol. 12, no. 15, pp. 732-
742.

[8] Ivanescu, M. 1984. Dynamic control for a
tentacle manipulator, Proc. Int. Conf. on Rob.
and Fact. of the Future, Charlotte, pp. 315-327.

[9] Ivanescu, M. 2002. Position Dynamic Control
for a Tentacle Manip, Proc. IEEE Int. Conf. on
Rob. and Autom, Washington, A1-15, 1531-
1539.

[10] Ivanescu, M., Cojocaru, D., a.o. 2007, Visual
Servoing By Artificial Potential Methods Of A
Hyperredundant Robot, Proceedings of 16th
International Workshop on Robotics in Alpe-
Adria-Danube Region - RAAD 2007, June 7-9,
Ljubljana, Slovenia.

[11] Watt, A. 2000. 3D Computer Graphics,
Addison Wesley.

[12] Luna, F.D. 2003. Introduction to 3D Game
Programming with DirectX 9.0, Wordware
Publishing, Inc., Plano – Texas.

[13] Möller, T. and E. Haines, 2002. Real-
TimeRendering. 2nd ed. Natick, Mass.: A K
Peters, Ltd.

[14] Jones, W. 2004. An Introduction to 3D
Computer Graphics, Course Technology PTR.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL DORIAN COJOCARU,RĂZVAN TUDOR TĂNASIE

ISSN: 1991-8763 768 Issue 9, Volume 3, September 2008

