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Abstract: - The work we describe here is aimed at assisting out-patients affected by insulin dependent diabetes 
mellitus with an advisory/control algorithm. This advisory/control algorithm incorporates expert knowledge 
about the treatment of this disease by using Mamdani type fuzzy logic controllers to regulate the blood glucose 
level (BGL) when the diabetic patient is subjected to a glucose meal disturbance or fluctuations in the 
measured glucose level due to error in the measuring instrument. We proposed two-level architecture for 
control system. The goal of the Low Level Module is to suggest the next insulin dosage of both short and 
intermediate acting insulin (Regular and NPH) formulation that are programmed in a three-shot daily basis 
before meals, depending on the blood glucose measurement. The combined preparation is then injected by the 
patient through a subcutaneous route. The High Level Module adjusts the maximum amounts of insulin 
provided to the patient in a time-scale of days. This module aims to work as a supervisor of the low level 
module. Simulations are illustrated, using a flow-limited model for diabetes mellitus based on the work of 
Puckett. 
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1 Introduction 
Several organs, hormones and enzyme systems are 
involved in the regulation of the blood glucose 
levels in human body. Insulin, a hormone secreted 
by pancreatic beta cells, is the most important 
hormone in the regulation of blood glucose levels. It 
influences the rates of glucose utilization by the 
tissues and regulates the storage of the fuel, 
therefore helps to keep blood glucose concentrations 
within a narrow range of about 90-130 mg/dl. 
Diabetes mellitus is an endocrine metabolic disorder 
in which the body does not produce or properly use 
insulin. 
Based on insulin dependency, diabetes is classified 
into two types, I and II. Type I is insulin-dependent 
diabetes mellitus (IDDM) and type II is referred to 
as noninsulin dependent diabetes mellitus 
(NIDDM). Type I diabetes represents approximately 
10% of all American diabetes [1] and is usually 
caused by loss of control of blood glucose levels. 
This loss of control is usually caused by a 
malfunction of the pancreas leading to a decrease in 
insulin production. It should be mentioned that this 
type of diabetes has a rapid onset and is most 
frequently apparent in children and adolescents 
(juvenile onset). Type II diabetes is characterized by 
insulin being appropriately produced by the 

pancreas but inappropriately absorbed and handled 
by body cells. This kind of diabetes is more 
common than type I, and is characterized by late 
occurrence (adult stage) [2].  
The results of the Diabetes Control and 
Complications Trial (DCCT) [3] showed that an 
intensive insulin therapy can reduce the incidence of 
these illnesses in the long term. Consequently, an 
intensive therapy is encouraged for type 1 diabetic 
mellitus (TIDM) patients prescribed either by a 
continuous subcutaneous insulin infusion (CSII) 
pump, or a multiple daily injections regimen 
(MDIR). In this contribution, the latter one is 
studied, which is the most common scenario in 
chronic patients, due to the high cost and availability 
of portable CSII pumps. With this consideration, if 
an intensive therapy is followed by the patient, the 
prescribed insulin treatment must be carefully 
selected by the physician. It is then appealing to 
have an advisory/control system for the patient in 
order to update each daily dose of insulin [4], [5], 
[6], [7], [8], [9]. In the control theory field, the fuzzy 
logic has emerged as a powerful tool to incorporate 
expert knowledge about the systems into the 
controllers design [10], [11], in particular, the ability 
of synthesizing expert knowledge in the fuzzy logic 
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framework has raised a lot of attention in the 
biomedical engineering field. 
Meanwhile several research efforts have been 
focused on the mathematical modeling of the 
glucose- insulin dynamics [12]. Modeling the 
glucose-insulin interaction requires an 
understanding of the physiological and metabolic 
processes that determine the observable behavior. 
Chemical reactions and transport processes form an 
integrated network when modeling the glucose-
insulin interaction in human body. A number of 
mathematical models of the insulin-dependent (type-
I) diabetes mellitus have been previously reported in 
the literature [13], [14]. 
 The control strategy presented in this work 
formalizes expert knowledge in the fuzzy logic 
framework. This paper is organized as follows.  
Section 2 gives an overview of the mathematical 
modeling of the insulin-glucose dynamics in a 
TIDM patient. Section 3 introduces the synthesis of 
the knowledge-based (Mamdani-type) fuzzy 
controllers.  Finally, section 4 introduced the 
simulation results. Section 5 presents concluding 
remarks and future work. 
 
 
2 Diabetic patient modeling 
The model to be presented here is a flow-limited 
model for diabetes mellitus based on the work of 
Puckett [15]. The glucose diagram (Fig.1) contains 
tissues including heart, brain, liver, kidney and 
muscle where the glucose is used for energy. 
Glucose excretion by kidney and gastrointestinal 
tract where the exogenous glucose enters the blood, 
are also included. The diagram for insulin (Fig.2) 
includes subcutaneous tissue as a source for insulin. 
It is assumed that the pancreas is completely lacking 
insulin production. Removal and degradation of 
insulin occurs mostly in liver, kidney and peripheral 
tissue. They degrade one-half, one-third and one-
sixth, respectively, of the insulin presented to them, 
regardless of the plasma concentration. 
A mass balance equation is written for each 
compartment in the model. The compartments here 
represent actual body regions. The advantage of this 
type of modeling is that the model design is based 
on an understanding of the physiology and 
simulations that can yield insight into the 
physiological processes [18]. The main disadvantage 
of these models is that the personal variations in 
physiological parameters are not taken into account. 
Therefore, the outputs are average values thus, the 
simulator should be used for only educational 
purposes rather than providing medical advice. 

It is assumed that changes in blood glucose and 
insulin concentrations for each tissue are fast and the 
balances are in a quasi-steady state (i.e. 0/ ≈dtdG ) 
shortly after a disturbance (i.e. the carbohydrate 
intake). 
 

 
Fig.1.Pharmacokinetic Diagram of Glucose [15] 

 

 
Fig.2. Pharmacokinetic Diagram of Insulin [15] 

 
2.1 Insulin sub-model 
Insulin travels through several regions of the body as 
it moves from the injection depot to the target cells. 
Diabetic educators usually teach patients to inject 
insulin into the subcutaneous tissue in such a way as 
to put it in the interstitial fluid and not a blood 
vessel. The insulin must then diffuse through the 
interstitial environment to nearby capillaries. After 
crossing the capillary wall, it is carried to the main 
circulation. The circulating hormone crosses the 
capillary wall in various tissues and diffuses through 
the interstitial milieu to the cell walls. Insulin’s 
binding with receptors in the cell membrane then 
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cause intracellular signals which activate appropriate 
changes in the cell’s metabolism. After initiating the 
signal, the hormone dissociates from the receptor, or 
the complex is internalized. The internalized insulin 
is released unaltered or degraded. The following 
three pool model has been found to produce an 
adequate fit to patient data and describes the 
absorption from an injection of short acting insulin 
(regular) at t=0: 
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Where, [Ip] is total amount of insulin in pocket, kp is 
rate constant for the transport of insulin from the 
pocket into the surrounding interstitial fluid, [Ip]0 is 
injected insulin, [Is] is insulin concentration in 
interstitial fluid, [IB] is concentration of insulin in 
the capillary blood, ks is rate constant for the 
transport from the interstitial region to the capillary 
blood, Vs is effective volume of the interstitial fluid, 
VB is effective volume of circulating blood, kB is 
rate constant for removal of insulin in the liver and 
kidney, Bsp τττ ,,  are time constants. The insulin 
sub-model parameters are tabulated in Table 1. 
 
Table 1.Constant parameters of insulin Sub-model [15] 

Parameter Value 
pτ (min) 63 

sτ (min) 63 
Bτ (min) 16 

[IB]0 ( Uµ ) 17.5 
[Is]0 ( Uµ ) 0 

 
 2.2 Glucose sub-model 
Setting dG/dt =0 in all tissues we get 
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In summary, we present the different sub-models 
making up the glucose portion of the overall 
model here: 
 
Total Glucose Uptake (TGU) 
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Where, k is a constant value, [IA] is effective insulin 

concentration, [GB] is circulating blood glucose 
concentration, CNU is glucose and insulin 
independent uptake which is approximately a 
constant, [IB]D is circulating blood insulin 
concentration delayed by the pure time delay 
TD,TGU.  
 
Glucose Excretion (GE)  

)9()176]([)176]([
min

25.1
dl
mgGU

dl
mgGdlGE BB −−=

    Where, U([GB]-176mg/dl) is step function 
indicating the threshold at approximately 176 
mg/dl.  
 
Glucose Absorption from the small intestine (GA) 
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Where, [CHOG] is total amount of hydrolyzed 
meal carbohydrate that have entered the stomach, 
CHOM is carbohydrate content of the meal (in 
mg/kg) , tM is time of meal (in minutes), [GG] is 
total amount of glucose in  the stomach, F is 
fraction of meal carbohydrates that actually absorb 
into the blood. 
  
Rate of Liver Glucose Production (LGP) 
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Where, [GL]D is average glucose concentration 
entering the liver delayed by the pure time delay 
TD,LGP, [IB]D is circulating blood insulin 
concentration delayed by the pure time delay 
TD,LGP, [GI]D is [GL]D[IB]D delayed in a first order 
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manner with a time constant 1/kA or 1/kD, QL is a 
constant value. The glucose sub-model parameters 
are tabulated in table 2. 
 
Table 2.Constant parameters of glucose sub-model [15] 

Parameter Value 
VB (dl/kg) 1.0754 
TD,TGU (min) 30 
TIA (min) 21.3 
k (1/min) 0.000382 
CNU (mg/kg-min) 1.67 
TGE (min) 156.59 
TA (min) 34.66 
F 1 
QL (ml/min) 810 
a1 (mg/kg-min) 1.13 
a2 0.43 
a3 ( mldlUmg −− /µ ) 7259 
a4 ( mldlUmg −− /µ ) 765 
TD,LGP (min) 30 
kA (1/min) 0.3671 
kD (1/min) 0.0036 

 
Fig.3, 4, 5 represent the simulation results of this 
sub-model for glucose absorption, total glucose 
uptake and liver glucose production rates for a set 
of initial conditions respectively. 
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Fig.3. Time Course of Glucose Absorption Rate 
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Fig.4. Time Course of Total Glucose Uptake Rate 
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Fig.5. Time Course of Liver Glucose Production  Rate 

 
 
3 Problem statement and control 
method 
Three meals are considered per day: breakfast  
(7-10 h), lunch (13-15 h) and dinner (20-22 h); 
where the lunch is the major one of the day. 
Roughly, there is a time interval of 6 h between 
each meal. In the proposed injection plan, the 
insulin doses are programmed previous to each 
meal, where the NPH provides the basal insulin, 
and the transient effects after each meal (post-
prandial peaks) are regulated by the regular. 
Because of slow basal insulin absorption, the 
morning and lunch doses for NPH are skipped, and 
only regular are injected. The control objective is 
then stated in Table 3. 
 

Table 3.Control objective 
Plasma 
Glucose Normal Target 

Before 
eating 

Less than 
110 90 to 130 

Two hours 
After eating 

Less than 
110 

Less than 
180 

Bedtime Less than 
120 110 to 150 

 
It is important to mention that the control problem 
posed is very demanding, since the doses given by 
a physician vary from patient to patient. 
Furthermore, the glucose-insulin dynamics of for 
type 1 diabetic patients are highly nonlinear and 
they can be modified by different parameters like 
diet, exercise, stress, etc.  
Therefore the advisory/control scheme presented 
in this work is based on two-level architecture; see 
Fig.6, where the high level module has the purpose 
of supervising the low level module performance 
in a time-scale of days. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Laleh Kardar , Ali Fallah, Shahriar  
Gharibzadeh, Fatollah Moztarzadeh

ISSN: 1991-8763 715 Issue 9, Volume 3, September 2008



 
Fig.6. the overall scheme for two-level control system 

 
3.1 Low Level Module 
The low level module is structured with a Mamdani 
type fuzzy architecture and computes the regular 
(Ir) and NPH (Inph) insulin doses given to the patient 
before each meal. The input variables to this 
module are: 
- Time of the day (t): the information of time is 
used to determine whether a NPH insulin dose is 
injected next or not.  
- Glucose measurement (G): the information of the 
BGL is used for the euglycemic analysis. 
- Previous regular dose (Ird): the regular dose 
calculated in the previous meal is used to analyze 
the glycemic control. 
- Previous NPH insulin dose (Inphd): due to the 
absorption process of the NPH, its dose in the 
morning is considered to evaluate also the glycemic 
control.  
The two outputs regular (Ir) and NPH doses (Inph) 
are normalized to the interval [0,1], and the actual 
injection preparation ( a

rI ; a
nphI ) is calculated when 

the amplitudes are scaled according to the values 
max
rI (Maximum regular insulin dosing) and 
max
nphI (maximum NPH insulin dosing) provided by 

the high level module.    

nphnph
a
nph

rr
a
r

III

III

×=

×=
max

max

                                            (16) 

The input and output characteristics are shown in 
Table 4 and 5 respectively, including the interval 
of variation for each variable and the fuzzy sets 
associated with the type of membership function 
used (fuzzication method). By the definition of the 
input fuzzy set, a total of 108 IF-THEN rules were 
defined. These rules were of AND (minimum) 
type antecedent. The output (defuzzification 
method) is calculated by the centroid method. The 
major trends in the rules description are: 
- The morning and lunch doses of NPH insulin are 
skipped. 
- The regular doses increases as the BGL increases. 
- If the previous dose of insulin is small and the 

BGL is above normal, then increase the doses.  
A sample of the proposed rules for the low level 
module is detailed next: 
IF Time=Morning and Glucose=Low and Ird=Large 
and Inphd=Large THEN Ir=Small and Inph=Medium. 
 

3.2 High Level Module 
The high level module is synthesized using 
physician knowledge [16], [17] by applying a 
Mamdani type fuzzy logic structure and regulates 
the amounts of insulin given to the patient by 
evaluating the glycemic control in a time-scale of 
days. According to control objective listed in Table 
3, the systemic glucose deviation from the target 
glucose level (TGL) can be measured as:  
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Where n is the number of measurements used for 
evaluation, and )(kθ (point wise deviation from 
TGL) is defined as: 
 
a) For BGL measured before eating: 
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b) For BGL measured 2 hours after eating: 

⎩
⎨
⎧ >−

=
Otherwise

dlmgkGdlmgkG
k

0
/180)(/180)(

)(θ           (19) 

 
c) For BGL measured at bedtime:  
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 Where Γ  is a constant that includes an additional 
weight for low glucose concentrations 
(hypoglycemic scenarios). Consequently, the high 
level module must adjust the insulin dosing in three 
global scenarios:  
- Increase it, if an hyperglycemic condition is 
detected. 
- Decrease it, in the case of an hypoglycemic 
condition. 
- Maintain it, for a normal condition. 
These dosing adjustments are performed in a time-
scale of days, where they could be specified per day 
or week according to the physician's advice. The 
adjustment is done the next morning by modifying 
the scaling factors max

rI and max
nphI using an integral 

type of updating rule:  
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Low level 
Controller 
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Insulin 
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Table 4.Inputs characteristics for low level module 
Membership Function Interval Input 

 Evening (SMF) Lunch (GBCMF) Morning (SMF) [0,24] h t 
High (SMF) Medium (GBCMF) Normal (GBCMF) Low (SMF) [40,400] mg/dl G 

 Large (SMF) Medium (GBCMF) Small (SMF) [0,1] Ird 
 Large (SMF) Medium (GBCMF) Small (SMF) [0,1] Inphd 

 
Table 5.Outputs characteristics for low level module 

Membership Function Interval output 
Very Large  

(TMF) 
Large 

 (TMF) 
Medium 
(TMF) 

Small  
(TMF) 

None 
 (TMF) [0,1] Ir 

Very Large  
(TMF) 

Large 
 (TMF) 

Medium 
(TMF) 

Small 
 (TMF) 

None  
(TMF) [0,1] Inph 

 
 

nphnphnph

rrr

IiIiI

IiIiI

∆+−=

∆+−=

)1()(

)1()(
maxmax

maxmax

                                 (21) 

Where rI∆  and nphI∆  are the adjustments given by 
the high level module. The index i-1 refers to the old 
scaling factor, and i to the new adjusted one. The 
input information used by the high level module 
includes details of the glycemic control during the 
previous days, and the previous insulin adjustments, 
this is:  
- The glucose deviation (J) in (17). 
- Memory of the previous deviation (Jd). 
- The previous adjustments rI∆ and nphI∆ . 
The input and output characteristics are shown in 

Table 6 and 7 respectively, including the interval of  
variation for each variable and the fuzzy sets 
associated with the type of membership function 
used (fuzzication method). By the definition of the 
input fuzzy set, a total of 81 IF-THEN rules were 
defined. These rules were of AND (minimum) type 
antecedent. The output (defuzzification method) is 
calculated by the centroid method. The premise of 
these rules can be summarized in three points:  
- If there is a tendency for the glucose deviation to 
increase above the TGL, then increase the scaling 
factors. 
- If there is a tendency to decrease below the TGL, 
then reduce the scaling factors. 
- If the glucose deviation is in the TGL, then try to 
decrease the scaling factor without leaving the 
TGL.  
A sample of the proposed rules for the low level 
module is detailed next: 
IF Jd=Negative and J=Negative and ∆ Ird=Zero and 
∆ Inphd=Zero THEN ∆ Ir=Negative and 
∆ Inph=Negative. 

 
 

 
 

 
4 Simulations  
The numerical simulation was implemented in 
MATLAB/Simulink using the Fuzzy Logic 
Toolbox. A total of 25 days (T = 36000 min) were 
simulated with three meals per day: breakfast: 8 h, 
lunch: 14 h, and dinner: 20 h. Three boluses of 
insulin are programmed per day by a subcutaneous 
injection, where a combination of Regular and NPH 
insulin is programmed. The high level module 
supervises intensively the low level module every 
day to adjust the scaling factors. During the 
simulation period (25 days), a total of 100 doses are 
computed. The hypoglycemic weight Γ  in (18) and 
(20) was selected to 5 [7] during the computation of 
glucose deviation J.  
At the first case of our simulation, the patient starts 
with small scaling factors for both types of insulin, 
producing small insulin doses and high glucose 
levels. The algorithm adjusts the insulin dosages in 
order to reach the TGL. For this scenario, a ± 15 % 
error (typical error in commercial devices) in each 
of the glucose measurements is assumed.  
At the second case, in order to analyze the effect of 
heavy variations in the meal intakes, the patient 
varies his carbohydrate intake during meals by 25% 
from the nominal ones, using a uniform distribution.  
The insulin-glucose dynamics can vary drastically 
from patient to patient. In previous studies [15], it 
was shown that the parameters related to the body's 
sensitivity to insulin (k) presented the largest impact 
in the blood glucose concentration. Thus in order to 
analyze this scenario, at the third case the values of 
this parameter was perturbed 20 %, and 25 
combinations were selected that achieved the largest 
sensitivity in the BGL.  
At the last case, a 40 days simulation is also 
presented, in order to analyze the stability of the 
advisory/control for a longer period of time despite 
measurement errors. 
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Table 6.Inputs characteristics for high level module 

Membership Function Interval Input 
Positive (SMF) Zero (GBCMF) Negative (SMF) [-20,20] mg/dl J 
Positive (SMF) Zero (GBCMF) Negative (SMF) [-20,20] mg/dl Jd 
Positive (SMF) Zero (GBCMF) Negative (SMF) [-2,2] U rdI∆  

Positive (SMF) Zero (GBCMF) Negative (SMF) [-4,4] U nphdI∆  

 
Table 7.Outputs characteristics for high level module 

Membership Function Interval Output 
Very Positive 

(SMF) 
Positive 
(TMF) 

Zero 
 (TMF) 

Negative 
(TMF) 

Very Negative 
 (SMF) [-2,2] U rI∆ 

Very Positive 
(SMF) 

Positive 
(TMF) 

Zero 
(TMF) 

Negative 
 (TMF) 

Very Negative 
 (SMF) [-4,4] U nphI∆ 

 
Fig.7, 8, 9 and 10 present simulations for the case 1, 
2, 3 and 4 respectively: meal carbohydrates intakes, 
blood glucose concentration, insulin doses, insulin 
scaling factors and glucose deviation function. 
Hypoglycemia was detected when the BGL 
decreased below 60 mg/dl during simulations. It is 
observed that there is no instability in the system 
although the measurement error can be as high as 
15%, and meal intakes can have up to 10% variation 
and no hypoglycemic conditions are detected. For 
all cases studied, the advisory/control algorithm is 
able of regulate the plasma glucose around the TGL 
despite initially low scaling factors and 
measurement errors, variable carbohydrates intake 
and variability in the glucose-insulin dynamics. . 
 
 
5 Conclusion 
In this study, a fuzzy logic controller has been 
proposed to maintain the normoglycaemic for 
diabetic patient of type I. The treatment strategy is 
based on a four-daily dose of regular and NPH 
insulin and which is applied through a subcutaneous 
route. In order to incorporate knowledge about 
patient treatment, the controllers are designed using 
a Mamdani-type fuzzy scheme. Simulation results 
with a physiological model of the TIDM patient 
show the effectiveness of structure for blood glucose 
regulation. Hence the results presented are 
encouraging for clinical studies, however in that 
case, some other physiological factors not addressed  
in the TIDM mathematical model could affect the 
actual performance, and further tuning could be 
necessary according with the results achieved in 
each patient. As shown in this paper, the fuzzy logic  
framework has the potential to synthesize expert 
knowledge to treat diseases. Therefore, the approach 
and methodology introduced could be a valuable 
tool for educational purposes. Moreover, in future  

 
work, the inclusion of an exercise regime in the 
overall model of the TIDM patient in order to have a 
more realistic simulation will be considered. 
 
 
References: 
[1] [Online] Available: 
www.who.int/mediacentre/factsheets/fs236/en/ 
 

[2] ENDOCRINE WEB INC., 1998, The Diabetes 
Center. http://www.endocrineweb.com 
 

[3] DCCT, .The effect of intensive treatment of 
diabetes on the development and progression of 
long-term complications in insulin-dependent 
diabetes mellitus,. N. Engl. J. Med., vol. 329, pp. 
977.986, 1993. 
 

[4] J. M. Bailey and W. M. Haddad, .Drug dosing 
control in clinical pharmacology,. IEEE Control 
Systems Magazine, vol. 25, no. 2, pp. 35.51, 2005. 
 

[5] R. Bellazzi, .Electronic management systems in 
diabetes mellitus: Impact on patient outcomes,. 
Disease Management & Health Outcomes, vol. 11, 
no. 3, pp. 159.171, 2003. 
 

[6] R. Bellazzi, G. Nucci, and G. Cobelli, .The 
subcutaneous route to insulin-dependent diabetes 
therapy,. IEEE Engineering in Medicine and 
Biology, vol. 20, pp. 54.64, junuary/february 2001. 
 

[7] D. U. Campos-Delgado, R. Femat, M. 
Hern´andez-Ordonez, and A. Gordillo-Moscoso, 
Self-tuning insulin adjustment algorithm for type I 
diabetic patients based on multi-doses regime,. 
Applied Bionics & Biomechanics, vol. 2, no. 2, pp. 
61.72, 2005. 
 

[8] D. U. Campos-Delgado, R. Femat, E. Ruiz-
Vel´azquez, and A. Gordillo-Moscoso, Knowledge-
based controllers for blood glucose regulation in 
type I diabetic patients by subcutaneous route,. in 
Proc. of the Int. Symp. on Inteligent Cont., Houston, 
USA, october 2003. 
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Laleh Kardar , Ali Fallah, Shahriar  
Gharibzadeh, Fatollah Moztarzadeh

ISSN: 1991-8763 718 Issue 9, Volume 3, September 2008



[9] K. Miyako, R. Kuromaru, H. Kohno, and T. 
Hara, .Improved diabetes control by using close 
adjustment algorithms,. Pediatrics International, 
vol. 46, pp. 678.684, 2004. 
 

[10] D. Driankov, H. Hellendoorn, and M. 
Reinfrank, An Introduction to Fuzzy Control, 2nd 
ed. Springer-Verlag Berlin Heidelberg, 1996. 
 

[11] L. X. Wang, A Course in Fuzzy Systems and 
Control. Upper Saddle River, New Jersey: Prentice 
Hall Inc., 1997. 
 

[12] J. T. Sorensen, .A physiologic model of glucose 
metabolism in man and its use to design and assess 
improved insulin therapies for diabetes, Ph.D. 
Thesis, Chemical Engineering Department, MIT, 
Cambridge, 1985.  
 

[13] M.S. Leaning and M.A. Boroujerdi. A system 
for compartmental modeling and simulation. Comp 
Meth Prog Biomed, 35:71-92, 1991.  
 

[14] R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. 
Cobelli. Quantitative estimation of insulin 
sensitivity. Am J Physiol, 236:E667-77,1979. 
 

[15] W.R. Puckett. Dynamic modeling of diabetes 
mellitus. PhD Thesis, University of Wisconsin - 
Madison, 1992. 
 

[16] ADA, .Standards of medical care for patients 
with diabetes mellitus, Diabetes Care, vol. 25, 
supplement 1, pp. 533.549, 2002. 
 

[17] K. Miyako, R. Kuromaru, H. Kohno, and T. 
Hara, .Improved diabetes control by using close 
adjustment algorithms, Pediatrics International, vol. 
46, pp. 678.684, 2004. 
 

[18] R.S Hillman, The dynamics and control of 
glucose metabolism, PhD Thesis, MIT, 1976.  

 

 

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

1100

time(days)

Ca
rb

oh
yd

ra
te

s 
Co

nt
en

t(
m

g/
kg

)

 

 

breakfast
lunch
dinner

 

0 5 10 15 20 25

60

80

100

120

140

160

180

200

220

240

260

days

Bl
oo

d 
Gl

uc
os

e 
Co

nc
en

tr
at

io
n(

m
g/

dl
)

 

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

days

Re
gu

la
r 

in
su

lin
 d

os
es

(U
)

 

 
Ir-break
Ir-lunch
ir-dinner

 

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

days

N
PH

 in
su

lin
 d

os
es

(U
)

 

0 5 10 15 20 25
20

25

30

35

40

45

50

55

days

O
ut

er
 c

on
tr

ol
er

 s
ca

lin
g 

fa
ct

or
(U

)

 

 
Inphmax(1,1:25)
Irmax(1,1:25)

 

0 5 10 15 20 25
-5

0

5

10

15

20

25

30

35

40

days

D
ev

ia
ti

on
 F

un
ct

io
n 

(m
g/

dl
)

 
Fig.7. Simulation for a 25 days period: case 1 
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   Fig.8. Simulation for a 25 days period: case 2 
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      Fig.9. Simulation for a 25 days period: case 3 
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   Fig.10. Simulation for a 40 days period: case 4 
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