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Abstract: Generalized linear systems are considered, which contain in their state-space representation matrices
with elements functions of bounded variation and controls in the space of regulated functions. The Perron-Stieltjes
integral is used to obtain a variation-of-parameters formula. On this basis the formula of the state of the system as
well as the input-output map are derived. The fundamental concepts of controllability and reachability are analysed
in this approach by means of two controllability and reachability Gramians. An optimal control is provided which
solves the problem of the minimum energy transfer. The observability of these generalized systems is studied. In
the case of completely observable systems a formula is obtained which recovers the initial state from the exterior
data. The duality between the concepts of controllability and observability is emphasized as well as Kalman’s
canonical form.
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1 Introduction

The Perron-Stieltjes integral with respect to functions
of regulated functions which include the functions of
bounded variation was defined in [20]. This integral
is equivalent to the Kurzweil integral (see [5] and [8]).
In this paper, using the results of M.Tvrdý ([10], [11])
concerning the properties of the Perron-Stieltjes inte-
gral with respect to regulated functions and the dif-
ferential equation in this space, a class of generalized
linear systems is considered, having the controls in the
space of regulated functions and the coefficient matri-
ces of bounded variation. This allows us to extend in
this framework the concepts of controllability, observ-
ability (see for instance [4]).

The minimal energy transfer problem is analysed
and the optimal control is provided.

The observability of these generalized systems is
studied. In the case of completely observable sys-
tems a formula is obtained which recovers the initial
state from the exterior data. The duality between the
concepts of controllability and observability is empha-
sized as well as Kalman’s canonical form.

Linear boundary value systems were studied in
the same framework in [6].

This study can be continued in many directions
such as stability, positivity, 2D generalized systems,
linear quadratic optimal control etc., by extending to
the present approach some results presented for in-

stance in [1], [2] and [3]. Another direction can be
the application of this framework to the geometric ap-
proach of multitime systems studied in [12]-[19].

2 Preliminaries

A function f : [a, b] → R which posseses finite one
side limits f(t−) and f(t+) for any t ∈ [a, b] (where
by definition f(a−) = f(a) and f(b+) = f(b)) is
said to be regulated on [a, b]. The set of all regu-
lated functions denoted by G(a, b), endowed with the
supremal norm, is a Banach space; the set BV (a, b)
of functions of bounded variation on [a, b] with the
norm ||f || = |f(a)| + varb

af is also a Banach space;
the Banach space of n-vector valued functions be-
longing to G(a, b) and BV (a, b) respectively are de-
noted by Gn(a, b) and BV n(a, b) (or simply Gn and
BV n); BV n×m denotes the space of n × m matri-
ces with entries in BV (a, b). For a matrix function
U : [a, b]× [a, b] → Rn×m, let us denote by ν(U) its
two-dimensional Vitali variation (see [9], Definition
I.6.1).

A pair D = (d, s) where d = {t0, t1, . . . , tm} is
a division of [a, b] (i.e. a = t0 < t1 < . . . < tm = b)
and s = {s1, . . . , sm} verifies tj−1 ≤ sj ≤ tj , j =
1, . . . ,m is called a partition of [a, b].

A function δ : [a, b] → (0,+∞) is called a gauge
on [a, b].
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Given a gauge δ, the partition (d, s) is said to be
δ-fine if [tj−1, tj ] ⊂ (sj − δ(sj), sj + δ(sj)), j =
1, . . . , m.

Given the function f, g : [a, b] → R and a parti-
tion D = (d, s) of [a, b] let us associate the integral
sum

SD(f∆g) =
m∑

j=1

f(sj)(g(tj)− g(tj−1)).

Definition 1. The number I ∈ R is said to be
the Perron-Stieltjes (Kurzweil) integral of f with re-

spect to g from a to b and it is denoted as
∫ b

a
fdg or

∫ b

a
f(t)dg(t) if for any ε > 0 there exists a gauge δ

on [a, b] such that

|I − SD(f∆g)| < ε

for all δ-fine partitions D of [a, b].

Given f ∈ G(a, b) and g ∈ G([a, b] × [a, b]) we
define the differences ∆+, ∆−, ∆ and ∆+

s , ∆−
s , ∆s by

∆+f(t) = f(t+)− f(t),

∆−f(t) = f(t)− f(t−),

∆f(t) = f(t+)− f(t−),

∆+
s g(t, s) = g(t, s+)− g(t, s),

∆−
s g(t, s) = g(t, s)− g(t, s−),

∆sg(t, s) = g(t, s+)− g(t, s−);

D−(f), D+(f) denote respectively the set of the left
and right discontinuities of f in [a, b] and similarly
with respect to the argument t we can define D−t (g),
D+

t (g).
Let us recall some basic properties of the Perron-

Stieltjes integral, by following [9] and [10]. The exis-

tence theorem of the Perron-Stieltjes integral
∫ b

a
fdg

for f ∈ BV (a, b) and g ∈ G(a, b), due to Tvrdý [11]
is essential for our treatment.

Theorem 1 ([9], Theorem I.4.19 and [11], The-
orem 2.8). If f ∈ G(a, b) and g ∈ BV (a, b) then the

Perron-Stieltjes integrals
∫ b

a
fdg and

∫ b

a
gdf exist.

In the sequel we shall denote by
∑

t

the sum
∑

t∈D
where D = D−(f) ∪ D+(f) ∪ D−(g) ∪ D+(g).

Theorem 2 (integration-by-parts, [10], Theo-
rem 2.15). If f ∈ G(a, b) and g ∈ BV (a, b) then

∫ b
a fdg +

∫ b
a gdf = f(b)g(b)− f(a)g(a)+∑

t[∆
−f(t)∆−g(t)−∆+f(t)∆+g(t)].

(1)

Theorem 3 ([10], Proposition 2.16). If
∫ b

a
fdg

exists, then the function h(t) =
∫ t

a
fdg is defined on

[a, b] and
i) if g ∈ G(a, b) then h ∈ G(a, b) and, for any

t ∈ [a, b]

∆+h(t) = f(t)∆+g(t),
∆−h(t) = f(t)∆−g(t);

(2)

ii) if g ∈ BV (a, b) and f is bounded on [a, b],
then h ∈ BV (a, b).

Theorem 4 (substitution, [10], Theorem 2.19).
Let f, g, h be such that h is bounded on [a, b]

and the integral
∫ b

a
fdg exists. Then the integral

∫ b

a
h(t)f(t)dg(t) exists if and only if the integral

∫ b

a
h(t)d

[∫ t

a
f(s)dg(s)

]
exists, and in this case

∫ b

a
h(t)f(t)dg(t) =

∫ b

a
h(t)

[∫ t

a
f(s)dg(s)

]
. (3)

Theorem 5 (Dirichlet formula, [9], Theorem
I.4.32). If h : [a, b] × [a, b] → R is a bounded func-
tion and varb

ah(s, ·)+varb
ah(·, t) < ∞, ∀t, s ∈ [a, b],

then for any f, g ∈ BV (a, b)

∫ b

a
dg(t)

(∫ t

a
h(s, t)df(s)

)
=

∫ b

a

(∫ b

s
dg(t)h(s, t)

)
df(s)+

+
∑

t

[∆−g(t)h(t, t)∆−f(t)−
−∆+g(t)h(t, t)∆+f(t)].

(4)

3 Generalized differential equations

The symbol
dx = d[A]x + dg (5)

where A ∈ BV n×n and g ∈ Gn(a, b) is said to be a
generalized linear differential equation (GLE) in the
space of regulated functions.
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Definition 2. A function x : [a, b] → Rn is said
to be a solution of GLE (5) if for any t, t0 ∈ [a, b] it
verifies the equality

x(t) = x(t0) +
∫ t

t0
d[A(s)]x(s) + g(t)− g(t0). (6)

If x satisfies the initial condition

x(t0) = x0 (7)

for given t0 ∈ [a, b] and x0 ∈ Rn then x is called the
solution of the initial value problem (5), (7).

Theorem 6 ([9], Theorem
III.2.10). Assume that for any t ∈ [a, b] the matrix
A ∈ BV n×n verifies the conditions

det[I + ∆+A(t)] 6= 0 (8)

and
det[I −∆−A(t)] 6= 0. (9)

Then there exists a unique matrix valued function
U : [a, b] × [a, b] → Rn×n such that, for any (t, s) ∈
[a, b]× [a, b]

U(t, s) = I +
∫ t

s
d[A(τ)]U(τ, s). (10)

U(t, s) is called the fundamental matrix solution of
the homogeneous equation

dx = d[A]x (11)

and has the following properties, for any τ, t, s ∈
[a, b]:

U(t, s) = U(t, τ)U(τ, s); (12)

U(t, t) = I; (13)

U(t+, s) = [I + ∆+A(t)]U(t, s);
U(t−, s) = [I −∆−A(t)]U(t, s);

U(t, s+) = U(t, s)[I + ∆+A(s)]−1;
U(t, s−) = U(t, s)[I −∆−A(s)]−1;

(14)

U(t, s)−1 = U(s, t); (15)

there exists a constant M > 0 such that

|U(t, s)|+ varb
aU(t, ·) + varb

aU(·, s)+
+ν(U) < M.

(16)

The twodimensional variation of U is finite on
[a, b]× [a, b], i.e. v[a,b]×[a,b](U) < ∞.

Some methods for the calculus of the fundamental
matrix U(t, s) were provided in [7].

From [9], Theorem III.3.1 and [11], Proposition
2.5, one obtains

Theorem 7 (Variation-of-constants formula). If
A ∈ BV n×n satisfies the conditions (8) and (9), then
the initial value problem (5), (7) has a unique solution
given by

x(t) = U(t, t0)x0 + g(t)− g(t0)−
− ∫ t

t0
ds[U(t, s)](g(s)− g(t0)).

(17)

If g ∈ Gn (g ∈ BV n) then x ∈ Gn (x ∈ BV n).

4 Generalized linear systems

In this section we shall study linear systems which are
controlled by inputs over G(a, b).

Definition 3. A generalized linear system (GLS)
Σ is an ensemble Σ = (A(·), B(·), C(·), D(·)) ∈
BV n×n×BV n×m×BV p×n×BV p×m with the state
space representation

dx(t) = d[A(t)]x(t) + B(t)du(t), (18)

y(t) = C(t)x(t) + D(t)u(t), t ∈ [a, b]; (19)
x ∈ Gn, u ∈ Gm, y ∈ Gp are the state, the input and
the output of the system, respectively.

Proposition 1. If

det[(I −∆−A(t))(I + ∆+(t))] 6= 0 (20)

for any t ∈ [a, b], then the input-output map of Σ is
given by

y(t) = C(t)U(t, a)x0+

+
∫ t

a
C(t)U(t, s)B(s)du(s)+

∑

a≤s<t

C(t)U(t, a)∆+
s (U(a, s))B(s)∆+u(s)−

∑

a<s≤t

C(t)U(t, a)∆−
s (U(a, s))B(s)∆−u(s)+

+D(t)u(t)
(21)

where x0 = x(a) is the initial state of the system.

Proof. The equation (18) is of the form (6) where

g(t) =
∫ t

a
B(s)du(s). It follows from [9, Corollary I

4.12] and from Theorem 6 respectively that

∆+g(t) = lims↓t
∫ s
a B(r)du(r)− ∫ t

a B(r)du(r) =
= B(t)∆+u(t),
∆−g(t) = B(t)∆−u(t)
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and

∆+
s U(t, s) = U(t, s+)− U(t, s) =

= U(t, s)((I + ∆+A(s))−1 − I) =

= U(t, a)U(a, s)((I + ∆+A(s))−1 − I) =

= U(t, a)(U(a, s+)− U(a, s)) =
= U(t, a)∆+

s U(a, s);

similarly

∆−
s U(t, s) = U(t, a)∆−

s U(a, s).

If A satisfies the assumption (20), the solution of (18)
is

x(t) = x(a) +
∫ t
a B(s)du(s)−

− ∫ t
a ds[U(t, s)]

∫ s
a B(r)du(r).

By use of the integration-by-parts formula (1) we ob-
tain

x(t) = U(t, a)x0+

+
∫ t

a
U(t, s)d

[∫ s

a
B(r)du(r)

]
+

+
∑

a≤s<t

∆+
s U(t, s)∆+

(∫ s

a
B(r)du(r)

)
−

−
∑

a<s≤t

∆−
s U(t, s)∆−

(∫ s

a
B(r)du(r)

)

and, by Theorem 4, the state of the system Σ is given
by

x(t) = U(t, a)x0 +
∫ t

a
U(t, s)B(s)du(s)+

+
∑

a≤s<t

U(t, a)∆+
s (U(a, s))B(s)∆+u(s)−

−
∑

a<s≤t

U(t, a)∆−
s (U(a, s))B(s)∆−u(s).

(22)
Now we replace x(t) given by (22) in the output

equation (19) and it results that the input-output map
of the GLS (18), (19) has the form (21). ut

Remark 1. By Theorem 3, x and y are regulated
vector functions. If u ∈ BV n, then x is of bounded
variation and so is y. Given the matrix A ∈ BV n×n

we consider the set of admissible controls

U(a, b) = {u ∈ Gm(a, b)|D+(A) ∩ D+(u) = ∅,
D−(A) ∩ D−(u) = ∅}.

Then the formulae (21) and (22) have a simplified
form and we obtain

Corollary 1. If u ∈ U(a, b) then the state equa-
tion and the input-output map of the system Σ respec-
tively have the form

x(t) = U(t, a)x0 +
∫ t

a
U(t, s)B(s)du(s) (23)

and

y(t) = C(t)U(t, a)x0 +
∫ t
a C(t)U(t, s)B(s)du(s)+

+D(t)u(t).
(24)

In the sequel we shall denote U(a, b) by U if there
is no confusion and sometimes we shall consider for
simplicity only admissible control u ∈ U .

Remark 2. Classical dynamical systems with the
state representation ẋ(t) = Ã(t)x(t) + B(t)u(t) are
particular cases of GLS with the absolutely continu-

ous drift matrix A(t) =
∫ t

a
Ã(s)ds and the controls

u(t) =
∫ t

a
ũ(s)ds. In this, case (18) becomes the

usual state equation ẋ(t) = Ã(t)x(t) + B(t)ũ(t) and
U(t, s) = ΦÃ(t, s) where ΦÃ(t, s) is the fundamental
matrix of the system ẋ(t) = Ã(t)x(t), and the input-
output map (24) becomes the usual one

y(t) = C(t)ΦÃ(t, a)x0+
+

∫ t
a C(t)ΦÃ(t, s)B(s)u(s)ds + D(t)u(t).

5 Controllability of Generalized Lin-
ear Systems

Let us consider the system

dx(t) = d[A(t)]x(t) + B(t)du(t) (25)

where A ∈ BV n×n, B ∈ BV n×m and
det(I −∆−A(t))(I + ∆+(A(t)) 6= 0, t ∈ R.

The couple (x0, t0) ∈ Rn is called a phase of the
system if x0 is the state of the system at time t0.

Definition 4. A phase (x, t) is G-controllable
(controllable) if there exists some s, s > t and some
control u ∈ Gm(t, s) (u ∈ U(t, x)) which transfers
(x, t) to the phase (0, s). A phase (x, t) is reach-
able if there exists some s, s < t and some control
u ∈ Gm(s, t), (u ∈ U(s, t)) which transfers the phase
(0, s) to (x, t).

From (22) and (23) we obtain:
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Proposition 2. A phase (x, t) is G-controllable
(controllable) iff (26) ((27)) holds for some s > t and
u ∈ Gm(t, s) (u ∈ U(t, s)):

x = −
∫ s

t
U(t, r)B(r)du(r)−

−
∑

t≤r<s

∆+
r (U(t, r))B(r)∆+u(r)+

+
∑

t<r≤s

∆−
r (U(t, r))B(r)∆−u(r);

(26)

respectively

x = −
∫ s

t
U(t, r)B(r)du(r). (27)

Proof. We replace in (22) ((23)) x(t) by 0, x0

by x, t by s, a by t, s by r, we premultiply the ob-
tained relation by U(t, s) and (26) ((27)) results by
using (12) and (15). ut

In a similar way we can prove

Proposition 3. A phase (x, t) is G-reachable
(reachable) iff (28) ((29)) holds for some s < t and
some control u ∈ Gm(s, t) (u ∈ U(s, t)):

x =
∫ t

s
U(t, r)B(r)du(r)+

+
∑

s≤r<t

U(t, s)∆+
r (U(s, r))B(r)∆+u(r)−

−
∑

s<r≤t

U(t, s)∆−
r (U(s, r))B(r)∆−u(r);

(28)

x =
∫ t

s
U(t, r)B(r)du(r). (29)

Now let us consider the symmetric, non-negative
matrices

C(t, s) =
∫ s

t
U(t, r)B(r)B(r)T U(t, r)T dr, t < s

(30)

A(s, t) =
∫ t

s
U(t, r)B(r)B(r)T U(t, r)T dr, s < t

(31)
called the controllability Gramian and reachability
Gramian of Σ respectively.

We denote by R(M) and N (M) the range and
the kernel of a linear operator M .

Theorem 8. It is possible to transfer the phase
(x0, t0) to (x1, t1) iff the vector U(t0, t1)x1 − x0 be-
longs to R(C(t0, t1)).

Proof. Sufficiency. By hypothesis, ∃v ∈ X = Rn

such that U(t0, t1)x1−x0 = C(t0, t1)v hence by using

(15) U(t0, t1)−1 = U(t1, t0) we get

x1 =U(t1, t0)x0 + U(t1, t0)C(t0, t1)v=U(t1, t0)x0

+
∫ t1

t0
U(t1, s)B(s)B(s)T U(t0, s)T vds;

therefore, if we consider the control u(t) =∫ t

t0
B(s)T U(t0, s)T vds we have u ∈ U(t0, t1) and by

using (23) one obtains

x(t1) = U(t1, t0)x0 +
∫ t1

t0
U(t1, s)B(s)du(s) = x1.

Necessity. Let us suppose that it is possible to
transfer the phase (x0, t0) to (x1, t1); again by (23)
this is equivalent to

0 = U(t1, t0)(U(t0, t1)x1 − x0)+
+

∫ t1
t0

U(t1, s)B(s)du(s),

for some u ∈ U(t0, t1) hence it is possible to trans-

fer (x2, t0) (where x2
def
= U(t0, t1)x1−x0) to (0, t1)

using the control u1 = −u.
Since C(t0, t1) is symmetrical, we have the fol-

lowing orthogonal direct-sum decomposition of the
state space: X = R ⊗ N where R = R(C(t0, t1))
and N = N (C(t0, t1)); then x2 = x3 + x4, where
x3 ∈ R and x4 ∈ N .

From sufficiency it results (with 0, x3 instead of
x1, x0) that (x3, t0) can be transferred to (0, t1) by a
control u3. It results by linearity that it is possible
to transfer (x4, t0) to (0, t1) using the control u4 =
u1 − u3; indeed, by (23) we have

x(t1) = U(t1, t0)x4+

+
∫ t1

t0
U(t1, s)B(s)d(u1(s)− u2(s)) =

= U(t1, t0)x2 +
∫ t1

t0
U(t1, s)B(s)du1(s)−

−
(

U(t1, t0)x3 +
∫ t1

t0
U(t1, s)B(s)du3(s)

)
= 0

hence

x4 = −
∫ t1

t0
U(t0, s)B(s)du4(s).

Since x4 ∈ N we have that 0 = xT
4 C(t0, t1)x4 =

=
∫ t1

t0
xT

4 U(t0, s)B(s)B(s)T U(t0, s)T x4ds =

=
∫ t1

t0
||B(s)T U(t0, s)T x4||2ds;
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the integrand is non-negative, hence
B(s)T U(t0, s)T x4 = 0 almost everywhere on
[t0, t1]. It implies that ||x4||2 = xT

4 x4 =

= −
∫ t1

t0
u4(s)T B(s)T U(t0, s)T x4ds = 0

(no state 0 6= x4 ∈ N is controllable), hence x4 = 0
and x2 = x3 ∈ R. ut

If we replace in Theorem 8 (x0, x1) by (0, x) and
(x, 0) respectively, we obtain:

Corollary 2. A phase (x, t) is reachable iff there
exists some moment t0 ≤ t such that

x ∈ U(t, t0)R(C(t0, t)).

A phase (x, t0) is controllable iff there exists tf ≥ t0
such that x ∈ R(C(t0, tf )).

In a similar manner we can prove

Theorem 9. A phase (x, t) is reachable iff x ∈
R(A(t0, t)) for some t0 < t.

Corollary 3. If t1(t0) is any value of t1 for which
C(t0, t1) has maximal rank, then the set Xc(t0) of
states which are controllable at time t0 is Xc(t0) =
R(C(t0, t1(t0))).

Proof. Clearly,

Xc(t0) =
⋃

t≥t0

R(C(t0, t)).

If C(t0, t1(t0)) has the maximal rank then
R(C(t0, t)) = R(C(t0, t1(t0))) for any t ≥ t0,
hence Xc(t0) = R(C(t0, t1(t0))). ut Let t0, t, tf ∈ R

be some fixed moments t0 < t < tf .

Definition 5. The system Σ is said to be com-
pletely controllable on [t, tf ] (completely reachable
on [t0, t]) if every phase (x, t) is controllable (reach-
able) during the period [t, tf ] ([t0, t]).

Theorem 10. Σ is completely controllable
(reachable) on [a, b] iff rank C(a, b) = n (i.e. the ma-
trix C(a, b) is positive definite).

Proof. The above condition is equivalent to X =
R(C(a, b)), hence any phase (x, t0) ∈ R × X where
X = Rn is controllable (on (a, b)), i.e. Σ is com-
pletely controllable on [a, b]. Since U(b, a) is nonsin-
gular, it results that U(b, a)R(C(a, b)) = U(b, a)X =
X; therefore any state x gives a reachable phase (x, b)
and Σ is completely reachable on [a, b]. ut

Now let us consider the general case, when the
maximal rank is rank C(a, t1(a)) = r < n. We con-
sider the orthogonal direct-sum decomposition of X
defined by X = X1(t)⊕X2(t), where

X1(t) = U(t, a)R(C(a, t1(a)))

and
X2(t) = UT (a, t)N (C(a, t1(a)))

(using the notation (MV = {Mv|v ∈ V} for
any matrix M and for any linear space V). Let
us denote C = C(a, t1(a)). Since U(t, a) is non-
singular for any t, t0, it results that dimX1(t) =
dimR(C(a, t1(a))) = rankC(a, t1(a)) =
r, dimX2(t) = dimN (C(a, t1(a))) =
rankC(a, t1(a)) = n− r,

hence

dimX1(t) + dimX2(t) = n = dimX.

Let x1, x2 be such that x1 ∈ X1(t), x2 ∈
X2(t), that is x1 ∈ U(t, a)Cx̄, x2 ∈ UT (a, t)x̂ for
some x̄ and x̂ with x̄ ∈ X and Cx̂ = 0. Then
xT

1 x2 = x̄TCT UT (t, a)UT (a, t)x̂ = x̄TCx̂ = 0,
(i.e. x1 ⊥ x2), hence X1(t) ⊥ X2(t) and X =
X1(t) ⊕ X2(t). Therefore, any x(t) ∈ X can
be uniquely written as x(t) = x1(t) + x2(t) with

x1(t) ∈ X1(t), x2(t) ∈ X2(t), or x =

[
x̃1(t)

x̃2(t)

]

and X1(t) =

{[
x̃1(t)

0

]∣∣∣∣∣ x̃1 ∈ Rr

}
, X2(t) =

{[
0

x̃2(t)

]∣∣∣∣∣ x̃2 ∈ Rn−r

}
in a basis B = B1 ∪ B2,

where B1,B2 are two bases in X1(t), X2(t) respec-
tively.

Theorem 11. In terms of the above direct-sum
decomposition, the fundamental equation of the linear
system Σ have the form

dx1(t) = d[Ã11(t)]x1(t) +d[Ã12(t)]x2(t)+
+B̃1(t)du(t),

dx2(t) = d[A22(t)]x2(t)
(32)

Proof. If x1(t) ∈ X1(t), then x1(t) ∈ U(t, t0)Cx̄
for some x̄∈X; then, by Theorem 6 and (10) we get

d[A(t)]x1(t) = d[A(t)]U(t, a)Cx̄ = d[U(t, a)Cx̄] =
= d[x1(t)].

In a basis corresponding to the above direct-sum de-
composition it results (for the block representation
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of A as Ã =


 Ã11 Ã12

Ã21 Ã22


) that for any x(t) =

[
x̃1(t)

0

]
∈ X1(t),

d[Ã(t)]x(t) = d





 Ã11 Ã12

Ã21 Ã22







[
x̃1(t)

0

]
=

=


 d[Ã11]dx̃1(t)

d[Ã21]dx̃1(t)


 =

[
dx̃1(t)

0

]
,

∀x̃1(t) ∈ X1(t), hence Ã21 = 0.

If x2 ∈ X2(t), there exists x̂ ∈ N (C) such that
x2 = UT (a, t)x̂. It was proved in Theorem 8 (with
x4 instead of x̂) that BT (t)UT (a, t)x̂ = 0 a.e., hence
BT (t)x2 = 0 for any x2 ∈ X2(t). It results that any
column of B(t) belongs to X1(t), hence the matrix
B(t) in the above direct-sum decomposition has the

form B̃(t) =


 B̃1(t)

0


. ut

By Corollary 2, X1(t) is the linear space of reach-
able states of X .

6 Minimum energy transfer

We can prove some results which are similar to those
given in Section 5 by replacing the controllability
Gramian C(a, b) by the reachability Gramian A(a, b),
for instance:

Theorem 12. The system (25) is completely
reachable on [a, b] iff the matrix A(a, b) is positive
definite.

Proof. Sufficiency. if A = A(a, b) > 0 then its
inverse A−1 exists and the control

ũ(t) =
∫ t

a
B(t)T U(b, t)TA−1(x1 − U(b, a)x0)dt

(33)
transfers the phase (x0, a) to (x1, b) for any x0, x1 ∈
X; indeed, by (23) and (3) the state provided by the
control ũ is

x(b) = U(b, a)x0+
+

∫ b
a U(b, t)B(t)B(t)T U(b, t)T dtA−1(x1−

−U(b, a)x0) = U(b, a)x0 +AA−1(x1−
−U(b, a)x0) = x1.

By taking x0 = 0 one obtains that any state
x1 ∈ X is reachable on [a, b], hence Σ is completely
reachable on [a, b].

Necessity: Let us suppose that A is not positive
definite, hence there exists a vector x ∈ Rn, x 6= 0,
such that xTAx = 0; since U(b, s)B(s) ∈ BV n×m,
from

∫ b

a
xT U(b, s)B(s)B(s)T U(b, s)T xds = 0

it results that

xT U(b, s)B(s) = 0 a.e. in [a, b]. (34)

If the phase (0, a) can be transfered to (x, b), then

(23) gives x =
∫ b

a
U(b, s)B(s)du(s). From this

equality we obtain by use of (34) that 0 < xT x =∫ b

a
xT U(b, s)B(s)du(s) = 0, contradiction. ut

Definition 6. For any u ∈ U(a, b) the number

Eu =
∫ b

a
u(t)T du(t) is said to be the energy associ-

ated to the control u.

Theorem 13. If the system Σ is completely
reachable on [a, b], then the control ũ given by (33)
transfers the phase (x0, t0) to (x1, t1) with mini-

mum expenditure of energy, i.e.
∫ b

a
ũ(t)T dũ(t) ≤

∫ b

a
u(t)T du(t) for all u ∈ U(a, b) which transfers x0

to x1 (ũ is the ”minimum energy” control).
Proof. From the proof of Theorem 12 it results

that the control ũ (33) transfers the state x0 to the state
x1 in the interval [a, b]. If u is another control which
transfers x0 to x1 in the interval [a, b] and u = ũ + u1

for some u1 ∈ U , then

x1 = U(b, a)x0 +
∫ b

a
U(b, t)B(t)dũ(t)

and

x1 = U(b, a)x0 +
∫ b

a
U(b, t)B(t)du(t) =

= U(b, a)x0 +
∫ b

a
U(b, t)B(t)dũ(t)+

+
∫ b

a
U(b, t)B(t)du1(t),

hence ∫ b

a
U(b, t)B(t)du1(t) = 0;

it follows that
∫ b

a
ũ(t)T du1(t) =

∫ b

a
(xT

1 −
xT

0 U(b, a)T )A−1U(b, t)B(t)du1(t) = 0. Conse-
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quently

Eu =
∫ b

a
u(t)T du(t)=

∫ b

a
(ũ(t)T + u1(t)T )d(ũ(t)+

+ũ1(t)) =
∫ b

a
ũ(t)T dũ(t) +

∫ b

a
u1(t)T du1(t)+

+2
∫ b

a
ũ(t)T du1(t) =

∫ b

a
ũ(t)T dũ(t)+

+
∫ b

a
u1(t)T du1(t) ≥

∫ b

a
ũ(t)T dũ(t) = Eũ

.

ut

7 Observability

Let us consider the GLS Σ with the state space repre-
sentation (18), (19).

Definition 7. The system Σ is completely ob-
servable over the time interval [a, b] if for any pair
of distinct initial states x01, x02 ∈ Rn and for any in-
put u ∈ U [a, b], the outputs y1 and y2 corresponding
to x01 and x02 are distinct, that is y1(t) 6= y2(t) for
t ∈ [a, b].

Definition 8. The matrix

O = O(a, b) =
∫ b

a
U(t, a)T C(t)T C(t)U(t, a)dt

(35)
is called the observability Gramian of the system Σ.

Obviously O(a, b) is an n × n symmetric non-
negative matrix.

Theorem 14. The system Σ is completely observ-
able over [a, b] iff the observability Gramian O(a, b)
is positive definite.

Proof. By the input-output map (21) we get the
following outputs, for i = 1, 2:

yi(t)=C(t)U(t, a)x0i+

+
∫ t

a
C(t)U(t, s)B(s)du(s)+

+
∑

a≤s<t

C(t)U(t, a)∆+
s (U(a, s))B(s)∆+u(s)−

−
∑

a<s≤t

C(t)U(t, a)∆−
s (U(a, s))B(s)∆−u(s)+

+D(t)u(t).

If Σ is completely observable, then for x01 6= x02

since y1 6= y2 we have

0 <

∫ b

a
‖y1(t)− y2(t)‖2dt =

=
∫ b

a
(yT

1 (t)− yT
2 (t))(y1(t)− y2(t))dt =

= (xT
01 − xT

02)×
×

(∫ b

a
U(t, a)T C(t)T C(t)U(t, a)dt

)
(x01 − x02),

hence xTOx > 0 for any x ∈ Rn, x 6= 0.
Conversely, if O > 0 and the system Σ is not

completely observable, then there exist x01 6= x02

such that y1(t) ≡ y2(t), hence C(t)U(t, a)(x01 −
x02) = 0 for any t ∈ [a, b]. It follows that

(x01 − x02)T

(∫ b

a
U(t, a)T C(t)T C(t)U(t, a)dt

)
×

×(x01 − x02) = 0;

this contradicts the hypothesis that O > 0. ut

From Theorem 14 we get

Corollary 4. The following statements are equiv-
alent:

i) The system Σ is completely observable over
[a, b].

ii) rankO(a, b) = n.
iii) O(a, b) > 0.

The concept of observability is connected to the
problem of recovering the initial state of the system
from the corresponding exterior data, i.e. the control
u and the output y. The following result clarifies this
property.

Theorem 15. Assume that the system Σ is com-
pletely observable over [a, b]. If the control u pro-
duces the output y, then the initial state of the system
is

x0 = O(a, b)−1
∫ b

a
U(t, a)T C(t)T ỹ(t)dt (36)

where

ỹ(t) = y(t)−
∫ t

a
C(t)U(t, s)B(s)du(s)−

−
∑

a≤s<t

C(t)U(t, a)∆+
s (U(a, s))B(s)∆+u(s)+

+
∑

a<s≤t

C(t)U(t, a)∆−
s (U(a, s))B(s)∆−u(s)−

−D(t)u(t).
(37)
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Proof. It results from (21) and (37) that

ỹ(t) = C(t)U(t, a)x0. (38)

We premultiply (38) by U(t, a)T C(t)T and
we consider the Perron-Stieltjes integral
on [a, b]. By (35) and (38) one obtains
O(a, b)x0 =

∫ b
a U(t, a)T C(t)T C(t)U(t, a)x0dt =∫ b

a
U(t, a)T C(t)T ỹ(t)dt. Since Σ is completely ob-

servable rank O(a, b) = n, hence the matrix O(a, b)
is nonsingular and (36) results by the multiplication
of the above equality by O(a, b)−1. ut

Obviously, the initial state x0 determined by (36)
and the control u give the whole trajectory x(t) of the
system (see (22)).

Definition 9. The system Σd =
(Ad, Bd, Cd, Dd) is said to be the dual of the
GLS Σ = (A,B,C, D) if

Ad = −AT , Bd = CT , Cd = BT , Dd = DT .
(39)

Theorem 16. The system Σ = (A,B,C, D) is
completely observable if and only if its dual Σd is
completely controllable.

Proof. In [9, §III 4] it is shown that if (20) holds
then V (s, t) = U(s, t)T is the fundamental matrix of
the equation dx = d[−At]x. It results that the control-
lability Gramian of Σd on [a, b] denoted by CΣd(a, b)
equals the observability Gramian of Σ since by (39)
we have

CΣd(a, b) =
∫ b

a
V (a, r)Bd(r)Bd(t)T V (a, r)T dr =

=
∫ b

a
U(r, a)T C(r)T C(r)U(r, a)dr = OΣ(a, b).

Therefore rank CΣd(a, b) = rank OΣ(a, b) and the
proof is complete by Corollary 4 and by Theorem 10.

ut
Definition 10. A state x0 is unobservable over the

time interval [a, b] if the initial states x0 and 0 provide
the same output y for any admissible input u.

Proposition 4. The state x0 is unobservable over
[a, b] if and only if

C(t)U(t, a)x0 = 0, ∀t ∈ [a, b]. (40)

Proof. Equality (21) gives the output yx0(t) pro-

duced by x0,

yx0(t) = C(t)U(t, a)x0+

+
∫ t

a
C(t)U(t, s)B(s)du(s)+

∑

a≤s<t

C(t)U(t, a)∆+
s (U(a, s))B(s)∆+u(s)−

∑

a<s≤t

C(t)U(t, a)∆−
s (U(a, s))B(s)∆−u(s)+

+D(t)u(t)
(41)

and by replacing x0 by 0 we get the output y0(t)

y0(t) =
∫ t

a
C(t)U(t, s)B(s)du(s)+

∑

a≤s<t

C(t)U(t, a)∆+
s (U(a, s))B(s)∆+u(s)−

∑

a<s≤t

C(t)U(t, a)∆−
s (U(a, s))B(s)∆−u(s)+

+D(t)u(t).
(42)

Then x0 is unobservable over [a, b] iff yx0(t) =
y0(t), hence by (41) and (42) iff C(t)U(t, a)x0 = 0,
∀t ∈ [a, b]. ut

By paraphrase, we get:

Corollary 5. The set of all the states of Σ which
are unobservable over [a, b] is the subspace

Xuo =
⋂

t∈[,b]

Ker (C(t)U(t, a)).

Since a system is completely observable over
[a, b] iff Xuo = {0} we get

Corollary 6. The system Σ is completely observ-
able over [a, b] if and only if

⋂

t∈[a,b]

Ker (C(t)U(t, a)) = {0}.

Corollary 7. Xuo = KerO(a, b).
Proof. If C(t)U(t, a)x = 0, ∀t ∈ [a, b], then

O(a, b)x =
∫ b
a U(t, a)T C(t)T C(t)U(t, a)xdt = 0.

Conversely, if O(a, b)x = 0 then xTO(a, b)x = 0,
hence

0 =
∫ b

a
xT U(t, a)T C(t)T C(t)U(t, a)xdt =

=
∫ b

a
||C(t)U(t, a)x||2dt.
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Then C(t)U(t, a)x = 0 a.e. on [a, b].
ut

Canonical forms from the point of view of the
concept of observability, similar to (32) as well as the
reachability and observability together can be derived.

Let us consider the subspaces of the controllable
states Xc = R(C(a, b)) and of the unobservable state
Xuo. By taking the direct sum decomposition of the
state space X = Rn = X1 ⊕X2 ⊕X3 ⊕X4, where
X1 = Xc ∩Xuo, Xc = X1 ⊕X2, Xuo = X1 ⊕X3,
one can obtain Kalman’s canonical form.

Theorem 17. Any GLS Σ = (A,B, C, D) is iso-
morphic to a GLS Σ̃ = (Ã, B̃, C̃, D̃), where

Ã =




A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44




,

B̃ =




B1

B2

0
0


 , C̃ = [0 C2 0 C4].

The subsystem Σ2 = (A22, B2, C2, ·) is com-
pletely controllable and completely observable.

Conclusion. The state space representation stud-
ied in this paper have the coefficient matrices of
bounded variation and the controls are vectors over
spaces of regulated functions. This approach seems
to be the most general framework in which the linear
control systems can be studied.

Basic concepts as controlability, observability
and minimum energy control are analysed in this
framework and necessary and sufficient conditions of
complete controllability or complete observability are
provided. An optimal control is obtained which solves
the problem of the minimum energy transfer for com-
pletely controllable systems. In the case of completely
observable systems a formula is obtained which re-
covers the initial state from the exterior data. The du-
ality between the concepts of controllability and ob-
servability is emphasized.

This study can be continued in many directions
such as stability, positivity, 2D generalized systems,
linear quadratic optimal control etc.
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Value Systems in the Space of Regulated Func-
tions, Qualitative Problems for Differential and
Control Theory (C. Corduneanu ed.), World Sci-
entific Publishing Co., 1995, pp. 185-196.
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[13] C. Udrişte, I. Ţevy, Multi-Time Euler-Lagrange-
Hamilton Theory, WSEAS Transactions on
Mathematics, Vol.6, No. 6, 2007, pp. 701-709.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL VALERIU PREPELITA

ISSN: 1991-8763 710 Issue 9, Volume 3, September 2008
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