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Abstract: - A comparative study concerning the robustness of a novel, Fixed Point Transformations/Singular 

Value Decomposition (FPT/SVD)-based adaptive controller and the Slotine-Li (S&L) approach is given by 
numerical simulations using a three degree of freedom paradigm of typical Classical Mechanical systems, the 
cart + double pendulum. The effects of the imprecision of the available dynamical model, presence of dynamic 
friction at the axles of the drives, and the existence of external disturbance forces unknown and not modeled by 
the controller are considered. While the Slotine-Li approach tries to identify the parameters of the formally 
precise, available analytical model of the controlled system with the implicit assumption that the generalized 
forces are precisely known, the novel one makes do with a very rough, affine form and a formally more precise 
approximate model of that system, and uses temporal observations of its desired vs. realized responses. 
Furthermore, it does not assume the lack of unknown perturbations caused either by internal friction and/or 
external disturbances. Its another advantage is that it needs the execution of the SVD as a relatively time-
consuming operation on a grid of a rough system-model only one time, before the commencement of the 
control cycle within which it works only with simple computations. The simulation examples exemplify the 
superiority of the FPT/SVD-based control that otherwise has the deficiency that it can get out of the region of 
its convergence. Therefore its design and use needs preliminary simulation investigations. However, the 
simulations also exemplify that its convergence can be guaranteed for various practical purposes. 
 

Key-Words: - Fixed Point Transformation, Singular Value Decomposition, Slotine-Li Robot Control, Adaptive 
Control, Robustness Analysis, Complete Stability, Lyapunov Function, Sliding Mode/Variable Structure 
Controllers 
 
1 Introduction 
The adaptive robot control developed by Slotine and 
Li is a classical adaptive solution in robot control 
literature [1]. It utilizes very subtle details of the 
structurally and formally exact analytical model of 
the robot in each step of the control cycle in which 
only the exact values of the parameters are unknown 

or known only with very rough approximation. The 
application of this very sophisticated approach 
requires the precise calculation a lot of complicated 
analytical expressions within each control step that 
may require quite considerable computational time. 
Furthermore, this method has the drawback that it is 
apt to apply false compensation for the unknown 

perturbations that may originate either from internal 
friction between the relatively moving components 
of the robot or/and by external disturbances both 
unmodeled by the controller. 

Due to the complications related to the Slotine-Li 
controller in robotics, and in other fields of 
nonlinear control, alternative approaches are sought 
even in these days. A popular model-based approach 
is the use of Model Predictive Controllers (MPCs) 
(e.g. [2]) applied within the frames of the Receding 

Horizon Control (RHC). Typical field of application 
is chemistry in the control of relatively slow 
processes in which satisfactory time is available for 
the computations (e.g. [3]). However, via restricting 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
  

 
J.K. TAR,I.J. RUDAS,Gy. HERMANN, 
J.F. BITÓ,J.A. TENREIRO MACHADO

 
ISSN: 1991-8763

686 Issue 9, Volume 3, September 2008



ourselves to the use of very special goal functions, 
model linearization along special phase trajectories 
at the present technological level MPC/RHC 
became applicable even in the control of Classical 

Mechanical Systems that normally require speedy 
control actions. It can be a proper approximation for 
modeling special human gaits as running or walking 
for which Linear Time Invariant (LTI) or Linear 

Time Varying (LTV) models can be derived that can 
be handled by some improved MATLAB functions 
based on static memory variables in order to evade 
the unpredictable time consumption of the 
“originally used”, Dynamically Linked Libraries 

(DLL). Such a system can be used for the control of 
powered lower limb prosthetic [4]. However, from 
the special restrictions functional relationships are 
established between the behavior (stability) of the 
solution and the horizon-length [5] that not always 
is advantageous. In general MPC/RHC may lead to 
hard computations needing exact solution to quite 
complex nonlinear tasks as the solution of non-
convex optimization problems, in limited time. A 
suboptimal min-max MPC scheme was recently 
proposed for nonlinear discrete-time systems 
subjected to constraints and disturbances in general 
without considering a particular physical system in 
[6]. A possible alternative approach is the use of 
Fuzzy Logic (FL) in the control. For scalar input and 
output systems adaptive fuzzy logic was used to 
approximate the unknown dynamics in [7]. It was 
exploited that the linear structure of a Takagi-
Sugeno fuzzy system with constant conclusion was 
applicable for the design of an indirect adaptive 
fuzzy controller. The problem class here considered 
also had strong restrictions and showed similarities 
with structures for which global linearization could 
be applied. In [8] the global linearization approach 
was extensively used by applying the Lie-
derivatives in the Adaptive Model Reference Fuzzy 

Controllers (AMRFC), too. In [9] stable direct and 
indirect decentralized adaptive fuzzy controllers 
were proposed for a class of large-scale nonlinear 
systems having strong internal coupling. The 
systems considered are of different order, and seem 
to have a structure for which global linearization is 
applicable. Normally, Classical Mechanical systems 
behave accordingly, but other systems as e.g. wings 
coupled by flowing air in a wind channel [10] may 
satisfy similar restrictions. In general it can be stated 
that the above mentioned problem tackling methods 
need complicated proofs and are not very lucid for 
practical applications. This fact motivated a search 

for even simpler and more lucid, geometrically 
interpretable approaches.  

The novel adaptive nonlinear control approaches 
recently developed at Budapest Tech for “Multiple 

Input-Multiple Output (MIMO) Systems” (e.g. [11, 
12]) were based on simple geometric considerations 
taking into account the positive definite nature of the 

inertia matrix of the robots in the construction of 
convergent iterations obtained from Fixed Point 

Transformations (FPT). For instance centralized and 
decentralized adaptive control of approximately and 
partly modeled coupled cart plus double pendulum 
systems in [13], and adaptive control of a 
polymerization process were considered on similar 
basis [14]. In a newer version of this approach the 
method of the Singular Value Decomposition 

(SVD)” (e.g. [15, 16]) was applied for dropping the 
requirement of positive definiteness of the 
controlled system [17]. This extension of the control 
possibilities is important in robotics in which “non 
positive definite behavior” can occur when certain 
axles [Degrees Of Freedom (DOF)] are driven by 
the drives of another ones via the dynamic coupling 
between them [18].  

The main difference between the Slotine-Li and 
the FPT/SVD-based approaches is that while the 
proof of the asymptotic stability and convergence to 
an exact trajectory tracking of the Slotine- Li control 
is based on “Lyapunov's 2nd Method” [19, 20], in the 
new approach the control task is formulated as a 
“Fixed Point Problem” for the solution of which a 
Contractive Mapping is created that generates an 
Iterative Cauchy Sequence. Consequently it 
converges to the fixed point that is the solution of 
the control task. Besides its using very subtle 
analytical details, the main drawback of the Slotine-
Li approach is that it assumes that the generalized 
forces acting on the controlled system are exactly 
known and are equal to that exerted by its drives. So 
unknown external perturbations can disturb the 
operation of this sophisticated method. In contrast to 
that, in the novel method the computationally 
relatively costly SVD operation on the formally 
almost exact model need not to be done within each 
control cycle. Depending on the variation of the 
inertia data of the system along/in the neighborhood 
of the nominal trajectory it has to be done either 
only one times in a more or less arbitrarily chosen 
point of the configurational space, or in a few “grid 
points” representing typical segments of this space, 
before the control action is initiated. Within the 
control cycle the inertia matrix is modeled only by a 
simple scalar. For obtaining the other parameters of 
the control the resulting matrices of the SVD in the 
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case of using a single point, or simply their 
weighted linear combination in the case of using a 
grid, can be utilized. In the present paper this latter 
solution was chosen that practically corresponds to 
the approximation via Radial Basis Function 

Networks (RBFN) (more details about RBFN can be 
found in [21, 22]). As a geometric interpretation of 
the use of RBFNs in a 3D real space approximation 
of a 2D surface defined over a 2D plane by spanning 
a deformable tent-cloth over various masts of 
different heights and locations can be imagined. 
Though from mathematical point of view this 
approximation is “smooth” (i.e. it is everywhere 
differentiable), it approximates the surface only in a 
“wavy” manner that is quite satisfactory in the case 
of many practical situations in which neither very 
precise approximation is needed and nor the 
derivatives of the approximated functions are used. 
From this special point of view our approach 
completely corresponds to this latter case. 

To illustrate the usability of the proposed method 
adaptive control of a Classical Mechanical 
paradigm, a cart plus double pendulum system is 
considered and discussed by the use of simulation 
results. It is assumed that the axles of this system 
suffer from friction unknown by the controllers. For 
modeling friction phenomena a dynamic approach 
(e.g. [24, 25]) is used in the simulations.  

The paper is structured as follows: at first the 
comparison of the basic principles of the adaptive 
methods considered are given in general. Following 
that the dynamic model of the cart + double 
pendulum system is discussed. Then simulation 
results, and finally the conclusions are presented. 
 

 

2 Comparison of the Adaptive 

Approaches Investigated 
In this section the fundamental characteristics of the 
Slotine--Li adaptive control and that of the novel 
approach are compared to each other. The adaptive 
version of the Slotine-Li control [1] strongly utilizes 
that the Lagrangian of a robot of open kinematic 
chain has the form as follows: 

( ) ( )qq VqqHL
ji

jiij −= ∑
,2

1
&&  (1) 

where q∈ℜn denotes the generalized coordinates, 
Hij=Hji is the symmetric inertia matrix, and V(q) is 
the potential energy of the robot. Via analyzing the 
symmetries in the terms obtained in the Euler-
Lagrange equations by substituting the above 
expression into the appropriate operations they 
arrived at the conclusion that the equations of 
motion have the general form as 

( ) ( ) ( ) QqgqqqCqqH =++ &&&& ,  (2) 
in which the ingenious idea is also incorporated that 
though the originally obtained expressions are quite 
symmetric in the positions of the components that 
are quadratic in iq& , they can be treated in an 
“asymmetric” manner by including them partly in 
the matrix ( )qqC &, , too. This decomposition is 

unambiguous since C must be linear in the iq&  

components. The term ( )qg  originates from the 
gravitation. The second great idea in this approach 
is that the available, formally exact but numerically 
inexact model marked by the caret (^) symbol can 
be used for asymmetrically calculating a feedback 
force that contains PD-type terms plus an additional 
one that is similar to the “Error Metrics” ΛeeS += &  
(the tracking error is q-qN, q and q

N denote the 
actual and the nominal coordinates in the given time 
instant, respectively) normally used in the robust 
“Variable Structure / Sliding Mode (VS/SM)” 
controllers (e.g. [26]). In the case of higher order  
systems S can be defined with constant ΛΛΛΛ as 

( ) eΛS
1: −+= m

dtd  where the positive integer m is 
the order of the system. On the basis of the available 
rough model normally strong torque/force 
overestimation is applied to drive S to the vicinity of 
0 during finite time by approximating some simple 
differential equation prescribed for dS/dt necessarily 
containing d

m
e/dt

m that normally can physically be 
manipulated in the case of an mth order system. The 
precise realization of this differential equation has 
no practical significance: as soon as S approximates 
0, due to its definition its various, decreasing order 
derivatives have to converge to zero, too, so finally 
e itself must converge to 0 with characteristic 
exponents determined by ΛΛΛΛ. (The torque/force 
overestimations normally cause some chattering.) 
Essentially the same philosophy is applied when 
using Lyapunov functions in control technology. 
Normally it is satisfactory to guarantee only that the 
time-derivative of the Lyapunov function is zero or 
negative. It is not necessary to precisely prescribe 
this derivative, therefore some approximate 
model/information on the controlled system can 
suitably work. Therefore Lyapunov’s 2nd method is 
extensively used in robust control (e.g. [27]). On 
this reason the robust VS/SM controllers are used in 
solving various problems in control and 
optimization fields [28]. In the Slotine-Li control S 
is used in the following manner  

( ) [ ]
( ) [ ]ΛeeKpvvqqY

ΛeeKgvCvqHQ

+−≡

≡+−++=

&&&

&&

D

D

ˆ,,,

ˆˆˆ
 (3) 
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that corresponds to a 2nd order system. In (3) the 

term Λeqv −= N
&  is used for tracking correction, 

KD is a positive definite symmetric matrix. The 
array Y is precisely known if the precise kinematical 
data and model of the robot are available, the vector 

of the estimated dynamic parameters is denoted by 
p̂ . Since it is assumed that the so calculated Q is the 
only contribution to the generalized forces and no 
additional external perturbations are present, it also 
is related to the actual state propagation of the 
system as given in (2) that is a kind of “weak point” 
of this sophisticated approach leading to the 
equation 

( )pvvqqYgvCvHSKCSSH ~,,,~~~
&&&& =++=++ D  (4) 

in which Y is well known from the formally exact 
system model, and p~  denotes the error in the 
parameter vector. The third excellent trick applied in 
the Slotine-Li approach is that instead of 
introducing a more or less “arbitrary” positive 
definite matrix for constructing the Lyapunov 
function, the exact symmetric positive definite 
matrix H is used for constructing it. It is very 

important to realize that the unknown H itself is not 

used in the calculation the control signal. Only the 

fact of its existence and known properties are used 

in the Lyapunov function pGpHSS ~~
2

1

2

1
: TT

U +=  

with some symmetric positive definite matrix G. 

This immediately yields the derivative 

pGpSHSHS &&&& ~~
2

1
: TT

U +






 += . From (4) it is 

obtained that SKCSpYSH D−−= ~&  that can be 

substituted into the expression of U&  as 

pGppYSKCSSHS &&& ~~~
2
1 T

D
T

U +






 +−−= . The 

fourth great idea is the realization of the fact that the 

matrix 






 − CH&
2
1

 is skew symmetric therefore 

yields zero contribution in U& . So the requirement of 
0<U& can be met by the parameter updating rule 

0pGppYS =+ &~~~ TT  since KD is negative definite. 
This condition yields the parameter updating rule in 

the Slotine-Li approach ( ) 0~~ =+ pGSYp &TT , that is 

SYGp T1ˆ −−=&  since the precise inertia data of the 
system are constant. So, besides the initial 
estimations of the inertia values this approach has a 
lot of parameters concerning the quality of the 
control: the elements of KD, ΛΛΛΛ, and G. While ΛΛΛΛ, and 
G directly concerns the speed of the parameter 

tuning process, KD and ΛΛΛΛ determines feedback term 
in (3), therefore the strength of the actual error 
compensation. This coupling in the effect of the 
control parameters is quite complicated due to the 
nonlinear functions in the matrix elements of Y, and 
makes the method’s behaviour “deceptive”: for 
large eigenvalues of KD strong temporal feedback 
can well work without considerable tuning speed 
that may not result in problems in the lack of 
external perturbations. The greater the eigenvalues 
of G-1 are, the faster the learning process becomes. 
When improper perturbations “fob” the tuning 
procedure, through a too large KD this may result in 
the corruption of the tracking quality. It is worth 
noting, too, that for tuning the parameters the 
necessary information is present in the error metrics 
S. In various sections of the trajectory of the robot 
various information contents may be available for 
this tuning that generally is not a monotone process. 
That will be exemplified by the simulation results 
presented in this paper, too.  

The control based on the SVD of an approximate 
system model considers the control task as a “known 

excitation – observable response” scheme as 
follows. Let the ”excitation” of the controlled 
system be Q to which it is expected to respond by 
some prescribed or “desired response” r

d. The 
appropriate excitation can be computed by the use 
of some approximate and incomplete inverse 
dynamic model as Q=F(rd). The actual response 
determined by the system’s dynamics, Z, results in a 
realized response r

r that normally differs from the 
desired one: rr=Z(F(rd))≡f(rd)≠r

d. It is worth noting 
that the functions F() and Z() may contain various 
hidden parameters that partly correspond to the 
dynamic model of the system, and partly pertain to 
unknown external dynamic forces acting on it. Due 
to phenomenological reasons the controller can 
manipulate or “deform” the input value from r

d so 
that r

r=r
d=f(rd

*). Now it will be shown that in 
combination with the geometric interpretation of the 
SVD this idea can be used in the adaptive control of 
MIMO systems. 

Consider the following task: it is given an initial 
x0 value, a smooth f:ℜn→ℜn function, an x

d 
“desired” value, and the appropriate solution x* is 
sought for which xd=f(x*). We should like to achieve 
a first order correction in the value of f(x) that 
moves f in the direction of xd, that is a small positive 
number α>0 can be introduced for which 

( )( )xfxx
x

f
f −=∆

∂

∂
=∆ dα  (5) 
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If the Jacobian of f can be inverted then the 
following iterative sequence of points can be 
generated by (5) 

( )( )n
d

nn xfx
x

f
xx −









∂

∂
+=

−

+

1

1 α  (6) 

To estimate the approximation error belonging to 
xn+1 the first order Taylor series expansion of f can 
be used as 

( )

( )( )

( ) ( )[ ]
( ) ( )[ ]n

d

n
d

n
d

n
d

n
d

n
d

xfx

xfx
x

f

x

f
xfx

xfx
x

f
xfx

xfx

−−≈

≈−








∂
∂










∂
∂

−−≈

≈











−









∂
∂

+−≈

≈−

−

−

+

α

α

α

1

1

1

1

 (7) 

This error in absolute value evidently can be 
decreased if approximately 0<α<2. Normally (7) 
cannot exactly be realized since ∂f/∂x is not 
precisely known. To have better idea on the 
possibilities of reducing the approximation error 
imagine the application of the SVD for it as 
∂f/∂x=UDV

T, [∂f/∂x]
-1

=VD
-1

U
T that, in the above 

outlined iteration, leads to the step ∆x=VD
-1

U
T[xd-

f(x)]. (The U and V matrices are orthogonal, while 
D is diagonal.) This equation has the form of b= 
VD

-1
U

T
a in the calculation of which the 

associativity of the matrix product can be utilized in 
the following manner: at first calculate (VD

-1) and 
(UT

a), and finally calculate the product of these two 
terms. Evidently  

[ ]

[ ]

( ) ( ) )(1)()1(1
11

)1(

)(

)1(

)(1)1(1
11

)(

)1(

1

1
11

)()1(

1

,,

0

0

00

k
kk

TkT

Tm

T

k
kk

Tm

T

nm

n

T

DD

DD

D

D

vauvau

au

au

vv

a

u

u

vv

aUVDb

−−

−−

−

−

−

++=

=
















=
































==

L

KL

K

L

KLL

 (8) 

in which k=min(n,m), and in the central line in the 
place of the three dots following Dkk

-1 in [...|Dkk
-1 |...] 

either nothing stands or zeros are located. [The 
parentheses of the form (a,b) denote real scalar 
products of vectors.] The geometric interpretation of 
this expression is straightforward: characteristic 
pairs of mutually orthogonal directions are found in 
the input and the output spaces to which 
characteristic stretch/shrink operations determined 
by the singular values Dii≥0 belong. To zero 

singular values special directions pertain that do not 
take part in the mapping realized by the linear 
operator under consideration. Via applying the form 
of (8) in the expression of the actual error used for 
calculating the next step with the components of the 
orthogonal matrix U in the ideal case it is obtained 
that 

( ) ( )( )

∑

∑
−≈∆

−==−

l

l
lll

dl
l

l

l
l

d

cD

cc

)(1

)()( ,,

vx

xfxuuxfx

α
 (9) 

For guaranteeing convergence small ∆x is needed. 
Since the SVD for an invertible quadratic matrix 
yields D11≥D22≥…≥Dnn it can be said that 0<D

-1
11≤ 

…≤D
-1

nn so ||∆x||≤√nαmaxl=1,..,n{|cl|}D
-1

nn. By the 
introduction of the quantity K expressing the 
maximum allowable step length in the x space the 
proper value of α can be estimated as 

( )l
n
lnn cnKD 1max =≈α . A simple geometric way 

of thinking can be utilized here as follows: it is not 
necessary to exactly move in the x space as it is 
defined in (7): it is just enough to make a small step 
“approximately in the same direction”. Therefore, if 
we have some approximate model of the Jacobian of 
f of our system, only one times executing the SVD 
on this approximation may be satisfactory to 
approximate the U, D, and V matrices that can be 
used for estimating the factor α, and the system can 
be directed to the direction of the decreasing error 
even if not exactly the direction of the “steepest 

descent” according to (7) is achieved.  
In the sequel this idea will be applied in the 

adaptive control of the cart plus double pendulum 
system considered as a paradigm. It is assumed that 
the axles of this system suffer from dynamic 
friction.  
 
 

3 The Dynamic Model of the Cart 

Plus Double Pendulum System 
 
The cart + double pendulum system is a typical 
example for mechanical systems having badly 
conditioned inertia matrix in the vicinity of certain 
critical points of the configurational space [30]. Its 
rough sketch is given in Fig. 1.  
It consists of a cart serving as a body rolling on 
wheels of negligible momentum and inertia having 
the overall mass M, pendulums assembled on the 
cart by parallel shafts and arms having negligible 
masses and lengths L1 and L2, respectively. At the 
end of each arm a ball of negligible size and 
considerable masse m1 and m2 are attached.  
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The Euler-Lagrange equations of motion of this 
system are as follows:  

[ ]

( )

















−−

−−

−−

+

+

































++−−

−

−

=

=

2
2222

2
1111

22232222

11131111

3

2

1

21222111

222
2
22

111
2
11

331

coscos

coscos

coscos

sinsin

sin0

sin0

qqLmqqLm

qgLmqqqLm

qgLmqqqLm

q

q

q

mmMqLmqLm

qLmLm

qLmLm

QQQ
T

&&

&&

&&

&&

&&

&& (10) 

in which g denotes the gravitational acceleration, Q1 
and Q2 denote the driving torques at the rotary 
shafts, and Q3 stands for the force moving the cart in 
the horizontal direction. The appropriate rotational 
angles are q1 and q2, and the linear degree of 
freedom belongs to q3. The determinant of the 
inertia matrix in (10) has the form of 

( )2
2

21
2

121

2
22

2
11

sinsin

det

qmqmmmM

LmLm

−−++×

×=H
 (11) 

the minimum value of which is equal to 

( ) MLmLm
2
22

2
11mindet =H . The “critical” points 

belong to the minimum of the determinant of the 
inertia matrix in the coincidence of the “critical 
coordinate values” q1, q2=±π/2. On this reason in the 
present, extended paper, the main idea of the 
RBFNs was used by “spanning the tent-cloth” over 
the grid points at ±π, ±π/2, and 0 for both q1, and q2 
that means 5×5=25 points with the radial function 

( ) ( ) ( )( )( )2
,22

2
,1121 4exp, ijijij qqqqqqd −+−−= . In the 

estimation of the U, V, and D matrices these dij 
values were used for weighting. The SVD was 
executed only in the grid-points prior to initiating 
the control. Calculation of such a weighted average 
of a few small matrices does not mean considerable 
computational burden. These grid-points do not 
concern the Slotine-Li control. For describing the 
phenomenon of friction the Lund-Grenoble model 
[24, 25] was used which the deformation of the 
bristles of some ”brushes” are applied to describe 
the deformation of the surfaces in dynamic contact, 

so friction is described as a dynamic coupling 
between two systems having their own equations of 
motion as 

( )

vF
dt

dz
zF

vvFF

zv
v

dt

dz

v

sSC

++=

−+
−=

10

0 ,
/exp

σσ

σ

 (12) 

for which the proper direction of F has to be set in 
the applications. Variable v denotes the relative 
velocity of the sliding surfaces, Fv describes the 
viscous friction coefficient, z denotes the 
deformation as an internal degree of freedom, σ0 
plays the role of some “spring constant” of the 
internal deformation, and σ1 is a new parameter 
pertaining to the effect of the bending bristles. The 
FC, FS, and vs parameters’ role is the description of 
sticking. This model evidently yields dz/dt=0 for 
v=0 that can result finite friction force at even zero 
velocities. The behaviour of the whole system is 
described by the dynamic coupling between the 
hidden internal and the observed degrees of 
freedom. Though the appropriate quantities in (12) 
were developed for linear motion and forces, it 
easily can be generalized for rotary motion in which 
torques appear in the role of the forces, and 
rotational velocity is present instead of linear 
motion’s velocity. The model given in (10) 
evidently can be completed via adding the 
additional torque of the friction to the appropriate 
components of Q in it. In general it is very difficult 
to identify the friction parameters. Appropriate steps 
for identifying the friction model of SISO systems 
and controlling them on the basis of the identified 
model were done e.g. in [31]. However, it seems to 
be more expedient to apply simple adaptive 
approach that completely evades such identification 
problems. The here proposed FPT/SVD-based 
method just corresponds to this idea more or less 
akin to the idea of “situational control” [32] in the 
sense that no complete system model has to be built 
up for control purposes. 

In the next section computation results will be 
presented for the comparative study.  
 
 

4 Simulation Results 
In the present paper the following model inertia and 
dynamical parameters were used for the controlled 
system: M=5 kg, m1=6 kg, m2=4 kg, L1=2 m, L2=3 m, 
g=9.1 m/s

2. The friction models had the following 
parameters: σ01=10 Nm/rad, σ11=150 Nms/rad, 
Fv1=1 Nms/rad, FC1=100 Nm, FS1=200 Nm, 
vs1=0.1 rad/s for the 1st axle, σ02=20 Nm/rad, 

 

 m1,L1,q1

M

m2,L2,q2

q3

 

Fig. 1: Sketch of the cart plus double pendulum 
system 
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σ12=300 Nms/rad, Fv2=2 Nms/rad, FC2=200 Nm, 
FS2=400 Nm, vs2=0.2 rad/s for the 2nd axle, and 
σ03=30 N/m, σ13=450 Ns/m, Fv3=3 Ns/m, FC3=300 N, 
FS3=300 N, vs3=0.3 m/s for the 3rd axle. For 
numerical computation simple Euler-integration was 
used with the time resolution of δt=1 ms. In the tests 
concerning the effects of the imprecision of the 
dynamic models the roughly approximate 

kgM 5.2ˆ = , kgm 4.2ˆ1 = , kgm 2.1ˆ 2 =  values were 
used. 

For the simulation of the Slotine-Li method the 
following formal transformation of the original 
dynamic model (10) had to be introduced: 

For the “inertia matrix”: 


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For the “C matrix”: 


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For the “gravitational term”: 
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The matrix determining the speed of the parameter 
tuning was diagonal G=<0.1,0,0;0,0.1,0;0,0,0.001>, 
in the role of the KD matrix the scalar value 
KD=1200 was applied (within the matrix the various 
matrix elements may have different physical 
dimensions), for matrix ΛΛΛΛ also a scalar was chosen 
as Λ=10 s-1. These values were determined by 
running tests.  

For testing the appropriateness of these values as 
well as the correctness of the model the Slotine-Li 
control was tested with exact dynamical model 
without friction and external perturbations for a test 
trajectory. As it was expected, the use of the exact 
model without adaptivity and the adaptive Slotine-
Li control resulted in very close phase trajectories 
and trajectories, i.e. this test was successfully 
carried out (Fig. 2).  

Since the FPT/SVD-based controller ab ovo does 
not use exact model, making a similar test for it was 
not possible. To make “comparable conditions” for 
the two different approaches, the same Λ value was 
applied for this controller, too. However, taking the 
advantage, that this latter approach does not impose 
formal restrictions for the prescribed kinematic 
tracking policy (in strict contrast with the 
requirements of the Slotine-Li method), for the error 

compensation the ( ) 0/ 3 =+Λ dtd -type prescription 

was applied, that in this case correspond to a PID-
type kinematic control with time-constants 
originating from this structure: P=3Λ2, I=Λ3, D=3Λ 
in 

( ) ( )
( )∫ −−

−−−−−=

N

NNNd

dt
I

PD

qq

qqqqqq

2

&&&&&&

 (16) 
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Fig. 2: Fundamental test for the Slotine-Li 
control: phase trajectory tracking with exact 
dynamic model without friction and external 
disturbances: non-adaptive (upper), adaptive 
(lower) chart 
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For the other control value K=20 was chosen, again 
“experimentally”. The “basic” test for this method 
was a simple adaptive run without friction and 
perturbations (Fig. 3). 

Following the “fundamental tests” carrying out a 
comparative analysis became possible. The first test 
aimed at the study of the effects of the imprecise 
dynamic parameters without friction and external 
influences (Fig. 4).  
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Fig. 4: Comparative test for the effects of 

imprecise model parameters without friction and 
external disturbances: phase trajectory tracking 
Slotine-Li (upper), FPT/SVD (lower) chart 
 

Fig. 4 reveals that the two methods worked with 
comparable precision as it was originally expected. 
The Slotine-Li method is appropriately designed to 
compensate such modeling imprecision, and the 
FPT/SVD-based ab ovo has to compensate such 
errors, too. Subtle details of the “trajectory tracking 
errors” described in Fig. 5 reveal that the two 
different methods considered work in quite different 
manner. While the FPT/SVD approach keeps the 
center of the error fluctuation at zero, the Slotine-Li 
approach allows a kind of bias (the axes are denoted 
as follows: 1: black, 2: blue, 3: green). 

It is very interesting to see the details of the 
parameter tuning of the Slotine-Li method. At the 
parameter settings investigated the three different 
inertia parameters are tuned in quite different 
manner. The most interesting is the behavior of p1 
and p2 (Fig. 6): the first one slowly fluctuates 
around a mean value that physically can well be 
interpreted; similar but far more hectic fluctuation 
happens to the 2nd parameter, but essentially it also 
is settled around some mean value that has possible 
physical interpretation. However, an initial 
“transient phase” can well be identified in its 
fluctuation that is damped in the average. 
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Fig. 3: Fundamental test for the FPT/SVD 
control: phase trajectory tracking without friction 
and external disturbances 
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Fig. 5: Comparative test for the effects of 
imprecise model parameters without friction and 
external disturbances: trajectory tracking Slotine-
Li (upper), FPT/SVD (lower) chart 
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Fig. 6: Tuning p1 and p2 in case of Fig. 5 in the 
Slotine-Li control 
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Fig. 7: The disturbance torques or forces 
simultaneously applied for each axle vs. time 

 
The combined effects of imprecise dynamic 

model with disturbance forces (depicted in Fig. 7) 
without friction is described. In the run considered 
each axle had been disturbed simultaneously. The 
FPT/SDV-controller works well, but in the 
operation of the Slotine-Li controller considerable 
deficiencies can be observed. This observation is 
confirmed by Fig. 8, too, that describes the 
appropriate phase trajectory tracking and the 
trajectory tracking errors versus time. It can well be 
seen, that the disturbance forces are well “mirrored” 
in the generalized forces exerted by the FPT/SDV-
controller (Fig. 9). 
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Fig. 8: Effects of imprecise dynamic model with 
disturbance forces without friction: the Slotine-Li 
controller (the first two charts), the FPT/SDV-based 
controller (the second two charts) 
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Fig. 9: Imprecise dynamic model with disturbance 
forces without friction: the joint generalized forces 
exerted by the FPT/SDV-controller 
 
It is very interesting to see what happens to the 
tuned parameters of the Slotine-Li controller. As it 
can well be observed in Fig. 10 the amplitude of the 
fluctuation of the parameters is considerably 
increased. Furthermore, these parameters can take 
values that do not have possible physical 
interpretation (the masses cannot take negative 
values). Via combination of the equations (2) and 
(3) it can qualitatively be understood that for very 
big KD the Slotine-Li controller in short time-scale 
works as a PD-type one with very strong feedback. 
The effects in learning appear only on a larger scale. 
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Fig. 10: Imprecise dynamic model with disturbance 
forces without friction: parameter tuning in the 
Slotine-Li controller 
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Fig. 11: Effects of imprecise dynamic model with 
friction and without disturbance forces: the Slotine-
Li controller (the first two charts), the FPT/SDV-
based controller (the second two charts) 
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Fig. 12: The joint generalized forces and the friction 
torques/forces in the case of imprecise dynamic 
model with friction and without disturbance forces: 
the Slotine-Li controller (the first two charts), the 
FPT/SDV-based controller (the second two charts) 

It also is very interesting to what happens if the 
disturbance forces are switched off but friction 
comes into effect. In Fig. 11 the phase trajectories 
and the trajectory tracking errors are displayed. As 
in the case of the unknown external perturbations, 
the Slotine-Li controller results in seriously 
distorted phase trajectories and degraded tracking 
precision. In contrast to that, the FPT/SVD-based 
controller yields nice phase trajectory tracking and 
precise trajectory tracking, too.  

In this context it is worth noting that there are 
essential differences between the effects of the 
external disturbances here considered and that of the 
friction. The disturbance forces were “explicitly 
applied” independently of the state propagation of 
the controlled system. In contrast to that, according 
to the LuGre model the presence of the friction has 
more complicated effects: it establishes strong 
nonlinear coupling in the dynamics of the controlled 
system. Since the Slotine-Li controller cannot 
adequately compensate these effects, due to that 
coupling it generates more uneven generalized 
forces and friction forces than the FPT/SVD-based 
approach. This is well illustrated by Fig. 12. 
According to Fig. 13 the parameter-tuning process 
of the Slotine-Li controller is seriously disturbed by 
the friction.  
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Fig. 13: Imprecise dynamic model with friction and 
without disturbance forces: parameter tuning in the 
Slotine-Li controller 
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As in the case of the disturbance forces, negative 
values lacking physical interpretation appear. 

Since the rest of this paper is devoted to the 
analysis of the novel FPT/SVD-based controllers, it 
is expedient to reveal its subtle analytical details in 
this paragraph. Within the control cycle it used the 
very simple affine system model instead of (10) as 
Q=10d

2
q/dt

2+[10;10;10]T. The formally correct 
analytical model was used only outside of the 
control cycle, for calculating the SVD 

decomposition of 1ˆ10 −=
∂
∂

M
q

f

&&
 in the 25 grid points. 

In order to evade the occurrence of very drastic 
transients “ancillary tricks” also were applied as 
follows: instead of K its slowly decreasing value 
calculated as Kn=K[0.6+0.4×100/(n+100)] in the nth 
control step was applied. Instead using the αn 
parameter directly calculated from Kn its 
“smoothed” value was utilized by using the content 

of a forgetting integrating buffer as ( )βα −1buf
n  

where the buffer’s content for the (n+1)th step was 

refreshed as n
buf
n

buf
n αβαα +=+1  with β=0.2. Finally, 

a regulating factor was also applied that reduced the 
too big steps by measuring the absolute value of the 
necessary step via the variable 

( ) ( )1: −−= nnn ttd qq &&&&ξ  through a linear interpolation 

determined by two “limit parameters” ε1=0.05,  
ε2=10-5, and a “shape factor” s=0.5 defined by 
λn:=(1+ε1)+(ε2-1-ε1)sξn/(1+sξn), and with the 
modified desired tracking given to the iteration as 

( ) ( ) ( )n
d
nnnn

d
n tt qqq &&&&&& λλ +−= −

∗
11: . For very small ξn 

( ) ( ) ( ) ( )n
d
nn

d
nn

d
n ttt qqqq &&&&&&&& ≈++−≈ −

∗
111 1 εε  since λn≈ 

(1+ε1)≈1, that is practically no “reduction” happens, 
i.e. the original control strategy is used. For very big 

ξn λn≈ε2, and ( ) ( ) ( )n
d
nn

d
n tt qqq &&&&&& 2121 εε +−≈ −

∗  that 

means “strong reduction of the goal”, that is no very 
big jumps in the accelerations are allowed. (These 
features were in operation in the simulations 
resulting the previously presented charts, too.)  

In the next simulation the complex effects of 
both the dynamic model inaccuracies, external 
disturbance forces and internal friction of the axles 
can be analyzed. According to the results displayed 
in Fig. 14 the friction and disturbance effects fob the 
Slotine-Li controller but the FPT/SVD-based one 
still works quite accurately. On this reason it is 
interesting to trace what happens with the internal 
variables of this controller. 
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Fig. 14: The case of imprecise dynamic model with 
friction and disturbance forces: the phase trajectory 
tracking of the Slotine-Li controller (1st chart), that 
of the FPT/SVD-based controller (2nd chart), and the 
trajectory tracking error of the latter controller (3rd 
chart) 
 

As it can well be seen in Fig. 15 the generalized 
forces again are exempt of rough fluctuations. The 
little fluctuation observable in the chart originates 
from that of the parameter αn(t). These fluctuations 
much probably originate from the equation used for 

its estimation ( )l
n
lnn cnKD 1max =≈α : finding the 

maximum in different cl elements really can cause 
small discontinuities. However, as it is revealed on 
the chart depicting the components of Q, these small 
discontinuities are quite negligible. The variation of 
the regulating factor λn(t) also is considerable. 
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Fig. 15: The operation of the FPT/SVD-based 
controller in the case of imprecise dynamic model 
with friction and disturbance forces: the exerted 
generalized forces vs. time (1st chart), the αn factors 
vs. time (2nd chart), and the regulating factor λn vs. 
time (3rd chart) 
 
 

5 Conclusions 
In this paper a comparative analysis of the operation 
of the FPT/SVD-based adaptive controller and that 
of the Slotine-Li approach was given. For numerical 
computations the cart + double system with internal 
dynamic friction as an application paradigm was 
used. The nominal trajectory investigated required 
some  sinusoidal swinging of the pendulums around 
different central angular positions with different 
amplitudes and frequencies while the cart’s nominal 
position was fixed. The effects of modeling 

imprecision, external disturbance forces acting on 
each driven axle, and the unmodeled internal 
friction simulated on the basis of the LuGre model 
were considered.  

It was shown, that in accordance with the 
expectations both controllers well compensated the 
effects of the imprecise dynamic model. However, 
unmodeled internal friction and unknown external 
disturbances can completely fob or “mislead” the 
parameter tuning process of the Slotine-Li 
controller, but scarcely concern the operation and 
the internal variables of the SVD-based method. 
This latter has the deficiency that it may get out of 
its region of convergence. As a consequence its 
design and use needs preliminary numerical 
simulation investigations. However, the simulation 
examples exemplify that its convergence can be 
guaranteed for practical purposes. Furthermore, the 
use of this simple type of adaptive technique seems 
to far more viable way to friction compensation than 
trying to identify the parameters of some 
complicated friction model. 

In the future we plan to investigate the possible 
application of the FPT/SVD-based method for 
trajectories that asymptotically approach some 
constant position, since it is well known that certain 
controllers are apt to produce some fluctuation as a 
limit cycle along such trajectories. 
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